Clinical Evaluation of Sofia Rapid Antigen Assay for Detection of Severe Acute Respiratory Syndrome Coronavirus 2 among Emergency Department to Hospital Admissions

Richard D. Smith, BSa, J. Kristie Johnson, PhDa, Colleen Clay RN BSN CICb, Leo Girio-Herrera DO, Diane Stevens FACHE, MT (ASCP)b, Michael Abraham MDa, b, Paul Zimand MSb, Mark Ahlmanb, Sheri Gimigliano MT (ASCP), MSb, c, Richard Zhao PhDa, Cynthia Hildenbrand MS, Fermin Barrueto MDa, b, Surbhi Leekha, MBBSa

aUniversity of Maryland School of Medicine, Baltimore, MD, USA
bUpper Chesapeake Medical Center, Bel Air, MD, USA
cUniversity of Maryland Medical System, Baltimore, MD, USA

Corresponding Author:
Richard D. Smith, BS,
University of Maryland School of Medicine, Baltimore, MD, USA,
650 West Baltimore Street, Baltimore, MD, USA,
Telephone: 301-956-5031,
Email: Richard.smith@umaryland.edu

Abbreviated title: Evaluation of a Sars-CoV-2 Rapid Antigen Test

All authors have read and approved the submission of the manuscript to ICHE

Text word count: 2,945
Abstract

Objective. To determine the utility of the Sofia® SARS rapid antigen fluorescent immunoassay (FIA) to guide hospital bed placement of patients being admitted through the emergency department (ED).

Design. Cross-sectional analysis of a clinical quality improvement study.

Setting. Two community hospitals in Maryland. From 9/21/2020 to 12/3/2020, 2887 patients simultaneously received the Sofia® SARS rapid antigen FIA and SARS-CoV-2 RT-PCR assays on admission through the ED.

Methods. Rapid antigen results and symptom assessment guided initial patient placement while confirmatory RT-PCR was pending. The sensitivity, specificity, positive and negative predictive values of the rapid antigen assay were calculated relative to RT-PCR, overall and separately for symptomatic and asymptomatic patients. Assay sensitivity was compared to RT-PCR cycle threshold (Ct) values. Assay turnaround times were compared. Clinical characteristics of RT-PCR positive patients and potential exposures from false-negative antigen assays were evaluated.

Results. Overall agreement, sensitivity, and specificity for all patients was 97.9%, 76.6% (95% confidence interval (CI): 71%, 82%), and 99.7% (95% CI: 99%, 100%), respectively. No differences in performance were seen between asymptomatic and symptomatic individuals. As RT-PCR Ct increased, sensitivity of the antigen assay decreased. Mean turnaround time for the antigen assay and RT-PCR was 1.2 (95% CI: 1.0, 1.3) and 20.1 (95% CI: 18.9, 40.3) hours, respectively (p<0.001). No transmission from antigen-negative/RT-PCR-positive patients was identified.

Conclusions. While not a replacement for RT-PCR for detection of all SARS-CoV-2 infections, the Sofia® SARS antigen FIA has clinical utility for potential initial timely patient placement.
Introduction

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has affected people throughout the world resulting in a global pandemic.\(^1\) COVID-19 poses a public health threat burdening the healthcare system, particularly hospitals. To best respond, diagnostic testing has been prioritized.\(^2\) Especially problematic is the virus’s ability to spread from individuals who are asymptomatic, emphasizing the importance of accurately diagnosing asymptomatic patients.\(^3\) For this reason, admission testing of all hospitalized patients became the standard at many United States hospitals.

The current standard assay for COVID-19 is a reverse transcriptase polymerase chain reaction (RT-PCR) assay performed on a nasopharyngeal swab.\(^4\) These assays have several limitations including need for resources, trained laboratory personnel, and turnaround times that potentially exceed 24 hours.\(^5\)\(^-\)\(^7\) Recent studies have demonstrated that fast turnaround times are critical for effective control of SARS-CoV-2.\(^8\) For this reason, the World Health Organization (WHO) emphasized rapid, point-of-care (POC) diagnostics as a top priority to contain COVID-19.\(^9\) Long turnaround times of RT-PCR tests negatively impacted the emergency department (ED) to inpatient admission process at hospitals due to desire to have the RT-PCR result in hand prior to inpatient placement. To overcome this problem, the Sofia® rapid antigen fluorescent immunoassay (FIA) was introduced at our hospitals with the goal of rapid testing to guide initial bed placement of patients being admitted through the ED.

The Sofia® SARS rapid antigen FIA has a manufacturer-published assay turnaround time of 15 minutes and EUA for SARS-CoV-2 diagnostic testing by the FDA.\(^10\) Previous studies evaluating rapid antigen assays have suggested that these tests have low sensitivity at lower viral loads and among asymptomatic persons\(^11\), and there are limited published data on their utility among hospitalized patients.

The objective of this study was to conduct a real-world evaluation of rapid antigen testing among patients admitted through the ED through assessment of 1) the sensitivity, specificity, positive and negative predictive values of the antigen FIA compared to RT-PCR, 2) comparison of turnaround times of antigen and RT-PCR testing, and 3) clinical correlates of antigen-negative/RT-PCR positive patients.
Methods

Setting and patients

This study was designed as a clinical quality improvement project at University of Maryland Upper Chesapeake Health. This includes two hospitals – the Upper Chesapeake Medical Center, 220 beds (29 double occupancy), on average 32 daily admissions, and Harford Memorial hospital, 104 beds (49 double occupancy), and 12 daily admissions. From 9/21/2020 to 12/3/2020, all patients evaluated in the ED and considered candidates for hospital admission were explained the purpose of the study and asked to provide consent to undergo both Sofia® SARS rapid antigen FIA and SARS-CoV2 RT-PCR assays. This included both symptomatic (persons under investigation (PUI)) and asymptomatic patients.

Clinical practice and infection prevention measures during the study period

All hospitalized patients were required to undergo admission SARS-CoV-2 RT-PCR testing at the two hospitals. The test order required clinicians to indicate whether the patient was asymptomatic or a COVID-19 PUI. RT-PCR testing for all patients was performed. For management of asymptomatic patients, staff were required to wear a medical-grade face mask and eye protection, while for PUIs and laboratory-confirmed COVID-19 patients, staff were required to don a respirator, eye protection, gloves, and gowns.

Sample Collection and Testing

For each patient, trained staff collected two nasopharyngeal specimens. One specimen was placed in viral transport media for RT-PCR testing. The other specimen was placed dry in a tube for antigen testing. Results for both assays were reported in patient charts in the electronic medical record system and reported to the Maryland Department of Health.

SARS-CoV-2 RT-PCR assay

Three real-time RT-PCR-based methods were utilized for the SARS-CoV-2 detection. These included the Abbott RealTime SARS-CoV-2 assay (Abbott; Des Plaines, IL) and the cobas SARS-CoV-2 (Roche Diagnostics; Indianapolis, IN) assay performed at a centralized laboratory. The Xpress Xpert® (Cepheid, Sunnyvale, CA, USA) assay was utilized for patients presenting for emergency surgery, women presenting for delivery, prior to initial admission to behavioral health units, and situations requiring rapid medical decision-making based on the institutional testing protocol to guide use of RT-PCR tests. The Roche cobas assay detects the ORF1 and a region of the E gene are specific to SARS-CoV-2. The Abbott RealTime assay
detects RdRp and N genes. For Xpress Xpert®, RT-PCR detects the pan-sarbecovirus E gene and N2 region of N gene. (13) Cycle threshold (Ct) value was obtained for positive RT-PCRs tests as a surrogate measure for viral load for samples tested using the cobas and Xpress Xpert® assays. Presumptive results were repeated by another method and only final results of “Detected” or “Not Detected” were used in this study.

Sofia® SARS rapid antigen FIA

This assay which uses sandwich immunofluorescence-base lateral flow to qualitatively detect the SARS-CoV-2 nucleocapsid protein antigen was performed using manufacturer guidelines [13] Sofia analyzers were used for detection. [10]

Patient placement

Patients’ room placement guidelines were based on presenting symptoms and test results using a 2-step algorithm with the antigen assay available first and the RT-PCR over the next 24-48 hours. Briefly, antigen-negative, asymptomatic patients could be placed in any room with standard precautions and potentially in double occupancy rooms with other patients. Antigen-positive patients and symptomatic patients (regardless of antigen test results) were placed in a private room. Upon receipt of RT-PCR results, patients who were RT-PCR and antigen positive remained in private room, and antigen-negative patients who were found to be RT-PCR positive were moved to a private room (Supplemental table 1).

Turnaround times

Turnaround times were calculated as time (hours) between NP swab collection and result reporting in the electronic medical record.

Clinical evaluation

All antigen-negative, RT-PCR-positive patients were evaluated for presence of COVID-19 symptoms, potential COVID-19 exposure in preceding 2 weeks, and potential transmission to patients and staff based on placement in a double occupancy room and compliance with institutional infection prevention protocols.

Outcome measures and Statistical analyses

Daily positivity rates, 7-day moving averages, and trends in positivity based on RT-PCR results were plotted. Overall agreement, sensitivity, and along with 95% confidence intervals (CI) were calculated for antigen testing with RT-PCR as the reference standard. Patients were stratified into symptomatic and asymptomatic and the above performance measures were
calculated separately for both groups. Positive predictive value (PPV) and negative predictive value (NPV) of antigen testing were calculated for overall prevalence, symptomatic prevalence, and asymptomatic prevalence of COVID-19 based on RT-PCR, as well as for theoretical scenarios of 10% and 20% disease prevalence to evaluate WHO standards. A chi-square test was conducted to statistically compare the above measures among all patients, symptomatic patients, and asymptomatic patients.

The sensitivity of the antigen assay relative to RT-PCR was also calculated in different categories based on Ct values: less than 14, 14-17.9, 18-21.9, 22-25.9, 26-29.9, 30-33.9, and 34 and over. Results from Abbott RealTime assay were excluded since the assay reports copy number instead of Ct values. Mean RT-PCR Ct values between true positives and false negatives, and between symptomatic and asymptomatic patients were compared using Student’s t test. Mean turnaround times for antigen and RT-PCR were compared using Student’s t test. Statistical analyses and graphs were done using GraphPad Prism, Version 8.

This study was deemed non-human-subjects research by the University of Maryland IRB.

Results

A total of 2887 patients were enrolled in this study and received simultaneous SARS-CoV-2 RT-PCR and Sofia antigen testing; 235 patients were positive by RT-PCR for an overall positive prevalence of 8.1%. For RT-PCR, 1838 patients received the Roche cobas assay, 675 patients received the Xpress Xpert® assay, and 374 received the Abbott RealTime assay. Of 1675 patients presenting with COVID-19 symptoms, 193 (11.5%) were positive whereas among 1206 asymptomatic patients, 42 were positive (3.5%)

Positivity rates and trends

The 7-day moving average ranged from 2.5% to 20.9% during the study period, peaking between November 8th and November 24th, and remained above 10% until the end of the study (Supplemental figure).

Sofia® SARS rapid antigen FIA performance

Overall agreement, sensitivity, and specificity between antigen and RT-PCR for all participants were 97.9%, 76.6% (95% CI: 71%, 82%), and 99.7% (95% CI: 99%, 100%), respectively (Table 1). Among 1675 symptomatic patients, the overall agreement was 97.1%, sensitivity was 76.2% (95% CI: 70%, 82%), and specificity was 99.9% (95% CI: 99%, 100%). Among 1206 asymptomatic patients, the overall agreement was 98.9%, sensitivity was
78.6% (95% CI: 67%, 91%), and specificity was 99.7% (95% CI: 99%, 100%) (Table 1). Symptomatic and asymptomatic groups were not statistically different.

The PPV and NPV, with an overall prevalence of 8.1% for this study were 96.3% (95% CI: 92%, 98%) and 98.0% (95% CI: 97%, 98%), respectively. Among symptomatic individuals, the prevalence was 11.5% and the PPV and NPV were 98.7% (95% CI: 97%, 100%) and 97.0% (95% CI: 96%, 98%), respectively. The prevalence among asymptomatic patients was 3.5%, and PPV and NPV were 89.2% (95% CI: 79%, 99%) and 99.2% (95% CI: 99%, 100%), respectively. PPV and NPV for WHO scenarios of 10% prevalence were 96.5% and 97.4%, respectively; and for 20% prevalence, 98.4% and 94.5%, respectively (Table 2).

Cycle thresholds were available for 166 RT-PCR positive subjects in this study (Figure 1a), 146 from the Roche cobas assay and 20 from Xpress Xpert®. The mean Ct was 22.7 (95% CI: 21.8, 23.6) for true positives and 32.1 (95% CI: 31.0, 33.2) for false negatives (p<0.001) on rapid antigen testing. At Ct less than 17.9 the sensitivity was 100%, between 18-21.9 sensitivity was 97.2%, 96.8% for 22-25.9, 71.0% for 26-29.9, 29.2% for 30-33.9 22.2% for 34 and over (Figure 1b). There was no difference in mean Ct values between symptomatic 25.0 (95% CI: 24.1, 25.9) and asymptomatic patients 25.4 (95% CI: 23.2, 27.5) (p=0.78) (Figure 2).

Turnaround time

The turnaround time for the Sofia® SARS rapid antigen FIA was significantly shorter at 1.2 hours (95% CI: 1.0, 1.3) compared to 20.1 (95% CI: 18.9, 40.3) hours for RT-PCR (p<0.001).

Clinical Evaluation

A total of 55 patients with positive SARS-CoV-2 PCR were false negative on Sofia® SARS rapid antigen FIA of which 38 (69%) were symptomatic. Symptomatic patients were placed in private room and treated as PUIs per hospital policy, while 9 asymptomatic patients were placed in rooms with a roommate. Roommates of 3 patients still in-house were tested for SARS-CoV-2 at 5-7 days from exposure all were negative. No high-risk staff exposures were identified due to use of universal masking and eye protection. None of the staff or patient contacts developed symptoms. The median duration from symptom onset to testing for the 38 symptomatic false negatives was 7 days (IQR: 2,13) and 17 (44%) received testing 8 days or later from symptom onset. Nine of 55 false negatives (16%) had prior positive RT-PCR in the
preceding 4-week period. Excluding those known prior positives, 20 (43%) patients had possible SARS-CoV-2 exposure risk.

Discussion

In this real-word evaluation among ED patients being considered for hospital admission, the Sofia® rapid antigen FIA assay had a sensitivity of 76.6% (95% CI: 71%, 82%) and specificity of 99.7% (95% CI: 99%, 100%) compared to RT-PCR with no significant differences between symptomatic and asymptomatic patients. Importantly, the predictive value estimates varied by prevalence, and the percent agreement increased with decreasing RT-PCR cycle thresholds, with 100% sensitivity with Ct values less than 22. Average turnaround times were significantly lower for antigen versus RT-PCR testing. With limited testing of contacts, transmission to other patients or staff was not observed from antigen-negative, RT-PCR positive patients.

Several studies have evaluated and compared rapid POC diagnostics for SARS-CoV-2. These assays can be administered via saliva, nasopharyngeal swab, or nasal swab, and are antigen or molecular based. Some current examples of rapid POC assays include BD Veritor, COVID-19 Ag Respi-Strip, Lllumipulse, and the Abbott ID NOW. These rapid assays have reported low sensitivities, especially at high Ct. The Sofia® SARS rapid antigen FIA has previously been compared to other POC diagnostics in symptomatic individuals, and is either competitive or outperforms other POC assays.

For rapid SARS-CoV-2 diagnostics to be considered acceptable by the WHO, sensitivity and specificity must be 80% and 97%, respectively. The desirable thresholds are even higher at 90% and 99%, respectively. While the overall sensitivity for the Sofia® rapid antigen FIA assay does not meet WHO guidelines, it is slightly lower than the acceptable level with the 95% confidence interval crossing the threshold. For predictive values, the WHO requires a second or confirmatory assay for PPV less than 50%. By these standards, a second assay would not be required for the Sofia® SARS rapid antigen FIA. Furthermore, for prevalence between 10% and 20%, the WHO-recommended acceptable ranges are > 78%-89% for PPV and 95-98% for NPV. At 10% prevalence, the PPV based on our study is 96.6% and NPV is 97.4%, both meeting acceptable criteria. At 20%, the NPV drops to 94.5%, slightly below guidelines. Based on recommended PPV and NPV ranges by the WHO, the ideal prevalence range for use of the
Sofia® SARS rapid antigen FIA assay is between 10-18.5%, and caution should be exercised when using this assay’s PPV at lower and NPV at higher prevalence of disease.

A significant proportion of transmission of SARS-CoV-2 occurs from asymptomatic and pre-symptomatic infected individuals.\[^3\]\ It is critical to properly identify these carriers in a timely manner. Previous studies lack thorough analysis of antigen-based assay performance in asymptomatic individuals. In this study, the Sofia® SARS rapid antigen FIA was evaluated in both symptomatic and asymptomatic individuals, providing information not previously explored. When stratified by symptomatic and asymptomatic, overall agreement, sensitivity, and specificity were similar, demonstrating the Sofia® SARS rapid antigen FIA is just as accurate in asymptomatic individuals as those who are symptomatic. Importantly, mean Ct values were not significantly different between asymptomatic and symptomatic individuals suggesting viral load and not symptoms as the primary determinant of test performance. These results differ from previous publications that have suggested its use only in symptomatic patients, and reflects the wide spectrum of clinical manifestations of SARS-CoV-2 infection such that patients can be asymptomatic and highly infectious or severely ill and past their infectiousness.\[^16,17,26\]

We also observed a decrease in sensitivity of the Sofia® SARS rapid antigen FIA at lower viral loads as estimated by RT-PCR Ct values, and significantly higher Ct in the antigen false-negative group. This is consistent with previous studies that have shown lower sensitivity at high Ct values.\[^11,15\] Lack of sensitivity at high Ct values makes antigen testing less suitable than RT-PCR for detection of both very early and late SARS-CoV-2 infection when viral load is low. This was noted in the clinical evaluation of discordant (antigen-negative, RT-PCR positive) results in our study patients with most representing either recent exposure or delayed shedding in prior RT-PCR positive patients. Although it is likely that antigen testing detects most patients with transmissible SARS-CoV-2 infection, infected individuals with low viral loads detected on NP swabs may still transmit the virus to others, particularly in the setting of early incubating disease.\[^16-19,30\]

No evidence of transmission from false negative patients was found. low or noninfectious viral shedding, lack of transmission was likely mitigated by infection control policies in place including universal masking, universal use of eye protection among staff providing patient care, and maintenance of symptomatic patients in appropriate precautions while RT-PCR test was still pending.
A significant reduction in turnaround time from sample collection to result was observed using the Sofia® SARS rapid antigen FIA compared to RT-PCR with a shorter turnaround time by an average of 18.9 hours for antigen testing. Previous studies have suggested that time from sample to results is even more critical than sensitivity in reducing the spread of SARS-CoV-2. Many healthcare systems depend on assay results to decide patient placement. Delays in results could lead to patient placement in non-private rooms, spreading the virus, or unnecessarily isolating the patient, wasting limited hospital space and resource. During the study period, inpatient room placement was successful in 1160 of 1169 asymptomatic antigen-negative patients in this study, and only 9 false-negatives required re-evaluation of placement, reflecting the benefit of the high NPV of antigen testing in this setting. Collectively, this suggests that when used together with clinical symptoms, exposure history, infection control practices, and confirmatory RT-PCR testing, rapid antigen tests can be useful in guiding initial patient placement. Although not formally assessed, anecdotally, ED staff and inpatient providers expressed significant satisfaction in being able to make quicker decisions based on the significantly improved turnaround time of antigen testing relative to RT-PCR in a hospital with a relatively high proportion of semi-private rooms.

Our study has some limitations. RT-PCR can provide inaccurate results and might not be the perfect comparison. However, RT-PCR remains the current recognized standard for SARS-CoV-2 diagnosis. Designations of symptomatic and asymptomatic were at provider discretion and subject to bias; however, this reflects real-world conditions of use of SARS-CoV-2 diagnostic testing. Further, a higher prevalence or percent positivity in symptomatic vs. asymptomatic patients in our sample indicates that designations were accurate within the inherent limitations of recognizing early or non-specific symptoms of COVID-19 PCR cycle threshold values are limited surrogate measures for viral load, but these values do not provide an absolute count and are dependent on the assay, sample collection, and collection site. Testing of only a small number of contacts of antigen negative, RT-PCR positive patients was conducted, restricting conclusions about transmission in this study. However, no symptomatic staff or patients were identified through contact tracing. Lastly, this study may not be generalizable to hospitals with different prevalences of Sars-CoV-2. Confirmatory testing of the Sofia® SARS rapid antigen FIA may be required for negative tests in symptomatic individuals in high prevalence populations and for positive asymptomatic patients in low prevalence populations.
Despite not meeting requirements to replace the RT-PCR assay for detection of SARS-CoV-2 infection, our findings suggest use of Sofia® SARS rapid antigen FIA to guide initial patient placement in a burdened, limited rapid PCR-capacity hospital setting for both symptomatic and asymptomatic patients.
References

Acknowledgements

Financial support. None reported

Potential conflicts of interest. All authors report no conflicts of interest relevant to this article.

Manuscript preparation. All preparation was done by the mentioned authors.
Figure legends

Figure 1a. Box plot comparing cycle thresholds of RT-PCR assays between true positive and false negative results for the Sofia Rapid antigen assay. True positive antigen results had a significantly lower cycle threshold on corresponding RT-PCR assays than false negatives.

Figure 1b. Sensitivity of Sofia rapid antigen assay compared to RT-PCR assay based on cycle threshold. Sensitivity decreases as cycle threshold increases. This indicates at lower viral loads there is higher likelihood of false negative antigen test results.
Figure 2. Box plot comparing cycle thresholds of RT-PCR assays between symptomatic and asymptomatic individuals. No statistical differences were seen between the two groups (p=0.78).
Tables

Table 1. Comparison of paired SARS-CoV-2 rapid antigen assay and RT-PCR assay results among Emergency Department patients presenting for hospital admission, N=2887.

<table>
<thead>
<tr>
<th></th>
<th>PCR+/Antigen+</th>
<th>PCR+/-Antigen-</th>
<th>PCR-/Antigen-</th>
<th>Overall agreement</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>180</td>
<td>55</td>
<td>2645</td>
<td>7</td>
<td>97.9%</td>
<td>76.6%</td>
</tr>
<tr>
<td>Symptomatic</td>
<td>147</td>
<td>46</td>
<td>1480</td>
<td>2</td>
<td>97.1%</td>
<td>76.2%</td>
</tr>
<tr>
<td>Asymptomatic</td>
<td>33</td>
<td>9</td>
<td>1160</td>
<td>4</td>
<td>98.9%</td>
<td>78.6%</td>
</tr>
</tbody>
</table>
Table 2. Positive predictive value and negative predictive values of SARS-CoV-2 Sofia® SARS rapid antigen assay for varying prevalence of COVID-19.

<table>
<thead>
<tr>
<th>Scenario*</th>
<th>Prevalence</th>
<th>PPV</th>
<th>NPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>8.1%</td>
<td>96.3%</td>
<td>98.0%</td>
</tr>
<tr>
<td>Symptomatic</td>
<td>11.5%</td>
<td>98.7%</td>
<td>89.2%</td>
</tr>
<tr>
<td>Asymptomatic</td>
<td>3.5%</td>
<td>89.2%</td>
<td>99.2%</td>
</tr>
<tr>
<td>WHO hypothetical 1</td>
<td>10.0%</td>
<td>96.5%</td>
<td>97.4%</td>
</tr>
<tr>
<td>WHO hypothetical 2</td>
<td>20.0%</td>
<td>98.4%</td>
<td>94.5%</td>
</tr>
</tbody>
</table>

*Scenarios include overall, symptomatic and asymptomatic prevalence in our sample, and two theoretical values that are used to determine quality of SARS-CoV-2 test by the World Health Organization.

PPV=Positive predictive value

NPV=Negative predictive value
Table 1. Patient placement protocols based on results from Sofia rapid antigen assay and RT-PCR assay. Table 1a. shows the protocol after rapid antigen assay results which are received within 15 minutes. Table 1b. shows protocol after RT-PCR assay, within 24 hours, is received.

A

<table>
<thead>
<tr>
<th>Assay Result</th>
<th>Room Type</th>
<th>Isolation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antigen negative</td>
<td>Any room</td>
<td>Standard Elevated Precautions i.e., use of medical mask and eye protection for all patient encounters</td>
</tr>
<tr>
<td>Antigen positive</td>
<td>Private room</td>
<td>Airborne, Droplet and Contact or Enhanced Droplet Contact Precautions (both require the use of respirator, eye protection, gloves, and gowns; airborne additionally implies the use of negative pressure room)</td>
</tr>
<tr>
<td></td>
<td>Do not place on COVID-19 cohort unit</td>
<td></td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Assay Result</th>
<th>Room Type</th>
<th>Isolation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antigen negative/PCR negative</td>
<td>Any room</td>
<td>None – Standard Elevated Precautions</td>
</tr>
<tr>
<td>Antigen negative/PCR positive</td>
<td>Move to private room</td>
<td>Airborne, Droplet and Contact or Enhanced Droplet Contact Precautions. Infectious Diseases physician to review.</td>
</tr>
<tr>
<td></td>
<td>Can be placed on COVID-19 cohort unit</td>
<td></td>
</tr>
<tr>
<td>Antigen positive/PCR negative</td>
<td>Remains in private room</td>
<td>Remains on Airborne, Droplet and Contact or Enhanced Droplet Contact Precautions</td>
</tr>
<tr>
<td></td>
<td>Do not place on COVID-19</td>
<td>Infectious Diseases physician to review</td>
</tr>
<tr>
<td>cohort unit</td>
<td>Antigen positive/PCR positive</td>
<td>Remains on Airborne, Droplet and Contact or Enhanced Droplet Contact Precautions</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>▪ Remains in private room</td>
<td>▪ Can be placed on COVID-19 cohort unit</td>
<td></td>
</tr>
</tbody>
</table>