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EP OPERATORS AND GENERALIZED INVERSES 

BY 

STEPHEN L. CAMPBELL AND CARL D. MEYER 

ABSTRACT: The relationship between properties of the genera­
lized inverse of A, Af, and of the adjoint of A, A*, are studied. The 
property that A\A and AA\ commute, called (E4), is investigated. 
(E4) generalizes the property of A being EPr. A canonical form 
and a formula for A\ are given if a matrix A is (E4). Results are in 
a Hilbert space setting whenever possible. Examples are given. 

1. A bounded linear operator A on a complex Hilbert space A is called an 
EP operator if its range, R(A), is closed and R(A)=R(A*). This concept was 
introduced for matrices by Schwerdtfeger in [14] and has been studied in detail 
by several authors [1], [9], [10], [11], [12], et al. For bounded linear operators 
A with closed range, the generalized inverse of A, Af, is defined to be the bounded 
operator A^P where Ax is the restriction of A to R(A*) and P is the orthogonal 
projection onto R(A). Some equivalent definitions and properties of A* are given 
in [2], [5], and [13]. 

There are some interesting relationships between normal operators, EP opera­
tors, and generalized inverses. One phenomenon which frequently occurs is that if 
one obtains a statement which characterizes a normal operator and replaces the 
adjoint operation (*) by the generalized inverse operation (f), then the resulting 
statement, which shall be referred to as the dual statement, is a characterization 
for EP operators. For example, consider the statement "A is a normal operator 
if and only if A*A—AA^T It is easy to verify that the dual statement "A is an EP 
operator if and only if ÀfA=AÂt" is valid. Other relations of this type may be 
found in [10] and [12] where finite complex matrices were considered. 

Our purpose in this paper is to explore further relationships between EP opera­
tors, generalized inverses, normal operators, and binormal operators. In particular, 
we completely characterize operators for which A*A and AÂ* commute by giving 
a block decomposition. 

2. We begin by establishing some of the properties of (*) that we wish to exploit. 
All operators are bounded linear operators with closed ranges. Except possibly for 
those occurring as blocks in block matrices, they map a given Hilbert space into 
itself. B(Â) is the set of all bounded linear operators on â with closed range. If 
X, YeB(A), then [X9 Y]=XY-YX. 
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THEOREM 1. Suppose that A e B(A). Then each of the following implies the next. 
(NI) A is normal. 
(N2) A2 is normal. 
(N3) [A*A,AA*]=0. 

Proof. (N1)=>(N2) is clear. To show that (N2)=>(N3), assume that A2 is normal. 
Fuglede's Theorem asserts that if B is normal and [C, B]=0, then [C*, B]=0. 
(See [8, pp. 88-89] for a discussion of Fuglede's Theorem). Thus [A*,A2]=0 
and [A, A*2]=0 since [A, A2]=0 and [A*, A*2]=0. (N3) now follows since 

(AA*)(A*A) = AA**A = A**A* = A*A2A* = (A*A)(AA*). 

Operators satisfying (N3) were studied in [4] where they were referred to as 
binormal operators. (N3) also appears in the work of Embry [7]. Examples exist 
to show that none of the implications in Theorem 1 reverse. Condition (N2) may 
be replaced by 

(N4) [A,A*A]=0. 

Operators satisfying (N4) have been studied by Brown [3]. Implicitly contained in 
[3] is the fact that if the underlying Hilbert space is finite dimensional, then (N4) 
is equivalent to (Nl). 

3. The next result is the (f ) analogue of Theorem 1. It is interesting that some of the 
same examples used to show the implications are irreversible will work for Theorem 
2 as for Theorem 1. 

THPOREM 2. Suppose that A e B(A). Then each of the following implies the next. 
(NI) A is normal. 
(El) A is EP. 
(E2) A2 is EP. 
(E3) {A*)*=(A*)\ 
(E4) [AfA,AAf]=Q. 

Furthermore all the implications are proper. 

Proof. (N1)=>(E1) is well known. That (E1)=>(E2) is also clear. If B, C e B(A) 
and BCB=B, then C is called a (l)-inverse for B. If BCB=B and CBC=C, 
then C is called a (1,2)-inverse for B. Clearly Bf is a (1,2)-inverse for B. 
We will show later in Theorem 3 that (E4) is equivalent to A}2 being 
a (1) or (1,2)-inverse for A2. Then (E3) will imply (E4). We will now show 
(E2)=>(E3). Suppose that A2 is EP. Let N(A2) denote the null space of A2. 
Then relative to the orthogonal decomposition A=R(A2)Q>N(A2), we have 

A2= 
T 0 
0 0 

where T is invertible. Let A= 
B C 
D E 

invertibility of Timply that C = 0 and D = 0 . Hence E2=0. But Af= 
£ t 2 = 0 so that Af2=A2f. 

Then [A,A2]=0 and the 
B-1 0 1 , 
.0 E'J and 
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The same proof shows that if An is EP, then Au=An\ 

EXAMPLE 1. Let A= 

EXAMPLE 2. Let 

Then A2 is EP while A is not. Thus (E2)4>(E1). 

A = 
"o 
0 
_0 

1 
0 
0 

o" 
1 
oJ 

Then A*=*A* and A2t=A2*. Hence A2f=A2*=A*2=A2\ But R(A*) and R(A*2) 
are unequal and hence A2 is not EP. Thus (E3)*>(E2). 

EXAMPLE 3. Let 

Then 

"0 11 
0 Oj 
:0 01 
1 Oj 
' 0 

4f = 

0 

0 

0 

"ro 
|_i 

0 

ro 
-L° 

"1 0" 
0 1 
"1 0: 

0 1 
0 

-il r 

oJ |_ 
01 
IJ 

1 where 0 = 

o r 
-1 0 

0 

ri o-
[o o 

0 

0 

0 

•0 0" 
0 0_ 

A direct calculation shows that A2A*2 is not self-adjoint. Hence A^^A2*. However, 
it can be verified that [AA\ ArA]=0. Thus (E4) *>(E3). 

Before proceeding we need the following well-known lemma [15, p. 58]. 

LEMMA 1. IfP e B{i), P2=P, and \\P\\ < 1, then P is a self-adjoint projection. 

One use of condition (E4) is the following. 

THEOREM 3. Let A e B{Â). Then AH is a (l)-inverse for A2 if and only if [A*A, 
AA^O. 

Proof. Suppose At2 is a (l)-inverse for A2. Then A2Af2A2=A2. Multiplying on 
the right and left by À* gives (rfA2£)(£A2£)=£A2A\ But WAU^W^ 
\\AU\\ 11̂ 14*11 = 1. Thus (AUXAA^AU^ is self-adjoint by Lemma 1. Since 
Â*A and AÀ* are self-adjoint, and their product is self-adjoint, we have 
[A^A, AAr]=0 as desired. Now suppose A1AAA1'=AA1A1A. Multiplying on the 
right and left by A yields the desired result. 

Note that if A12 is a (l)-inverse for A2, then it is a (1, 2)-inverse. Thus if (E4) 
is known to hold one may calculate (1, 2)-inverses for A2 from Ar with little 
additional work. 

[T 01 
4. EP operators have the advantage of a simple canonical form, 

'T-1 01 
an easily computed (f), 0 0 

0 0 
, and 

. Unfortunately, even in the finite dimensional 
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case, EP matrices form a very restrictive class. Not all matrices are even similar 
to an EP matrix. 

As we will see shortly, operators satisfying (E4) also have a nice canonical form 
and a (f ) that is fairly easy to compute. However, they admit a much greater degree 
of variety, for every matrix is similar to a matrix satisfying (E4). This can be 
easily seen by observing that every block in the Jordan form is (E4). In fact, the 

Ri °1 Jordan form can be written I ~x "I where Jx is invertible, if it is present (hence 
(El)), and / 2 i s (E3) . 

5. A condition implying (E4) will now be established. 

THEOREM 4. Let A e B(Â). If [A*A, AA*]=0, then [A1 A, AA*]=0. 

Proof. Let a(A) be the spectrum of A. It is known that o(A*A) and a(AA*) 
have the same nonzero elements. L e t / b e the function defined on the real line by 
/ ( 0 ) = 0 and/(A)=l if A^O. Using the spectral theorem for self-adjoint operators 
as found in [6, Chapter X], we can define/(C) for any self-adjoint operator C. 
Then f(C) is a self-adjoint projection onto the closure of R(C). Suppose that 
[A*A, AA*]=0. Then [f{A*A)9f(AA*y\=0. But R(A*A)=R(A*) and R(AA*)= 
R(A). Hence A*A=f(A*A)9 AA*=f(AA*)9 and the result follows. 

Notice that A = L .\ satisfies (El), and hence (E4), but not (N3) so that the 

converse of Theorem 4 is not valid. In general, the (E) conditions are geometric 
statements about ranges, whereas the (N) conditions convey information on the 
entries of a matrix of A, that is, quantitative information. Thus one would not ex­
pect conditions of the (E) type to imply any of the (N) type without additional 
quantitative assumptions. 

The next section is concerned primarily with the matrix case and will contain 
applications of some of our earlier ideas. 

6. To determine whether A is EP it is necessary in principle, to determine R(A) 
and R(A*) or calculate A^. In applications using matrices this can be a time con­
suming process if the matrices are large. To find AfA or AA* requires finding only 
one of the ranges. With the exception of parts 2 and 3, which are included for 
completeness, the next theorem contains several potentially useful reformulations 
of EP for matrices. The theorem is motivated by a result of Embry [7] which 
states that if both A* A and A A* commute with A+A*9 then A is normal. 

THEOREM 5. Suppose that A is an nxn complex matrix. Then the following con­
ditions are equivalent. 

(1) A is EP. 
(2) [A*A9A+A*]=0. 
(3) [AAf

9A+A*]=0. 
(4) [AfA9A+A*]=0. 
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(5) [AA\A+A*]=0. 
(6) [A,A*A]=0. 
(7) [A,AA*]=0. 

Proof. Clearly (1) implies the rest. To show that (2)=>(1), assume that A*A(A+ 
A*)=(A+Af)AfA. Then AU2+Af-Af2A=A. Hence R(A)<^R(A^)=R(A*). 
Thus R(A)=R(A*) and A is EP. The proofs of (3)=>(1), (4)=>(1), and (5)=>(1) 
are similar. Suppose then (6) so that A(AfA)=(ÂrA)A or A=AfA2. 

Then AAt=(AtA)(AA*). Since A}A and AAf are self-adjoint projections of the 
same rank, this implies A*A=AA't and A is EP. The final implication (7)=>(1) is 
similar to (6)=>(1). 

EXAMPLE 4. Suppose {e0, el9...} is an orthonormal basis for a separable, 
infinite dimensional, Hilbert space. Let S be the bilateral shift defined by Sk f=e i + 1 

and extended linearly. Let P be the projection onto the subspace spanned by 
{el9 e2,...}. It is easy to verify that S*=S fand SS*=P while £*£= / , the identity 
Thus S is not EP since SSP^&S. But S satisfies (2), (4), and (6). S* is not EP 
and satisfies (3), (5), and (7). The assumption of finite dimensionality was thus 
crucial to all parts of Theorem 5. 

The dual to Embry's result is valid even if H is infinite dimensional. 

THEOREM 6. Let A G B(4). If [A*A, A+A*]=0 and [AA\ A+A*]=0, then A is 
EP. 

Proof. Suppose [A*A, A+Af]=0. Then A*A2+Af=A+Af2A. Multiplication on 
the right by A* gives (A*A)(AA*)=AA\ Thus R(A)cR(A*). Similarity [AA\ 
A+A*]=0 gives R(A*)^R(A) and hence A is EP. 

In [10] it was shown for matrices, that if R(A2)=R(A) and AH=A2\ then A is 
EP. We now improve this result. 

THEOREM7. LetAbeannxncomplexmatrix.IfR(A2)=R(A)and[AfA, AAf] = 
0, then A is EP. 

Proof. Suppose that [AfA9AA*]=09 that is, that the projections onto R(A) 
and N(A) commute. Thus <Dn=R(A) n R(A*)@R(A) n N(A)@N(A*) n N(A)@ 
N(A*) n R(A*). But if R(A2)=R(A), then R(A) n N(A)={0}. Since <DW is 
finite dimensional, we also have R(A*2)=R(A*) and hence R(A*) n iVr(^t*)={0}. 
Thus iV(̂ 4) is perpendicular to R(A) and t̂ is EP. 

JfA=S*9 S as in Example 4, then ^(^ 2 )=i?(^) and A*=AH but 4 is not EP. 
Thus finite dimensionality was needed both for Theorem 7 and the original result 
in [10]. 

Not all the results of [10] can be improved by the substitution of one of our con­
ditions. For example, it was shown in [10] that the matrix A is normal if and only 
if A is EP and [A\ A*]=0. We cannot weaken A is EP to any of (E2), (E3), or 

2 
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(E4). A= L 0 satisfies (E2), and [Af
9 ^4*]=0, while A is not normal. 

7. The condition [A*,A^]=0 is different from our (E) conditions in the quan­
titative way discussed earlier. We give two examples to show that it is actually 
independent of (E4). 

EXAMPLE 5. Let 

A = 

0 

0 

Then 

A* = 

but [A\ ^*]^0 . 

0 

0 

- 1 " 
1 

"1 1 
0 1 

0 

0 

0 

0 

0 

0 

and [AA\ ArA] = 0, 

EXAMPLE 6. Let A -ft 1/V2 1/V2' 
0 

. Then A*=Af and hence [^*,^tt]=0. 

But [A*A, AA*]^0. Notice also that R(A2)=R(A). 

8. The proof of Theorem 7 suggests that matrices satisfying (E4) must have a 
nice standard form. 

THEOREM 8. If A is an nxn matrix and [A^A, AA*]=09 then there exists a 
unitary matrix U, and matrices All9 A12, AZ1, AZ2) such that 

A = U 

where 
pu 
Usi 

\AV 

0 
Agj 

LO 

An 
•"32-

L A12 0 0 
0 0 0 

A32 0 0 
0 0 0. 

is invertible < 

u* = u 

I 0 0 0] 
0 0 / 0 
0 7 0 0 
.0 0 0 i] 

Mu 
A31 

0 
L 0 

A12 

A32 

0 
0 

0 0 
0 0 
0 0 
0 0. 

u* 

Proof. Suppose [A*A, AA^\=§. Consider A as a linear transformation on Cn 

with the standard basis. Since [A^A, AÂ*]=0 we have 

O = R(A) n R(A*)@R(A*) n N(A*)@R(A) n N(A)@N(A) n N(A*). 

Pick an orthonormal basis for each summand and combine to get an orthonormal 
basis for Cn. Let U*AU be the matrix of A relative to this new basis. Relative to 
the decomposition of Cn we have U^AU^IA^], 1 < J J # / < 4 , a 4 X 4 block matrix. 
An easy computation shows that Ai5=Q except possibly for All9 A12, A31, and AZ2. 
We note that dim [R(A *) n N(A *)]=dim [R(A) n N(A)] since rank A * -
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An A12 

l,Azl AZ2_ 
is invertible follows from rank A *2=rank A -rank A2. That 

L^31 ^32J 

dim R(A)=dim JR(4*) and the decomposition. 
If (E4) is satisfied and A is an nxn matrix, then Â* can be calculated from U 

^ 1 1 ^ 1 3 I 
and 

L^21 ^22J 
In fact, 

Ar = U 

"Cu 
C2 i 
0 

. 0 

0 
0 
0 
0 

c13 
C23 
0 
0 

ol 
0 
0 
OJ 

17*. 

The standard form in Theorem 8 has several uses. In addition to providing a way 
of calculating A*, it can also be useful in producing examples and counter examples. 
The standard form was used in constructing Examples 3 and 5. 

If Â is allowed to be infinite dimensional, then we still get the first block form of 

Theorem 8, but , n /2 may no longer be invertible or square. 
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