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Abstract

Most interactive theorem provers provide support for some form of user-customizable proof automa-
tion. In a number of popular systems, such as Coq and Isabelle, this automation is achieved primarily
through tactics, which are programmed in a separate language from that of the prover’s base logic.
While tactics are clearly useful in practice, they can be difficult to maintain and compose because,
unlike lemmas, their behavior cannot be specified within the expressive type system of the prover
itself.

We propose a novel approach to proof automation in Coq that allows the user to specify the
behavior of custom automated routines in terms of Coq’s own type system. Our approach involves
a sophisticated application of Coq’s canonical structures, which generalize Haskell type classes
and facilitate a flexible style of dependently-typed logic programming. Specifically, just as Haskell
type classes are used to infer the canonical implementation of an overloaded term at a given type,
canonical structures can be used to infer the canonical proof of an overloaded lemma for a given
instantiation of its parameters. We present a series of design patterns for canonical structure program-
ming that enable one to carefully and predictably coax Coq’s type inference engine into triggering
the execution of user-supplied algorithms during unification, and we illustrate these patterns through
several realistic examples drawn from Hoare Type Theory. We assume no prior knowledge of Coq
and describe the relevant aspects of Coq type inference from first principles.

1 Introduction

In recent years, interactive theorem proving has been successfully applied to the verifi-
cation of important mathematical theorems and substantial software code bases. Some of
the most significant examples are the proof of the Four Color Theorem (Gonthier, 2008)
(in Coq), the verification of the optimizing compiler CompCert (Leroy, 2009) (also in
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Coq), and the verification of the operating system microkernel seL4 (Klein et al., 2010)
(in Isabelle). The interactive theorem provers (a.k.a. proof assistants) employed in these
verification efforts depend on higher-order logics and type systems in order to maximize
expressiveness and generality, but also to facilitate modularity and reuse of proofs. How-
ever, despite the expressiveness of these theorem provers, effective solutions to some veri-
fication problems can often only be achieved by going outside of the provers’ base logics.

To illustrate, consider the following Coq lemma, which naturally arises when reasoning
about heaps and pointer aliasing:

noalias : ∀h:heap.∀x1x2:ptr.∀v1:A1.∀v2:A2.

def (x1 �→ v1 • x2 �→ v2 •h) → x1 != x2

Here, the type heap classifies finite maps from pointers of type ptr to values, h1 •h2 is the
disjoint union of h1 and h2, and x �→ v is a singleton heap consisting solely of the pointer
x, storing the value v. The disjoint union may be undefined if h1 and h2 overlap, so we
need a predicate def h, declaring that h is not undefined. Consequently, def (h1 •h2) holds
iff h1 and h2 are disjoint heaps. Finally, the conclusion x1 != x2 is in fact a term of type
bool, which Coq implicitly coerces to the proposition (x1 != x2) = true. The noalias lemma
states that x1 and x2 are not aliased, if they are known to belong to disjoint singleton heaps.

Now suppose we want to prove a goal consisting of a number of no-aliasing facts, e.g.,

(x1 != x2) && (x2 != x3) && (x3 != x1),

under the following hypothesis:

D : def (i1 • (x1 �→ v1 • x2 �→ v2)• (i2 • x3 �→ v3))

Before noalias can be applied to prove, say, x2 != x3, the disjoint union in D will have to
be rearranged, so that the pointers x2 and x3 appear at the top of the union, as in:

D′ : def (x2 �→ v2 • x3 �→ v3 • i1 • i2 • x1 �→ v1)

Otherwise, the noalias lemma will not apply. Because • is commutative and associative,
the rearrangement is sound, but it is tedious to perform by hand, and it is not very robust
under adaptation. Indeed, if the user goes back and changes the input heap in D, a new re-
arrangement is necessary. Furthermore, the tedium is exacerbated by the need for different
rearrangements in proving x1 != x2 and x3 != x1.

The most effective solution would be for the type checker to somehow automatically
recognize that the heap expression from D is in fact equivalent to some form required
by noalias. Unfortunately, none of the proof assistants that we are aware of provide such
automatic reasoning primitively. Instead, they typically provide a separate language for
writing tactics, which are customized procedures for solving a class of proof obligations.
For example, one can write an auto noalias tactic to solve a goal like x2 != x3 by automat-
ically converting the assumption D into D′ and then applying the noalias lemma. However,
while tactics have been deployed successfully (and with impressive dexterity) in a vari-
ety of scenarios (Chlipala, 2008; Chlipala, 2011), they are beset by certain fundamental
limitations.

The primary drawback of tactics is that they lack the precise typing of the theorem
prover’s base logic (and in the case of Coq, they are essentially untyped). This can make
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them much more difficult to maintain than lemmas, as changes in basic definitions do not
necessarily raise type errors in the code of the tactics affected by the changes. Rather,
type checking is performed on the goals obtained during tactic execution, resulting in
potentially obscure error messages and unpredictable proof states in the case of failure.
Moreover, the behavior of a tactic typically cannot be specified, nor can it be verified
against a specification.

Due to their lack of precise typing, tactics suffer a second-class status, in the sense that
they may not be used as flexibly as lemmas. For example, suppose the pointer (in-)equalities
we want to resolve are embedded in a larger context, e.g.,

G : if (x2 == x3) && (x1 != x2) then E1 else E2

In this situation, we cannot apply the auto noalias tactic directly to reduce (x2 == x3) and
(x1 != x2) to false and true, respectively, since those (in-)equalities are not the top-level
goal. Coq’s rewrite primitive is designed precisely for this situation—it enables one to
reduce all (in-)equalities within G that match the conclusion of a particular lemma—but it
is not applicable to tactics (like auto noalias).

Thus, with the auto noalias tactic, we are left with essentially two options: (1) use it
to prove a bespoke lemma about one specific inequality (say, x1 != x2), perform a rewrite

using that lemma, and repeat for other (in-)equalities of interest, or (2) implement another
custom tactic that crawls over the goal G searching for any and all (in-)equalities that
auto noalias might resolve. The former option sacrifices the benefits of automation, while
the latter option redundantly duplicates the functionality of rewrite.

Ideally, we would prefer instead to have a way of writing auto noalias as a lemma rather
than a tactic. Had we such a lemma, we could give it a precisely typed specification, we
could rewrite the goal G with it directly, and we could also compose it with other lemmas.
For instance, we could use ordinary function composition to compose it with the standard
lemma

negbTE : ∀b:bool. !b = true → b = false,

thus transforming auto noalias into a rewrite rule for positive facts of the form (x2 ==

x3) = false. Consequently, we could apply rewrite (negbTE (auto noalias D)) to the goal
G, thereby reducing it to E2.

The question of how to support automation, while remaining within the first-class world
of lemmas, is the subject of this paper.

1.1 Contributions

We propose a novel and powerful approach to proof automation in Coq, which avoids
the aforementioned problems with tactics by allowing one to program custom automated
routines within the expressive dependent type system of Coq itself. In particular, we will be
able to rephrase the noalias lemma so that it can automatically analyze its heap-definedness
hypothesis D in order to derive whatever valid pointer inequalities are needed, without any
manual intervention from the user. Our proposal is much more general, however, and we
will illustrate it on a variety of different and significantly more involved examples than just
noalias.
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Our approach involves a sophisticated application of Coq’s canonical structures, which
have existed in Coq for quite some time (Saı̈bi, 1997), but with sparse documentation and
(perhaps as a consequence) relatively little use. At a high level, canonical structures may
be viewed as a generalization of Haskell’s type classes (Wadler & Blott, 1989; Hall et al.,
1996), in the sense that they provide a principled way to construct default dictionaries of
values and methods—and hence support overloading and implicit program construction—
as part of the type inference process.

However, unlike in Haskell, where the construction of canonical instances is keyed
solely on the type belonging to a certain type class, instance construction in Coq may
be keyed on terms as well. This, together with Coq’s support for backtracking during
type inference, enables a very flexible style of dependently-typed logic programming.1

Furthermore, since canonical structures can embed proofs of interesting invariants about
the instance fields being computed, one can use them to implement custom algorithms
(in logic-programming style) together with proofs of their (partial) correctness. Thus, just
as Haskell type classes are used to infer the canonical implementation of an overloaded
term at a given type, canonical structures can be used to infer the canonical proof of an
overloaded lemma for a given instantiation of its parameters. We feel this constitutes a
beautiful application of the Curry–Howard correspondence between proofs and programs
in Coq.

Intuitively, our approach works as follows. Suppose we want to write a lemma whose
application may need to trigger an automated solution to some subproblem (e.g., in the
case of noalias, the problem of testing whether two pointers x1 and x2 appear in disjoint
subheaps of the heap characterized by the heap-definedness hypothesis D). In this case,
we define a structure (like a type class) to encapsulate the problem whose solution we
wish to automate, and we encode the algorithm for solving that problem—along with its
proof of correctness—in the canonical instances of the structure. Then, when the lemma is
applied to a particular goal, unification of the goal with the conclusion of the lemma will
trigger the construction of a canonical instance of our structure that solves the automation
problem for that goal. For example, if auto noalias is the overloaded version of noalias,
and we try to apply (auto noalias D) to the goal of proving x2 != x3, type inference
will trigger construction of a canonical instance proving that the heap characterized by
D contains bindings for x2 and x3 in two disjoint subheaps. (This is analogous to how the
application of an overloaded function in Haskell triggers the construction of a canonical
dictionary that solves the appropriate instantiation of its type class constraints.) Although
we have described the approach here in terms of backward reasoning, one may also apply
overloaded lemmas using forward reasoning, as we will see in Section 5.

Key to the success of our whole approach is the Coq type inference engine’s use of
syntactic pattern-matching in determining which canonical instances to apply when solv-
ing automation problems. Distinguishing between syntactically distinct (yet semantically
equivalent) terms and types is essential if one wishes to simulate the automation power of

1 It is folklore that one can simulate logic programming to some extent using Haskell’s multi-parameter classes
with functional dependencies (Jones, 2000) or with associated types (Chakravarty et al., 2005), but Haskell’s
lack of support for backtracking during type inference limits what kinds of logic programming idioms are
possible.
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tactics. However, it is also an aspect of our approach that Coq’s type system cannot account
for because it does not observe such syntactic distinctions. Fortunately, our reliance on
Coq’s unification algorithm for analysis of syntax is the only aspect of our approach that
resides outside of Coq’s type system, unlike tactics, which are wholly extra-linguistic.

Perhaps the greatest challenge in making our approach fly is in developing effective and
reliable ways of circumventing certain inherent restrictions of Coq’s canonical structures,
which were not designed with our ambitious application in mind. In particular, in order
to implement various useful forms of automation using canonical structures, it is critically
important to be able to write overlapping instances, but also to control the order in which
they are considered and the order in which unification subproblems are solved. None of
these features are supported primitively, but they are encodable using a series of simple
“design patterns”, which form the core technical contribution of this paper.

We illustrate these patterns through several realistic examples involving reasoning about
heaps, pointers and aliasing. All of these examples have been implemented and tested
in the context of Hoare Type Theory (HTT) (Nanevski et al., 2010), where they have
replaced often-used tactics. The code in this paper and HTT itself is built on top of Ss-
reflect (Gonthier & Mahboubi, 2010), which is a recent extension of Coq providing a very
robust language of proofs, as well as libraries for reflection-based reasoning. However, in
the current paper, we assume no prior knowledge of Coq, Ssreflect, or canonical structures
themselves. We will remain close, but not adhere strictly, to the Coq notation and syntax.
All of our sources are available on the web (Gonthier et al., 2012).

The rest of the paper is structured as follows. In Section 2, we review the basic ideas
behind canonical structures. We show how they can be used for function overloading and,
more generally, logic programming, including a design pattern for imposing ordering on
overlapping clauses of a logic program. We utilize such logic programming in order to
implement the automation procedures at the heart of all our overloaded lemmas.

In subsequent sections, we proceed to illustrate a number of ways in which lemmas
can be overloaded so that they automate various proof tasks related to heaps, pointers and
aliasing. Section 3 presents our first overloaded lemma, which automates a simple task
of checking if a pointer appears in the domain of a heap. We walk through this relatively
simple warmup example in full gory detail, so that the reader may understand exactly
how we harness the Coq unification algorithm for our purposes. Section 4 uses overload-
ing to implement a much more sophisticated example, namely a reflective procedure for
cancelling common terms from heap equations. Section 5 illustrates a pattern that relies
on higher-order functions to implement an automated procedure for symbolic evaluation
in separation logic. Section 6 explores the problem of how to effectively compose two
overloaded lemmas so that the result may be applied in both forward and backward rea-
soning, leading eventually to a final pattern for reordering unification subproblems. Lastly,
Section 7 discusses related work and Section 8 concludes.

2 Basics of canonical structures

In this section, we provide a quick introduction to the basics of canonical structure pro-
gramming, leading up to our first important “design pattern”—tagging—which is critical
for supporting ordering of overlapping instance declarations.
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2.1 “Type class” programming

In the literature and everyday use of Coq, the word “structure” is used interchangeably (and
confusingly) to mean both dependent records and the types they inhabit. To disambiguate,
in this paper we use structure for the type, instance for the value, and canonical instance
for a canonical value of a certain type. We will use the term canonical structures only when
referring generally to the use of all of these mechanisms in tandem.

The following definition is a simplified example of a structure (i.e., type) taken from the
standard Ssreflect library (Gonthier & Mahboubi, 2010):

structure eqType := EqType { sort : Type;
equal : sort → sort → bool;

: ∀x y : sort.equalxy ↔ x = y}
The definition makes eqType a record type, with EqType as its constructor, taking three
arguments: a type sort, a boolean binary operation equal on sort, and a proof that equal

decides the equality on sort. For example, one possible eqType instance for the type bool,
may be

eqType bool := EqType bool eq bool pf bool

where eq bool x y := (x && y) || (!x && !y), and pf bool is a proof, omitted here, that
∀x y : bool.eq bool x y ↔ x = y. (Note that, in Coq, although it may seem as though
EqType is declared as taking a single record argument with three components, applications
of EqType pass the three arguments in curried style.)

The labels for the record fields serve as projections out of the record, so the definition of
eqType also introduces the constants:

sort : eqType → Type

equal : ∀T :eqType.sort T → sort T → bool

We do not care to project out the proof component of the record, so we declare it anony-
mous by naming it with an underscore.

Notational Convention 1
We will usually omit the argument T of equal, and write equal x y instead of equal T x y,
as T can be inferred from the types of x and y. We use the same convention for other
functions as well, and make implicit such arguments that can be inferred from the types of
other arguments. This is a standard notational convention in Coq.

It is also very useful to define generic instances. For example, consider the eqType instance
for the pair type A×B, where A and B are themselves instances of eqType:

eqType pair (A B : eqType) :=

EqType (sort A× sort B) (eq pair A B) (pf pair A B)

where

eq pair (A B : eqType) (u v : sort A× sort B) :=

equal (π1 u) (π1 v) && equal (π2 u) (π2 v)

and pf pair is a proof, omitted just like pf bool above, that ∀A B : eqType.∀x y : (sort A×
sort B).eq pair x y ↔ x = y.
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Declaring both eqType bool and eqType pair now as canonical instances—using Coq’s
canonical keyword—will have the following effect: whenever the type checker is asked
to type a term like equal (b1,b2) (c1,c2), where b1,b2,c1 and c2 are of type bool, it will
generate a unification problem matching the expected and inferred type of the first non-
implicit argument of equal, that is,

sort ?T =̂ bool×bool

for some unification variable ?T , generated implicitly at the application of equal. It will
then try to solve this problem using the canonical instance eqType pair, resulting in two
new unification subproblems, for fresh unification variables ?A and ?B:

sort ?A =̂ bool sort ?B =̂ bool

Next, it will choose ?A =̂ eqType bool and ?B =̂ eqType bool, with the final result that
equal (b1,b2) (c1,c2) reduces implicitly to eq bool b1 c1 && eq bool b2 c2, as one would
expect.

In this manner, canonical instances can be used for overloading, similar to the way type
classes are used in Haskell (Wadler & Blott, 1989; Hall et al., 1996).2 We can declare
a number of canonical eqType instances, for various primitive types, as well as generic
instances for type constructors (like the pair example above). Then we can uniformly write
equal x y, and the type checker will compute the canonical implementation of equality at
the types of x and y by solving for equal’s implicit argument T .

Generalizing from eqType to arbitrary structures S, the declaration of an instance V : S
as canonical instructs the type checker that for each projection proj of the structure S, and
c the head symbol of proj V , the unknown X in the unification equation

proj X =̂ c x1 . . .xn (*)

should by default be solved by unifying X =̂ V . For instance, in the unification equation
generated by the equal application above, the projector proj is sort, the head constant c is
(·×·), and the head constant arguments x1 . . .xn are bool and bool. On the other hand, if the
head symbol of proj V is a variable, then V is chosen for unification with X irrespectively
of c in equation (*). In the latter case, we refer to V as a default canonical instance for proj.

We emphasize that: (1) to control the number of (proj,c)-pairs that the type checker has
to remember, we will frequently anonymize the projections if they are not important for
the application, as in the case of the proof component in eqType above; (2) there can only
be one specified canonical instance for any given proj and c. In particular, overlapping
canonical instances for the same proj and c are not permitted. As we will see shortly,
however, there is a simple design pattern that will allow us to circumvent this limitation.

2.2 “Logic” programming

Although the eqType example is typical of how canonical structures are used in much
existing Coq code, it is not actually representative of the style of canonical structure

2 It is worth noting that Coq also provides a built-in type class mechanism, but this feature is independent of
canonical structures. We discuss Coq type classes more in Section 7.
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programming that we explore in this paper. Our idiomatic style is closer in flavor to logic
programming and relies on the fact that, unlike in Haskell, the construction of canonical
instances in Coq can be guided not only by the structure of types (such as the sort projection
of eqType) but by the structure of terms as well.

To make matters concrete, let us consider a simple automation task, one which we will
employ gainfully in Section 3 when we present our first “overloaded lemma”. We will first
present a naı̈ve approach to solving the task, which almost works; the manner in which it
fails will motivate our first “design pattern” (Section 2.3).

The task is as follows: search for a pointer x in the domain of a heap h. If the search is
successful, that is, if h is of the form

· · · • (· · · • x �→ v• · · ·)• · · · ,

then return a proof that x ∈ dom h. To solve this task using canonical structures, we will
first define a structure find:

structure find x := Find { heap of : heap;
: spec x heap of }

where spec is defined as

spec x h := def h → x ∈ dom h

The first thing to note here is that the structure find is parameterized by the pointer x (caus-
ing the constructor Find to be implicitly parameterized by x as well). This is a common
idiom in canonical structure programming—and we will see that structure parameters can
be used for various different purposes—but here x may be viewed simply as an “input”
to the automation task. The second thing to note here is that the structure has no type
component, only a heap of projection, together with a proof that x ∈ dom heap of (under
the assumption that heap of is well-defined).

The search task will commence when some input heap h gets unified with heap of X
for an unknown X : find x, at which point Coq’s unification algorithm will recursively
deconstruct h in order to search for a canonical implementation of X such that heap of X =
h. If that search is successful, the last field of X will be a proof of spec x h, which
we can apply to a proof of def h to obtain a proof of x ∈ dom h, as desired. (By way
of analogy, this is similar to what we previously did for eqType pair. The construction
of a canonical equality operator at a given type A will commence when A is unified
with sort T for an unknown T : eqType, and the unification algorithm will proceed to
solve for T by recursively deconstructing A and composing the relevant canonical in-
stances.)

The structure find provides a formal specification of what a successful completion of the
search task will produce, but now we need to actually implement the search. We do that
by defining several canonical instances of find corresponding to the different cases of the
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recursive search, and relying on Coq’s unification algorithm to perform the recursion:

canonical found struct A x (v : A) :=
Find x (x �→ v) (found pf A x v)

canonical left struct x h ( f : find x) :=
Find x ((heap of f )•h) (left pf x h f )

canonical right struct x h ( f : find x) :=
Find x (h• (heap of f )) (right pf x h f )

Note that the first argument to the constructor Find in these instances is the parameter x of
the find structure.

The first instance, found struct, corresponds to the case where the heap of projection is
a singleton heap whose domain contains precisely the x we’re searching for. (If the heap
is y �→ v for y 	= x, then unification fails.) The second and third instances, left struct and
right struct, handle the cases where the heap of projection is of the form h1 • h2, and x
is in the domain of h1 or h2, respectively. Note that the recursive nature of the search is
implicit in the fact that the latter two instances are parameterized by instances f : find x
whose heap of projections are unified with the subheaps h1 or h2 of the original heap of

projection.

Notational Convention 2
In the declarations above, found pf, left pf and right pf are proofs, witnessing that spec

relates x and the appropriate heap expression. We omit the proofs here, but they are avail-
able in our source files. From now on, we omit writing such explicit proofs in instances,
and simply replace them with “. . . ”, as in: Find x ((heap of f )•h) . . .

Unfortunately, this set of canonical instances does not quite work. The trouble is that
left struct and right struct are overlapping instances since both match against the same
head symbol (namely, •), and overlapping instances are not permitted in Coq. Moreover,
even if overlapping instances were permitted, we would still need some way to tell Coq
that it should try one instance first and then, if that fails, to backtrack and try another. Con-
sequently, we need some way to deterministically specify the order in which overlapping
instances are to be considered. For this, we introduce our first design pattern.

2.3 Tagging: a technique for ordering canonical instances

Our approach to ordering canonical instances is, in programming terms, remarkably sim-
ple. However, understanding why it actually works is quite tricky because its success relies
critically on an aspect of Coq’s unification algorithm that (a) is not well known, and
(b) diverges significantly from how unification works in, say, Haskell. We will thus first
illustrate the pattern concretely in terms of our find example, and then explain afterwards
how it solves the problem.

The pattern. First, we define a “tagged” version of the type of thing we are recursively
analyzing—in this case, the heap type:

structure tagged heap := Tag {untag : heap}
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This structure declaration also introduces two functions witnessing the isomorphism be-
tween heap and tagged heap:

Tag : heap → tagged heap

untag : tagged heap → heap

Then, we modify the find structure to carry a tagged heap instead of a plain heap, i.e., we
declare

spec x (h : tagged heap) :=
def (untag h) → x ∈ dom (untag h)

structure find x := Find { heap of : tagged heap;
: spec x heap of}

Next, we define a sequence of synonyms for Tag, one for each canonical instance of
find. Importantly, we define the tag synonyms in the reverse order in which we want the
canonical instances to be considered during unification, and we make the last tag synonym
in the sequence be the canonical instance of the tagged heap structure itself. (The order
does not matter much in this particular example, but it does in other examples in the paper.)

right tag h := Tag h
left tag h := right tag h
canonical found tag h := left tag h

Notice that found tag is a default instance for the untag projector matching any heap h
(cf. the end of Section 2.1).

Finally, we modify each canonical instance so that its heap of projection is wrapped
with the corresponding tag synonym.

canonical found struct A x (v : A) :=
Find x (found tag (x �→ v)) . . .

canonical left struct x h ( f : find x) :=
Find x (left tag ((untag (heap of f ))•h)) . . .

canonical right struct x h ( f : find x) :=
Find x (right tag (h• (untag (heap of f )))) . . .

The explanation. The key to the tagging pattern is that, by employing different tags for
each of the canonical instance declarations, we are able to syntactically differentiate the
head constants of the heap of projections, thereby circumventing the need for overlapping
instances. But the reader is probably wondering: (1) how can semantically equivalent tag
synonyms differentiate anything? and (2) what’s the deal with defining them in the reverse
order?

The answer to (1) is that Coq does not unfold all definitions automatically during the
unification process—it only unfolds the definition of a term like found tag h automatically
if that term is unified with something else and the unification fails (see the next paragraph).
This stands in contrast to Haskell type inference, which implicitly expands all (type) syn-
onyms right away. Thus, even though found tag, left tag, and right tag are all semantically

https://doi.org/10.1017/S0956796813000051 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000051


How to make ad hoc proof automation less ad hoc 367

equivalent to Tag, the unification algorithm can distinguish between them, rendering the
three canonical instances of find non-overlapping.

The answer to (2) is as follows. By making the last tag synonym found tag the sole
canonical instance of tagged heap, we guarantee that unification always pattern-matches
against the found struct case of the search algorithm first before any other. To see this,
observe that the execution of the search for x in h will get triggered when a unification
problem arises of the form

untag (heap of ? f ) =̂ h,

for some unknown ? f : find x. Since found tag is a default canonical instance, the problem
will be reduced to unifying

heap of ? f =̂ found tag h

As found struct is the only canonical instance of find whose heap of projection has
found tag as its head constant, Coq will first attempt to unify ? f with some instantiation
of found struct. If h is a singleton heap containing x, then the unification will succeed.
Otherwise, Coq will backtrack and try unfolding the definition of found tag h instead,
resulting in the new unification problem

heap of ? f =̂ left tag h,

which will in turn cause Coq to try unifying ? f with some instantiation of left struct. If
that fails again, left tag h will be unfolded to right tag h and Coq will try right struct. If
in the end that fails as well, then it means that the search has failed to find x in h, and Coq
will correctly flag the original unification problem as unsolvable.

3 A simple overloaded lemma

Let us now attempt our first example of lemma overloading, which makes immediate use
of the find structure that we developed in the previous section. First, here is the non-
overloaded version:

indom : ∀A:Type.∀x:ptr.∀v:A.∀h:heap.

def (x �→ v•h) → x ∈ dom (x �→ v•h)

The indom lemma is somewhat simpler than noalias from Section 1, but the problems in
applying them are the same—neither lemma is applicable unless its heap expressions are
of a special syntactic form, with the relevant pointer(s) at the top of the heap.

To lift this restriction, we will rephrase the lemma into the following form:

indomR : ∀x:ptr.∀ f :find x.
def (untag (heap of f )) →

x ∈ dom (untag (heap of f ))

The lemma is now parameterized over an instance f of structure find x, which we know—
just from the definition of find alone—contains within it a heap h = untag (heap of f ),
together with a proof of def h → x ∈ dom h. Based on this, it should come as no surprise
that the proof of indomR is trivial (it is a half-line long in Ssreflect). In fact, the lemma
is really just the projection function corresponding to the unnamed spec component from
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the find structure, much as the overloaded equal function from Section 2.1 is a projection
function from the eqType structure.

3.1 Applying the lemma: the high-level picture

To demonstrate the automated nature of indomR on a concrete example, we will explain
how Coq type inference proceeds when indomR is applied to prove the goal

z ∈ dom h

in a context where x y z : ptr, u v w : A for some type A, h :heap :=x �→ u• y �→ v• z �→ w,
and D : def h. For the moment, we will omit certain details for the sake of clarity; in the
next subsection, we give a much more detailed explanation.

To begin with, let us first explain the steps involved in the application of a lemma to some
goal, and how this produces the equation needed to solve the instance f of the structure.

When a lemma (e.g., indomR) is applied to a goal, the following process takes place:

1. The lemma’s formal parameters are turned into unification variables ?x and ? f :
find ?x, which will be subsequently constrained by the unification process. (Here-
after, we will use ? to denote unification variables, with previously unused ?x’s
denoting “fresh” unification variables.)

2. The lemma’s conclusion ?x ∈ dom (untag (heap of ? f )) is unified with the goal.

Given this last step, the system tries to unify

?x ∈ dom (untag (heap of ? f )) =̂ z ∈ dom h

solving subproblems from left to right, that is, first getting ?x = z, and then

untag (heap of ? f ) =̂ h

By canonicity of found tag, it then tries to solve

heap of ? f =̂ found tag h

Expanding the heap variable, and since • is left-associative, this is equivalent to

heap of ? f =̂ found tag ((x �→ u• y �→ v)• z �→ w)

At this point, guided by the instances we defined in the previous section, the search for a
canonical instantiation of ? f begins. Coq will first try to instantiate ? f with found struct,
but this attempt will fail when it tries to unify the entire heap with a singleton heap. Then,
Coq will try instantiating ? f instead with left struct, which leads it to create a fresh variable
? f2 : find z and recursively solve the equation untag (heap of ? f2) =̂ x �→ u• y �→ v. This
attempt will ultimately fail again, because z is not in x �→ u • y �→ v, the left subheap
of the original h. Finally, Coq will backtrack and try to instantiate ? f with right struct,
which will lead it to create a fresh variable ? f3 : find z and recursively solve the equation
untag (heap of ? f3) =̂ z �→ w. This final attempt will indeed succeed by instantiating ? f3
with found struct, since the right subheap of h is precisely the singleton heap we are
looking for.
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Putting the pieces together, the unification algorithm instantiates ? f with

? f = right struct z (x �→ u• y �→ v) (found struct z w)

Effectively, the heap of component of ? f contains the (tagged) heap h that was input to the
search, and the proof component contains the output proof that z is in the domain of h.

3.2 The gory details

To understand better how it works, we will now spell out the “trace” of how Coq’s unifica-
tion algorithm implements proof search in the example above, with a particular emphasis
on how it treats resolution of canonical instances. This knowledge is not critical for un-
derstanding most of the examples in the paper—indeed, the whole point of our “design
patterns” is to avoid the need for one to think about unification at this level of gory detail.
But it will nonetheless be useful in understanding why the design patterns work, as well
as how to control Coq’s unification algorithm in more complex examples where the design
patterns do not immediately apply.

Let us look again at the initial equation that started the search:

untag (heap of ? f ) =̂ h

As mentioned before, the canonicity of found tag reduces this to solving

heap of ? f =̂ found tag h

Unification tries to instantiate ? f with found struct, but for that it must unify the entire
heap h with z �→ ?v, which fails. Before giving up, the system realizes it can unfold the
definitions of h and of found tag, yielding

heap of ? f =̂ left tag ((x �→ u• y �→ v)• z �→ w) (1)

With this unfolding, ? f has become eligible for instantiation by left struct, since left struct

is the canonical instance of the find structure with head constant left tag. To figure out
if/whether this instantiation is possible, Coq will engage in the following procedure, which
we will describe here quite carefully—and in as general a manner as possible—since it is
important for understanding subsequent, more complex examples.

To instantiate ? f with left struct, Coq first “opens” the right-hand side of the def-
inition of left struct by generating fresh unification variables for each of left struct’s
formal parameters: ?y : ptr, ?h : heap, and ? f2 : find ?y. It will eventually unify ? f with
left struct ?y ?h ? f2, but before doing that, it must figure out how to marry together
two sources of (hopefully compatible) information about ? f : the unification goal (i.e.,
Equation (1)) and the definition of left struct. Each of these provides information about:

1. The type of the structure we are solving for (in this case, ? f ). From the initial
unification steps described in Section 3.1, we already know that ? f must have type
find z, while the type of left struct ?y ?h ? f2 is find ?y. This leads to the unification

?y =̂ z

2. The (full) value of the projection in question (in this case, heap of ? f ). From Equa-
tion (1), we know that heap of ? f must equal left tag ((x �→ u • y �→ v) • z �→ w),
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while from the definition of left struct, we know that heap of (left struct ?y ?h ? f2)
equals left tag ((untag (heap of ? f2))• ?h). This leads to the unification

left tag ((untag (heap of ? f2))• ?h) =̂ left tag ((x �→ u• y �→ v)• z �→ w),

which in turn induces the following unification equations:

untag (heap of ? f2) =̂ x �→ u• y �→ v

?h =̂ z �→ w

Putting it all together, the attempt to instantiate ? f with left struct generates the follow-
ing unification problems, which Coq processes in order:

?y =̂ z

untag (heap of ? f2) =̂ x �→ u• y �→ v

?h =̂ z �→ w

? f =̂ left struct ?y ?h ? f2

Note here that the order matters! For instance, the first equation will be resolved imme-
diately, thus concretizing the type of ? f2 to find z. It is important that this happens before
solving the second equation, so that when we attempt to solve the second equation we know
what pointer (z) we are searching for in the heap x �→ u• y �→ v. (Otherwise, we would be
searching for the unification variable ?y, which would produce senseless results.)

Attempting to solve the second equation, Coq again applies found tag and found struct

and fails. Then, it unfolds found tag to get left tag and the following equation:

heap of ? f2 =̂ left tag (x �→ u• y �→ v) (2)

It attempts to instantiate ? f2 with left struct, by the same procedure as described above,
obtaining the following equations:

?y′ =̂ z

untag (heap of ? f3) =̂ x �→ u where ? f3 : find ?y′

After solving the first one, the attempt to solve the second one will fail. Specifically, Coq
will first try to use found struct as before; however, this will not work because, although
the heap in question (x �→ u) is a singleton heap, the pointer in its domain is not z. Unfolding
to left struct and right struct will not help because those solutions only apply to heaps
with • as the top-level constructor.

Rolling back to Equation (2), Coq unfolds left tag to right tag and tries to instantiate
? f2 with right struct. As before, it fails because z is not y.

Rolling back further to Equation (1), Coq unfolds left tag to right tag, resulting in

heap of ? f =̂ right tag ((x �→ u• y �→ v)• z �→ w).
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It then chooses right struct and applies the same procedure as before to obtain the follow-
ing equations.

?x′ =̂ z

?h′ =̂ x �→ u• y �→ v

untag (heap of ? f ′2) =̂ z �→ w where ? f ′2 : find ?x′

? f =̂ right struct ?x′ ?h′ ? f ′2

The first two equations unify immediately, after which the third one is solved by applying
found tag and choosing found struct for ? f ′2. After that, the third equation also unifies
right away, producing the final result

? f = right struct z (x �→ u• y �→ v) (found struct z w)

4 Reflection: turning semantics into syntax

As canonical structures are closely coupled with the type checker, it is possible to fruitfully
combine the logic-programming idiom afforded by canonical structures together with or-
dinary functional programming in Coq. In this section, we illustrate the combination by
developing a thoroughly worked example of an overloaded lemma for performing can-
cellation on heap equations. In our implementation of Hoare Type Theory, this lemma is
designed to replace an often used, but rather complicated and brittle, tactic.

Mathematically, cancellation merely involves removing common terms from disjoint
unions on the two sides of a heap equation. For example, if we are given an equation

x �→ v1 • (h3 •h4) = h4 • x �→ v2

and we know that the subheaps are disjoint (i.e., the unions are defined), then we can extract
the implied equations

v1 = v2 ∧h3 = empty

We will implement the lemma in two stages. The first stage is a canonical structure
program, which reflects the equation, that is, turns the equation on heap expressions into
an abstract syntax tree (or abstract syntax list, as it will turn out). Then the second stage is
a functional program, which cancels common terms from the syntax tree. Notice that the
functional program from the second stage cannot work directly on the heap equation for
two reasons: (1) it needs to compare heap and pointer variable names, and (2) it needs
to pattern-match on function names, since in HTT heaps are really partial maps from
locations to values, and �→ and • are merely convenient functions for constructing them.
As neither of these is possible within Coq’s base logic, the equation has to be reflected into
syntax in the first stage. The main challenge then is in implementing reflection, so that the
various occurrences of one and the same heap variable or pointer variable in the equation
are ascribed the same syntactic representation.
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4.1 Cancellation

Since the second stage is simpler, we explain it first. For the purposes of presentation,
we begin by restricting our pointers to only store values of some predetermined type T
(although in Section 4.3 we will generalize it to any type, as in our actual implementation).
The data type that we use for syntactic representation of heap expressions is the following:

elem := Var of nat | Pts of nat & T

term := seq elem

An element of type elem identifies a heap component as being either a heap variable or a
points-to clause x �→ v. In the first case, the component is represented as Var n, where n
is an index identifying the heap variable in some environment (to be explained below). In
the second case, the component is represented as Pts m v, where m is an index identifying
the pointer variable in an environment. We do not perform any reflection on v, as it is not
necessary for the cancellation algorithm. A heap expression is then represented via term

as a list (seq) of elements. We could have represented the original heap expression more
faithfully as a tree, but since • is commutative and associative, lists suffice for our purposes.

We will require two kinds of environments, which we package into the type of contexts:

ctx := seq heap× seq ptr

The first component of a context is a list of heaps. In a term reflecting a heap expression,
the element Var n stands for the n-th element of this list (starting from 0-th). Similarly, the
second component is a list of pointers, and in the element Pts m v, the number m stands for
the m-th pointer in the list.

Because we will need to verify that our syntactic manipulation preserves the semantics of
heap operations, we need a function that interprets syntax back into semantics. Assuming
lookup functions hlook and plook which search for an index in a context of a heap or
pointer, respectively, the interpretation function crawls over the syntactic term, replacing
each number index with its value from the context (and returning an undefined heap, if the
index is out of bounds). The function is implemented as follows:

interp (i : ctx) (t : term) : heap :=
match t with

Var n :: t ′ ⇒ if hlook i n is Some h then h• interp i t ′

else Undef

| Pts m v :: t ′ ⇒
if plook i m is Some x then x �→ v• interp i t ′

else Undef

| nil ⇒ empty

end

For example, if the context i is ([h3,h4], [x]), then

interp i [Pts 0 v1,Var 0,Var 1] = x �→ v1 • (h3 • (h4 • empty))

interp i [Var 1,Pts 0 v2] = h4 • (x �→ v2 • empty)
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cancel (i : ctx) (t1 t2 r : term) : Prop :=
match t1 with
nil ⇒ interp i r = interp i t2

| Pts m v :: t ′1 ⇒
if premove m t2 is Some (v′, t ′2) then

cancel i t ′1 t ′2 r∧ v = v′

else cancel i t ′1 t2 (Pts m v :: r)
| Var n :: t ′1 ⇒

if hremove n t2 is Some t ′2 then cancel i t ′1 t ′2 r
else cancel i t ′1 t2 (Var n :: r)

end

Fig. 1. Heap cancellation algorithm.

Given this definition of term, we can now encode the cancellation algorithm as a pred-
icate (i.e., a function into Prop) in Coq (Figure 1). The predicate essentially constructs a
conjunction of the residual equations obtained as a consequence of cancellation. Referring
to Figure 1, the algorithm works as follows. It looks at the head element of the left term
t1, and tries to find it in the right term t2 (keying on the index of the element). If the
element is found, it is removed from both sides, before recursing over the rest of t1. When
removing a Pts element keyed on a pointer x, the values v and v′ stored into x in t1 and
t2 must be equal. Thus, the proposition computed by cancel should contain an equation
between these values as a conjunct. If the element is not found in t2, it is shuffled to the
accumulator r, before recursing. When the term t1 is exhausted, i.e., it becomes the empty
list, then the accumulator stores the elements from t1 that were not cancelled by anything
in t2. The equation between the interpretations of r and t2 is a semantic consequence of the
original equation, so cancel immediately returns it (our actual implementation performs
some additional optimization before returning). The helper function premove m t2 searches
for the occurrences of the pointer index m in the term t2 and, if found, returns the value
stored into the pointer, as well as the term t ′2 obtained after removing m from t2. Similarly,
hremove n t2 searches for Var n in t2 and, if found, returns t ′2 obtained from t2 after removal
of n.

Soundness of cancel is established by the following lemma which shows that the facts
computed by cancel do indeed follow from the input equation between heaps, when cancel

is started with the empty accumulator.

cancel sound : ∀i : ctx.∀t1 t2 : term.

def (interp i t1) → interp i t1 = interp i t2 →
cancel i t1 t2 nil

The proof of cancel sound is rather involved and interesting in its own right, but we omit
it here not to distract the attention of the reader from our main topic. (The interested reader
can find it in our source files.) We could have proved the converse direction as well, to
obtain a completeness result, but this was not necessary for our purposes.

The related work on proofs by reflection usually implements the cancellation phase in a
manner similar to that above (see for example the work of Grégoire and Mahboubi, 2005).
Where we differ from the related work is in the implementation of the reflection phase. This
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phase is usually implemented by a tactic, but here we show that it can be implemented with
canonical structures instead.

4.2 Reflection via canonical structures

Intuitively, the reflection algorithm traverses a heap expression, and produces the corre-
sponding syntactic term. In our overloaded lemma, presented further below, we will invoke
this algorithm twice, to reflect both sides of the equation. To facilitate cancellation, we need
to ensure that identical variables on the two sides of the equation, call them E1 and E2, are
represented by identical syntactic elements. Therefore, reflection of E1 has to produce a
context of newly encountered elements and their syntactic equivalents, which is then fed
as an input to the reflection of E2. If reflection of E2 encounters an expression which is
already in the context, the expression is reflected with the syntactic element provided by
the context.

Notational Convention 3

Hereafter, projections out of an instance are considered implicit coercions, and we will typ-
ically omit them from our syntax. For example, in Figure 2 (described below), the canonical
instance union struct says union tag ( f1• f2) instead of union tag ((untag (heap of f1))•
(untag (heap of f2))), which is significantly more verbose. This is a standard technique in
Coq.

The reflection algorithm is encoded using the structure ast from Figure 2. The inputs to
each traversal are the initial context i of ast, and the initial heap in the heap of projection.
The output is the (potentially extended) context j and the syntactic term t that reflects the
initial heap. One invariant of the structure is precisely that the term t, when interpreted
under the output heap j, reflects the input heap:

interp j t = heap of

There are two additional invariants needed to carry out the proofs:

subctx i j and valid j t

The first one states that the output context j is an extension of the input context i, while the
second one ensures that the syntactic term t has no indices out of the bounds of the output
context j. (We omit the definition of subctx and valid, but they can be found in the source
files.)

There are several cases to consider during a traversal, as shown by the canonical in-
stances in Figure 2. We first check if the input heap is a union, as can be seen from the
ordering of tag synonyms (which is reversed, as demanded by the tagging pattern). In this
case, the canonical instance is union struct. The instance specifies that we recurse over
both subheaps, by unifying the left subheap with f1 and the right subheap with f2.

The types of f1 and f2 show that the two recursive calls work as follows. First the call to
f1 starts with the input context i and computes the output context j and term t1. Then the
call to f2 proceeds with input context j, and computes outputs k and t2. The output context
of the whole union is k, and the output reflected term is the list-concatenation of t1 and t2.
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var tag h := Tag h
pts tag h := var tag h
empty tag h := pts tag h
canonical union tag h := empty tag h

structure ast (i j : ctx) (t : term) :=
Ast { heap of : tagged heap;

: interp j t = heap of ∧ subctx i j∧valid j t }

canonical union struct (i j k : ctx) (t1 t2 : term)
( f1 : ast i j t1)( f2 : ast j k t2) :=

Ast i k (append t1 t2) (union tag ( f1 • f2)) . . .

canonical empty struct (i : ctx) :=
Ast i i nil (empty tag empty) . . .

canonical ptr struct (hs : seq heap) (xs1 xs2 : seq ptr)
(m : nat) (v : A) ( f : xfind xs1 xs2 m) :=

Ast (hs,xs1) (hs,xs2) [Pts m v] (pts tag ( f �→ v)) . . .

canonical var struct (hs1 hs2 : seq heap) (xs : seq ptr)
(n : nat) ( f : xfind hs1 hs2 n) :=

Ast (hs1,xs) (hs2,xs) [Var n] (var tag f ) . . .

Fig. 2. Structure ast for reflecting a heap.

When reflecting the empty heap, the instance is empty struct. In this case, the input
context i is simply returned as output, and the reflected term is the empty list.

When reflecting a singleton heap x �→ v, the corresponding instance is ptr struct. In
this case, we first have to check if x is a pointer that already appears in the pointer part
xs1 of the input context. If so, we should obtain the index m at which x appears in xs1.
This is the number representing x, and the returned reflected elem is Pts m v. On the
other hand, if x does not appear in xs1, we need to add it. We compute a new context xs2
which appends x at the end of xs1, and this is the output pointer context for ptr struct.
The number m representing x in xs2 now equals the size of xs1, and returned reflected elem

is again Pts m v. Similar considerations apply in the case where we are reflecting a heap
variable h. The instance is then var struct and we search in the heap portion of the context
hs1, producing a new heap portion hs2.

In both cases, the task of searching (and possibly extending) the context is performed by
the polymorphic structure xfind (Figure 3), which recurses over the context lists in search
of an element, relying on unification to make syntactic comparisons between expressions.
The inputs to the structure are the parameter s, which is the sequence to search in, and the
field elem of, which is the (tagged) element to search for. The output sequence r equals s if
elem of is in s, or extends s with elem of otherwise. The output parameter i is the position
at which the elem of is found in r.

If the searched element x appears at the head of the list, the selected instance is
found struct and the index i = 0. Otherwise, we recurse using recurse struct. Ultimately,
if s is empty, the returned r is the singleton [x], via the instance extend struct.
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structure xtagged A := XTag {xuntag : A}

extend tag A (x : A) := XTag x
recurse tag A (x : A) := extend tag x
canonical found tag A (x : A) := recurse tag x

structure xfind A (s r : seq A) (i : nat) :=
XFind { elem of : xtagged A;

: index r i = elem of ∧prefix s r }

canonical found struct A (x : A) (s : seq A) :=
XFind (x :: s) (x :: s) 0 (found tag x) . . .

canonical recurse struct (i : nat) (y : A) (s r : seq A)
( f : xfind s r i) :=

XFind (y :: s) (y :: r) (i+1) (recurse tag f ) . . .

canonical extend struct A (x : A) :=
XFind nil [x] 0 (extend tag x) . . .

Fig. 3. Structure xfind for searching for an element in a list,
and appending the element at the end of the list if not found.

It may be interesting to notice here that while xfind is in principle similar to find from
Section 2.3, it is keyed on the element being searched for, rather than on the list (or in the
case of find, the heap) in which the search is being performed. This exemplifies that there
are many ways in which canonical structures of similar functionality can be organized. In
particular, which term one keys on (i.e., which term one unifies with the projection from
the structure) may in general depend on when a certain computation needs to be triggered.
If we reorganized xfind to match find in this respect, then the structure ast would have to
be reorganized too. Specifically, ast would have to recursively invoke xfind by unifying it
against the contexts xs1 and hs1 in the instances ptr struct and var struct, respectively. As
we will argue in Section 6, such unification can lead to incorrect results, if done directly,
but we will be able to perform it indirectly, using a new design pattern.

We are now ready to present the overloaded lemma cancelR.

cancelR : ∀ j k : ctx.∀t1 t2 : term.

∀ f1 : ast nil j t1.∀ f2 : ast j k t2.
def (untag (heap of f1)) →
untag (heap of f1) = untag (heap of f2) →
cancel k t1 t2 nil

At first sight it may look strange that we are not using the notation convention 3 presented
in this very same section. It is true that we can omit the projections and write def f1 as
the first hypothesis, but for the second one we have to be verbose. The reason is simple:
if we write instead f1 = f2, Coq will consider this an equality on asts and not expand the
implicit coercions, as needed.
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Assuming we have a hypothesis

H :

h1
︷ ︸︸ ︷
x �→ v1 • (h3 •h4) =

h2
︷ ︸︸ ︷
h4 • x �→ v2

and a hypothesis D : def h1, we can forwardly apply cancelR to H using D, i.e.,

move/(cancelR D) :H

This will make Coq fire the following unification problems:

1. def (untag (heap of ? f1)) =̂ def h1
2. untag (heap of ? f1)) =̂ h1
3. untag (heap of ? f2)) =̂ h2

Because ? f1 and ? f2 are variable instances of the structure ast, Coq will construct canonical
values for them, thus reflecting the heaps into terms t1 and t2, respectively. The reflection
of h1 will start with the empty context, while the reflection of h2 will start with the output
context of f1, which in this case is ([h3,h4], [x]).

Finally, the lemma will perform cancel on t1 and t2 to produce v1 = v2 ∧ h3 = empty∧
empty = empty. The trailing empty = empty can ultimately be removed with a few simple
optimizations of cancel, which we have omitted to simplify the presentation.

To reflect or not to reflect. We used the power of canonical structures to inspect the
structure of terms, in this case heaps, and then create abstract syntax trees representing
those terms. Thus, a natural question arises: can’t we implement the cancellation algo-
rithm entirely with canonical structures, just as it was implemented originally in one big
tactic? The answer is yes, and the interested reader can find the code in the source files.
There, we have encoded a similar algorithm to the one shown in Figure 1 with a structure
parameterized over its inputs: the heaps on the left and on the right of the equation, the
heap with “the rest”—i.e., what could not be cancelled—and two invariants stating that (a)
the right heap is defined and (b) the union of the left and rest heaps is equal to the right
heap. As output, it returns a proposition and a proof of this proposition. Each instance of
this structure will correspond to one step of the algorithm. As an immediate consequence,
this direct encoding of the cancellation algorithm avoids the long proof of soundness, since
each step (or instance) includes the local proof for that step only, and without having to go
through the fuss of the interpretation of abstract syntax.

However, this approach has at least one big disadvantage: by comparison to the auto-
mated proof by reflection, it is slow. Indeed, this should come as no surprise, as it is well
known that the method of proof by reflection is fast (e.g., Grégoire & Mahboubi, 2005),
and this is why we pursued it in the first place.

4.3 Dealing with heterogeneous heaps

So far we have represented singleton heaps as x �→ v, assuming that all values in the heaps
are of the same type. However, as promised above, we would like to relax this assumption.
Allowing for variation in the type T of v, a more faithful representation would be x �→T v.
One easy way of supporting this without modifying our cancellation algorithm at all is to
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structure tagged prop := Tag prop { puntag : Prop }
default tag p := Tag prop p
dyneq tag p := dyneq tag p
canonical and tag p := dyneq tag p

structure simplifier (p : Prop) :=
Simpl { prop of : tagged prop;

: p ↔ prop of }

canonical and struct (p1 p2 : Prop)
( f1 : simplifier p1) ( f2 : simplifier p2) :=

Simpl (p1 ∧ p2) (and tag ( f1 ∧ f2)) . . .

canonical dyneq struct (A : Type) (v1 v2 : A) :=
Simpl (v1 = v2) (dyneq tag (dyn A v1 = dyn A v2)) . . .

canonical default struct (p : Prop) :=
Simpl p (default tag p) . . .

Fig. 4. Algorithm for post-processing the output of cancelR.

view the values in the heap as being elements of type dynamic, i.e., as dependent pairs (or
structures) packaging together a type and an element of the type:

structure dynamic := dyn { typ : Type;val : typ }

In other words, we can simply model x �→T v as x �→ dyn T v. As a result, when we apply
the cancelR lemma to the singleton equality x �→T1

v1 = x �→T2
v2, we would obtain:

dyn T1 v1 = dyn T2 v2 (3)

But if the types T1 and T2 are equal, we would like to also automatically obtain the equality
on the underlying values:

v1 = v2 (4)

(Note that this cannot be done within the pure logic of Coq since equality on types is
not decidable.) A key benefit of obtaining the direct equality on v1 and v2, rather than on
dyn T1 v1 and dyn T2 v2, is that such an equality can then be fed into the standard rewrite

tactic in order to rewrite occurrences of v1 in a goal to v2.
This effect could perhaps be achieved by a major rewriting of cancelR, but that would

require a major effort, just to come up with a solution that is not at all modular. Instead,
we will show now how we can use a simple overloaded lemma to post-process the output
of the cancellation algorithm, reducing equalities between dynamic packages to equalities
on their underlying value components wherever possible.

Figure 4 presents the algorithm to simplify propositions using canonical instances. Basi-
cally, it inspects a proposition, traversing through a series of ∧s until it finds an equality of
the form dyn A v1 = dyn A v2—i.e., where the values on both sides have the same type A—
in which case it returns v1 = v2. For any other case, it just returns the same proposition. We
only consider the connective ∧ since the output of cancelR contains only this connective.
If necessary, we could easily extend the algorithm to consider other connectives.
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The algorithm is encoded in a structure called simplifier with three canonical instances,
one for each of the aforementioned cases. The proof component of this structure lets us
prove the following overloaded lemma. (Following notational convention 3, we omit the
projectors, so g below should be read as “the proposition in g”.)

simplify : ∀p : Prop.∀g : simplifier p.

g → p

By making p and g implicit arguments, we can write simplify P to obtain the simplified
version of P. For example, say we have to prove some goal with hypotheses

D : def (x �→T v1 •h1)

H : x �→T v1 •h1 = h2 • x �→T v2

We can forwardly apply the composition of simplify and cancelR D to H

move : (simplify (cancelR D H))

to get the hypothesis exactly as we wanted:

v1 = v2 ∧h1 = h2

5 Solving for functional instances

Previous sections described examples that search for a pointer in a heap expression or
for an element in a list. The pattern we show in this section requires a more complicated
functionality, which we describe in the context of our higher-order implementation
of separation logic (Reynolds, 2002) in Coq. Interestingly, this search-and-replace
pattern can also be described as higher-order, as it crucially relies on the type checker’s
ability to manipulate first-class functions and solve unification problems involving
functions.

To set the stage, the formalization of separation logic that we use centers on the predicate

verify : ∀A.prog A → heap → (A → heap → Prop) → Prop.

The exact definition of verify is not important for our purposes here, but suffice it to say
that it encodes a form of Hoare-style triples. Given a program e : prog A returning values
of type A, an input heap i : heap, and a postcondition q : A → heap → Prop over A-values
and heaps, the predicate

verify e i q

holds if executing e in heap i is memory-safe, and either diverges or terminates with a value
y and heap m, such that q y m holds.

Programs can perform the basic heap operations: reading and writing a heap location,
allocation, and deallocation. In this section, we focus on the writing primitive; given x : ptr

and v : A, the program write x v : prog unit stores v into x and terminates. We also require
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the operation for sequential composition, which takes the form of monadic bind:

bind : ∀A B.prog A → (A → prog B) → prog B

We next consider the following provable lemma, which serves as a Floyd-style rule for
symbolic evaluation of write.

bnd write : ∀A B C.∀x : ptr.∀v : A.∀w : C.∀e : unit → prog B.

∀h : heap.∀q : B → heap → Prop.

verify (e ()) (x �→ v•h) q →
verify (bind (write x v) e) (x �→ w•h) q

To verify write x v in a heap x �→ w • h, it suffices to change the contents of x to v, and
proceed to verify the continuation e.

In practice, bnd write suffers from the same problem as indom and noalias, as each
application requires the pointer x to be brought to the top of the heap. We would like to
devise an automated version bnd writeR, but, unlike indomR, application of bnd writeR

will not merely check if a pointer x is in the heap. It will remember the heap h from the
goal and reproduce it in the premise, only with the contents of x in h changed from w to v.

For example, applying bnd writeR to the goal

G1 : verify (bind (write x2 4) e)
(i1 • (x1 �→ 1• x2 �→ 2)• (i2 • x3 �→ 3))
q

should return a subgoal which changes x2 in place, as in:

G2 : verify (e ()) (i1 • (x1 �→ 1• x2 �→ 4)• (i2 • x3 �→ 3)) q

5.1 The “search-and-replace” pattern

Here is where functions come in. The bnd writeR lemma should attempt to infer a function
f which represents a heap with a “hole”, so that filling the hole with x �→w (i.e., computing
f (x �→w)) results in the heap from the goal. Then replacing w with v is computed as
f (x �→v).

For example, in G1 we want to “fill the hole” with x2 �→ 2, while in G2, we want to fill it
with x2 �→ 4. Hence, in this case, the inferred function f should be:

fun k. i1 • (x1 �→ 1• k)• (i2 • x3 �→ 3)

To infer f using canonical structures, we generalize it from a function mapping heaps
to heaps to a function mapping a heap k to a structure, partition k r (defined in Figure 5),
with a heap projection heap of that is equal to k • r. This heap of projection will be used
to trigger the search for the subheap that should be replaced with a hole. (The role of the
additional heap parameter r will be explained later, but intuitively one can think of r as
representing the rest of the heap, i.e., the “frame” surrounding the hole.)
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structure tagged heap := Tag {untag : heap}

right tag (h : heap) := Tag h
left tag h := right tag h
canonical found tag h := left tag h

structure partition (k r : heap) :=
Partition { heap of : tagged heap;

: heap of = k • r }

canonical found struct k :=
Partition k empty (found tag k) . . .

canonical left struct h r ( f : ∀k.partition k r) k :=
Partition k (r •h) (left tag ( f k •h)) . . .

canonical right struct h r ( f : ∀k.partition k r) k :=
Partition k (h• r) (right tag (h• f k)) . . .

Fig. 5. Structure partition for partitioning a heap into the part matching k and “the rest” (r).

Because the range of f depends on the input k, f must have a dependent function type,
and the bnd writeR lemma looks as follows.

bnd writeR : ∀A B C.∀x : ptr.∀v : A.∀w : C.∀e : unit → prog B.

∀q : B → heap → Prop.

∀r : heap.∀ f : (∀k : heap.partition k r).

verify (e ()) ( f (x �→ v)) q →
verify (bind (write x v) e) ( f (x �→ w)) q

As before, following notational convention 3, we have omitted the projections and written
f (x �→ w) instead of untag (heap of ( f (x �→ w))), and similarly in the case of x �→ v.

When the bnd writeR lemma is applied to a goal of the form

verify (bind (write x v) e) h q

the type checker creates unification variables for each of the parameters of
bind writeR, and proceeds to unify the conclusion of the lemma with the goal, getting
the equation

untag (heap of (? f (x �→ ?w))) =̂ h

where ? f has type ∀k : heap.partition k ?r. (Note that, because Coq’s unification follows a
strict left-to-right order, x is not a unification variable but the actual location being written
to in the goal.)

This unification goal will prompt the search (using the instances in Figure 5) for a canon-
ical solution for ? f with the property that the heap component of ? f (x �→ ?w) syntactically
equals h, matching exactly the order and the parenthesization of the summands in h. We
have three instance selectors: one for the case where we found the heap we are looking for,
and two to recurse over each side of the •.
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The reader may wonder why all the instances of partition take the k parameter last, thus
forcing the f parameter in the latter two instances to be itself abstracted over k as well. The
reason is best illustrated by following a partial trace of Coq’s unification.

Suppose h = h0 • x �→ z. After trying and failing to unify ? f (x �→ ?w) with h using the
instances found struct and left struct, it will proceed to try to use the instance right struct.
More precisely, as described previously in Section 3.2, when solving the equation

heap of (? f (x �→ ?w)) =̂ right tag (h0 • x �→ z) (5)

Coq will:

1. Build an instance

right struct ?h′ ?r′ ? f ′ ?k′ (6)

with ?h′,?r′,? f ′,?k′ fresh unification variables, ? f ′ with type ∀k.partition k ?r′ and
the rest with type heap.

2. Unify the type of the instance from (6) with the type of the expected instance (i.e.,
the argument of heap of) in (5). We know that ? f has type ∀k : heap.partition k ?r,
and therefore that ? f (x �→ ?w) has type partition (x �→ ?w) ?r. The type of (6) is
partition ?k′ (?h′ • ?r′). Putting it all together, we get the equation

partition ?k′ (?h′ • ?r′) =̂ partition (x �→ ?w) ?r

3. Unify the heap of projection of (6) with the right-hand side of (5), that is,

right tag (?h′ • ? f ′ ?k′) =̂ right tag (h0 • x �→ z)

4. Finally, unify the instances:

? f (x �→ ?w) =̂ right struct ?h′ ?r′ ? f ′ ?k′

Altogether, we get the following equations that Coq processes in order:

1. ?k′ =̂ x �→ ?w
2. ?h′ • ?r′ =̂ ?r
3. ?h′ =̂ h0

4. ? f ′ ?k′ =̂ x �→ z
5. ? f (x �→ ?w) =̂ right struct ?h′ ?r′ ? f ′ ?k′

The first three equations are solved immediately. The fourth one, if we expand the implicit
projection and instantiate the variables, is

untag (heap of (? f ′ (x �→ ?w))) =̂ x �→ z (7)

Solving this recursively (we give the details of this part of the trace at the end of the
section), Coq instantiates the following variables:

1. ?r′ = empty

2. ?w = z
3. ? f ′ = found struct
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Note how the type of the instance found struct actually matches the type of ? f ′, that is,
∀k.partition k empty.

Coq now can proceed to solve the last equation, which after instantiating the variables is

? f (x �→ z) =̂ right struct h0 empty found struct (x �→ z)

which means that it has to find a function for ? f such that, when given the singleton
x �→ z, produces the instance on the right-hand side. As it is well known (Goldfarb, 1981),
higher-order unification problems are in general undecidable, as they might have an infinite
number of solutions, without any one being the most general one. For this example,3

Coq takes a commonly-used pragmatic solution of falling back to a kind of first-order
unification: it tries to unify the functions and then the arguments on both sides of the
equation, which in this case immediately succeeds:

1. ? f =̂ right struct h0 empty found struct

2. (x �→ z) =̂ (x �→ z)

This is the key to understanding why the instances of partition all take the k parameter last:
we want the k parameter to ultimately be unified with the argument of ? f . If the k parameter
did not come last, then Coq would try here to unify x �→ z with whatever parameter did
come last, which would clearly lead to failure.

Thus far, we have described how to construct the canonical solution of ? f , but the mere
construction is not sufficient to carry out the proof of bnd writeR. For the proof, we further
require an explicit invariant that ? f (x �→ v) produces a heap in which the contents of x is
changed to v, but everything else is unchanged when compared to ? f (x �→ w).

This is the role of the parameter r, which is constrained by the invariant in the definition
of partition to equal the “rest of the heap”, that is

h = k • r

With this invariant in place, we can vary the parameter k from x �→ w in the conclusion of
bnd writeR to x �→ v in the premise. However, r remains fixed by the type of ? f , providing
the guarantee that the only change to the heap was in the contents of x.

It may be interesting to note that, while our code computes an ? f that syntactically
matches the parentheses and the order of summands in h (as this is important for using the
lemma in practice), the above invariant on h, k and r is in fact a semantic, not a syntactic,
equality. In particular, it does not guarantee that h and k • r are constructed from the same
exact applications of �→ and •, since in HTT those are defined functions, not primitive
constructors. Rather, it captures only equality up to commutativity, associativity and other
semantic properties of heaps as partial maps. This suffices to prove bnd writeR, but more
to the point: the syntactic property, while true, cannot even be expressed in Coq’s logic,
precisely because it concerns the syntax and not the semantics of heap expressions.

To conclude the section, we note that the premise and conclusion of bnd writeR both
contain projections out of ? f . As a result, the lemma may be used both in forward reasoning

3 There exists a decidable fragment of higher-order unification called the “pattern fragment” (Miller, 1991). If
the problem at hand falls into this fragment, Coq will find the most general unifier. However, our example does
not fall into this fragment.
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(out of hypotheses) and in backward reasoning (for discharging a given goal). For example,
we can prove the goal

verify (bind (write x2 4) e) (i1 • (x1 �→ 1• x2 �→ 2)) q

under hypothesis

H : verify (e ()) (i1 • (x1 �→ 1• x2 �→ 4)) q

in two ways:

• Backward: By applying bnd writeR to the goal. The goal will therefore be changed
to exactly match H.

• Forward: By applying bnd writeR (x := x2) (w := 2) to the hypothesis H, thus ob-
taining the goal. Note how in this case we need to explicitly provide the instantiations
of the parameters x and w because they cannot be inferred just from looking at H.

This kind of versatility is yet another advantage that lemmas based on canonical in-
stances exhibit when compared to tactics. The latter, it seems, must be specialized to either
forward or backward mode, and we have not managed to encode a tactic equivalent of
bnd writeR that is usable in both directions. It likewise appears difficult, if not impossible,
to encode this bidirectional functionality using the style of proof by reflection we explored
in Section 4.

Fleshing out the trace. In the partial unification trace given above, we streamlined the
presentation by omitting the part concerning the resolution of the unification equation (7).
Since found tag is the canonical instance of the tagged heap structure, instance resolution
will reduce this problem to:

heap of (? f ′ (x �→ ?w)) =̂ found tag (x �→ z) (8)

For this equation, Coq follows the same steps as in the processing of equation (5). It will:

1. Create a unification variable ?k′′ for the argument of found struct.
2. Unify the type of found struct ?k′′ with the type of ? f ′ (x �→ ?w), that is,

partition ?k′′ empty =̂ partition (x �→ ?w) ?r′

getting ?k′′ = x �→ ?w and ?r′ = empty.
3. Unify the heap of projection of found struct ?k′′ with the right-hand side of (8):

found tag ?k′′ =̂ found tag (x �→ z)

Unfolding the already known definition of ?k′′ as x �→ ?w, we get ?w = z.
4. Unify the argument of heap of with the instance. After applying the solutions found

so far, this produces

? f ′ (x �→ z) =̂ found struct (x �→ z)

As before, Coq solves this higher-order problem by unifying

(a) ? f ′ =̂ found struct

(b) x �→ z =̂ x �→ z

https://doi.org/10.1017/S0956796813000051 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000051


How to make ad hoc proof automation less ad hoc 385

5.2 Automatic lemma selection

In the previous section, we saw how to automate the symbolic evaluation of the command
write. In our implementation of separation logic in Coq, there are in fact several such
commands (allocation, deallocation, read, write, etc.), each of which may appear in one
of two contexts (either by itself or as part of a bind expression sequencing it together
with other commands). We have created one automated lemma for each combination of
command and context, but picking the right one to apply at each step of a proof can be
tedious, so we would like to automate this process by creating a procedure for selecting the
right lemma in each case. We will now show how to build such an automated procedure.

For the running example we will use just two lemmas:

bnd writeR : ∀A B C.∀x : ptr.∀v : A.∀w : C.∀e : unit → prog B.

∀q : B → heap → Prop.

∀r : heap.∀ f : (∀k : heap.partition k r).

verify (e ()) ( f (x �→ v)) q →
verify (bind (write x v) e) ( f (x �→ w)) q

val readR : ∀A.∀x : ptr.∀v : A.∀q : A → heap → Prop.

∀r : heap.∀ f : (partition (x �→ v) r).

(def f → q v f ) →
verify (read x) f q

The first one is the automated lemma from the previous section. The second one executes
the command read alone (not as part of a bind expression). The lemma val readR states
that, in order to show that read x satisfies postcondition q, we need to prove that q holds of
the value v that x points to.

Consider a simple example, in which we have the following goal:

verify (bind (write x 4) (fun . read x)) (x �→ 0) (fun r .r = 4)

This goal states that after writing the value 4 in location x, we read x and get a result r that
is equal to 4. Using the above lemmas directly, we would prove this as follows:4

apply: bnd writeR

by apply: val readR

The first application changes the goal to

verify (read x) (x �→ 4) (fun r .r = 4)

while the second application performs the read and produces the trivial goal 4 = 4.
Using the overloaded lemma step we will present below, we will instead be able to prove

this as follows:

by do 2 apply: step

4 Note that we are using Ssreflect apply: (i.e., with colon) instead of Coq’s native tactic. This is required since
Coq’s apply tactic might use two different and inconsistent unification algorithms.
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structure val form (h : heap) (q : A → heap → Prop) (p : Prop) :=
ValForm { val pivot : prog A;

: p → verify val pivot h q }

structure bnd form (h : heap) (e : A → prog B) (q : B → heap → Prop) (p : Prop) :=
BndForm { bnd pivot : prog A;

: p → verify (bind bnd pivot e) h q }

canonical val bind struct h e q p ( f : bnd form h e q p) :=
ValForm (bind (bnd pivot f ) e) . . .

step : ∀h.∀q.∀p.∀ f : val form h q p. p → verify f h q

Fig. 6. Definition of the overloaded step lemma.

where do n tactic is the nth repeated application of tactic. When verifying a large program,
an overloaded lemma like step becomes increasingly convenient to use, for all the usual
reasons that overloading is useful in ordinary programming. This convenience is borne out
in our source files, where the interested reader can find the verification of a linked list data
type using step.

Intuitively, step works by inspecting the program expression being verified and selecting
an appropriate lemma to apply. In our example, the first application of step will apply
bnd writeR, and the second one val readR, exactly as in our manual proof.

Notational Convention 4
We use val ∗ to name every lemma concerning the symbolic execution of a program
expression consisting of a single command, like val readR. We use bnd ∗ to name every
lemma concerning the symbolic execution of a command inside a bind expression, like
bnd writeR.

Figure 6 shows the main structure, val form, for the overloaded lemma step. It has two
fields: (1) a program expression, which we call val pivot, and (2) a proof that, assuming
precondition p, the postcondition q will hold after executing the pivot program in the initial
heap h. Our overloaded lemma step is trivially proved by the projection of this second field.

When step is applied to a goal verify e h q, the system tries to construct an instance
f : val form h q p, whose val pivot matches e. Figure 7 declares one such val ∗ instance,
val read struct, which is selected when e is a read x command, for some x. The second
field of the instance declares the lemma that should be applied to the verify goal; in this
case the val readR lemma.

Thus, declaring instances of val form corresponds to registering with step the lemmas
that we want applied for specific forms of e. For example, we can register lemmas that
apply when e is a primitive command such as alloc or dealloc. The only requirement is that
the form of the registered lemma matches the second field of val form; namely, the lemma
has a conclusion verify e h q and one premise p, for some e, h, q, and p.

When the command e is not a stand-alone command, but a bind composite, we redirect
step to search for an appropriate lemma among bnd ∗ instances. That is achieved by
declaring a new structure bnd form and a canonical instance val bnd struct for val form in
Figure 6. When step is applied to a goal verify e h q, in which e is a bind, val bnd struct is
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canonical val read struct x v q r f :=
ValForm (read x) (val readR x v q r f )

canonical bnd write struct x v w e q r f :=
BndForm (write x v) (bnd writeR x v w e q r f )

Fig. 7. Registering individual lemmas with step.

selected as a canonical instance. But since val bnd struct is parameterized by a hypothesis
f : bnd form h e q p, this redirects the unification algorithm into solving for f .

Much as in the val form case, we need to register the bnd ∗ lemmas that the algorithm
should apply depending on the first command of e. Figure 7 shows an example instance
bnd write struct which registers lemma bnd writeR to be applied by step whenever e
starts with a write command.

In a similar way, we can register val ∗ and bnd ∗ lemmas for user-defined commands as
well, thereby extending step at will as we implement new commands. In this sense, step is
an open-ended automation procedure. Such open-endedness is yet another aspect of lemma
overloading that does not seem to have a direct correspondent in tactic-based automation.

6 Flexible composition and application of overloaded lemmas

In this section, we construct an overloaded version of the noalias lemma from Section 1.
This example presents two main challenges: (1) composing two overloaded lemmas where
the output of one is the input to the other one, and (2) making the resulting lemma appli-
cable in both forward and backward reasoning.

Concerning the first problem, there are several ways to solve it. We present different
alternative approaches to composing overloaded lemmas, equipping the interested reader
with a handy set of techniques with varying complexity/flexibility tradeoffs.

Concerning the second problem, the key challenge is to ensure that the unification con-
straints generated during canonical structure inference are resolved in the intended order.
This is important because the postponing of a certain constraint may underspecify certain
variables, leading the system to choose a wrong intermediate value that will eventually
fail to satisfy the postponed constraint. In the case of noalias, the problem is that a naive
implementation will result in the triggering of a search for a pointer in a heap before we
know what pointer we are searching for. Fortunately, it is possible to handle this problem
very easily using a simple design pattern we call parameterized tagging.

In the following sections, we build several, progressively more sophisticated, versions
of the noalias lemma, ultimately arriving at a lemma noaliasR that will be applicable both
backwards and forwards. In the backward direction, we will be able to use to it solve a goal
such as

(x1 != x2) && (x2 != x3) && (x3 != x1)

by rewriting repeatedly (notice the modifier “!”):

by rewrite !(noaliasR D)

Here, D is assumed to be a hypothesis describing the well-definedness of a heap containing
three singleton pointers, one for each pointer appearing in the goal. Notice how, in order
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structure tagged heap := Tag {untag : heap}
default tag (h : heap) := Tag h
ptr tag h := default tag h
canonical union tag h := ptr tag h

structure scan (s : seq ptr) :=
Scan { heap of : tagged heap;

: def heap of →
uniq s∧∀x.x ∈ s → x ∈ dom heap of }

canonical union struct s1 s2 ( f1 : scan s1) ( f2 : scan s2) :=
Scan (append s1 s2) (union tag ( f1 • f2)) . . .

canonical ptr struct A x (v : A) :=
Scan (x :: nil) (ptr tag (x �→ v)) . . .

canonical default struct h := Scan nil (default tag h) . . .

Fig. 8. Structure scan for computing a list of pointers syntactically appearing in a heap.

to rewrite repeatedly using the same lemma (noaliasR D), it is crucial that we do not
need to explicitly specify the pointers involved in each application of the lemma, since
each application involves a different pair of pointers. In our first versions of the lemma,
this advanced functionality will not be available, and the pointers will need to be given
explicitly, but eventually we will show how to support it.

Before exploring the different versions of the lemma, we begin by presenting the infras-
tructure common to all of them.

6.1 Basic infrastructure for the overloaded lemma

Given a heap h, and two pointers x and y, the algorithm for noalias proceeds in three steps:
(1) scan h to compute the list of pointers s appearing in it, which must by well-definedness
of h be a list of distinct pointers; (2) search through s until we find either x or y; (3) once
we find one of the pointers, continue searching through the remainder of s for the other
one. Figures 8–10 show the automation procedures for performing these three steps.

Step (1) is implemented by the scan structure in Figure 8. Like the ast structure from
Section 4, scan returns its output using its parameter (here, s). It also outputs a proof that
the pointers in s are all distinct (i.e., uniq s) and that they are all in the domain of the input
heap, assuming it was well-defined.

Step (2) is implemented by the search2 structure (named so because it searches for two
pointers, both taken as parameters to the structure). It produces a proof that x and y are
both distinct members of the input list s, which will be passed in through unification with
the seq2 of projection. The search proceeds until either x or y is found, at which point the
search1 structure (next paragraph) is invoked with the other pointer.

Step (3) is implemented by the search1 structure, which searches for a single pointer
x in the remaining piece of s, returning a proof of x’s membership in s if it succeeds. Its
implementation is quite similar to that of the find structure from Section 2.3.
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structure tagged seq2 := Tag2 {untag2 : seq ptr}
foundz (s : seq ptr) := Tag2 s
foundy s := foundz s
canonical foundx s := foundy s

structure search2 (x y : ptr) :=
Search2 { seq2 of : tagged seq2;

: x ∈ seq2 of ∧ y ∈ seq2 of
∧(uniq seq2 of → x != y) }

canonical x struct x y (s1 : search1 y) :=
Search2 x y (foundx (x :: s1)) . . .

canonical y struct x y (s1 : search1 x) :=
Search2 x y (foundy (y :: s1)) . . .

canonical z struct x y z (s2 : search2 x y) :=
Search2 x y (foundz (z :: s2)) . . .

Fig. 9. Structure search2 for finding two pointers in a list.

structure tagged seq1 := Tag1 {untag1 : seq ptr}
recurse tag (s : seq ptr) := Tag1 s
canonical found tag s := recurse tag s

structure search1 (x : ptr) := Search1 { seq1 of : tagged seq1;
: x ∈ seq1 of }

canonical found struct (x : ptr) (s : seq ptr) :=
Search1 x (found tag (x :: s)) . . .

canonical recurse struct (x y : ptr) ( f : search1 x) :=
Search1 x (recurse tag (y :: f )) . . .

Fig. 10. Structure search1 for finding a pointer in a list.

6.2 Naive composition

The noalias lemma we wish to build is, at heart, a composition of two subroutines: one
implemented by the structure scan and the other by the structure search2. Indeed, looking
at the structures scan and search2, we notice that the output of the first one coincides
with the input of the second one: scan computes the list of distinct pointers in a heap,
while search2 proves that, if the list output by scan contains distinct pointers, then the two
pointers given as parameters are distinct.

Our first, naive attempt at building noalias is to (1) define overloaded lemmas corre-
sponding to scan and search2, and (2) compose them using ordinary (function) compo-
sition, in the same that way that we composed the two lemmas simplify and cancelR in
Section 4.3. As we will see, this direct approach does not quite work—i.e., we will not get
out a general lemma in the end—but it is instructive to see why.

First, we create the two overloaded lemmas, scan it and search them, whose proofs are
merely the proof projections from the scan and search2 structures. As usual, we leave the
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structure projections (here of f and g) implicit:

scan it : ∀s : seq ptr.∀ f : scan s.

def f → uniq s

search them : ∀x y : ptr.∀g : search2 x y.

uniq g → x != y

We can apply their composition in the same way as in Section 4.3. For example:

Hyp. D : def (i1 • (x1 �→ v1 • x2 �→ v2)• (i2 • x3 �→ v3))
Goal : x1 != x3
Proof : by apply: (search them x1 x3 (scan it D))

During the typechecking of the lemma to be applied (i.e., search them x1 x3 (scan it D)),
Coq will first unify D’s type with that of scan it’s premise (i.e., def (untag (heap of ? f ))),
which forces the unification of the heap in the type of D with the implicit projection
untag (heap of ? f ). This in turn triggers an inference problem in which the system solves
for the canonical implementation of ? f by executing the scan algorithm, thus comput-
ing the pointer list s (in this case, [x1,x2,x3]). After obtaining uniq s as the output of
scan it, the search for the pointers x1 and x3 is initiated by unifying uniq s with the
premise of search them (i.e., uniq (seq2 of (untag2 ?g))), which causes s to be unified
with seq2 of (untag2 ?g), thus triggering the resolution of ?g by the search2 algorithm.

We may be tempted, then, to define the lemma noalias as a direct composition of the two
lemmas. Unfortunately this will not work, because although we can compose the lemmas
dynamically (i.e., when applied to a particular goal), we cannot straightforwardly compose
them statically (i.e., in the proof of the general noalias lemma with unknown parameters).
To see why, let us try to build the lemma using the structures:

noaliasR fwd wrong : ∀x y : ptr.∀s : seq ptr.∀ f : scan s.∀g : search2 x y.

def f → x != y

The reason we cannot prove this lemma is that there is no connection between the output
of the scan—that is, s—and the input sequence of search2. To put it another way, what we
have is a proof that the list of pointers s appearing in the heap component of f is unique,
but what we need is a way to prove that the list component of g is unique. We do not have
any information telling us that these two lists should be equal, and in fact there is no reason
for that to be true.

6.3 Connecting the lemmas with an equality hypothesis

To prove the general noalias lemma, we clearly need a way to connect the output of scan

with the input of search2. A simple way to achieve this is by adding an extra hypothesis
representing the missing connection (boxed below), using which the proof of the lemma is
straightforward. For clarity, we make the projection in this hypothesis explicit.

noaliasR fwd : ∀x y : ptr.∀s : seq ptr.∀ f : scan s.∀g : search2 x y.

def f → s = (untag2 (seq2 of g)) → x != y
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We show how it works by applying it to the same example as before. We assume s, f ,g
implicit.

Hyp. D : def (i1 • (x1 �→ v1 • x2 �→ v2)• (i2 • x3 �→ v3))
Goal : x1 != x3
Proof : by apply: (noaliasR fwd x1 x3 D (erefl ))

Here, erefl x is the proof that x = x. The trace of the type checker is roughly as follows. It:

1. Generates fresh unification variables for each of the arguments: ?x,?y,?s,? f ,?g.
2. Unifies ?x and ?y with the pointers given as parameters, x1 and x3, respectively.
3. Unifies the hypothesis D with the hypothesis of the lemma. More precisely, with

? f : scan ?s, it will unify

def ? f =̂ def (i1 • (x1 �→ v1 • x2 �→ v2)• (i2 • x3 �→ v3))

starting the scan’ing of the heap. When scan is finished, we get ?s =̂ [x1,x2,x3].
4. Unifies the equality with the type of erefl , where is an implicit argument. More

precisely, Coq will create a unification variable ?t for this implicit argument, and
unify

(?t = ?t) =̂ ([x1,x2,x3] = untag2 (seq2 of ?g))

where ?g : search2 x1 x3. Next, it decomposes the equality, obtaining equations

?t =̂ [x1,x2,x3]

?t =̂ untag2 (seq2 of ?g)

which effectively results in the equation we need for triggering the search for the two
pointers in s:

[x1,x2,x3] =̂ untag2 (seq2 of ?g)

The astute reader may have noticed that, in the definition of noaliasR fwd, we purposely
arranged for the hypothesis def f to appear before the equality of s and g. If instead we
had put it afterwards, the last two steps would have been swapped, resulting in a doomed
search for the pointers in s before the identity of s as [x1,x2,x3] was known.

In fact, note that we can actually arrange for def f to be hoisted out even further, outside
the scope of the pointers x and y. The benefit of doing so is that we can scan a heap just
once, and then use the resulting lemma to prove non-aliasing properties between different
pairs of pointers without rescanning the heap each time. In particular, let our lemma be

noaliasR fwd : ∀s : seq ptr.∀ f : scan s. ∀d : def f . ∀x y : ptr.∀g : search2 x y.

s = untag2 (seq2 of g) → x != y

and hypothesis D be as before. We can then make a local lemma abbreviation with the
partially applied lemma

have F := noaliasR fwd D

Typechecking this local definition implicitly solves for s and f by scanning the heap
defined by D, leaving only x, y, and g to be resolved by subsequent instantiation. We can
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then solve the following goal by rewriting several times using the partially-applied F :

Goal : x1 != x3 && x2 != x3
Proof : by rewrite (F x1 x3 (erefl )) (F x2 x3 (erefl ))

6.4 Looking backward, not forward

Note that, when applying the noaliasR fwd lemma from the previous section, we need
to instantiate the pointer parameters x and y explicitly, or else the search will fail. More
precisely, the search will proceed without knowing which pointers to search for, and Coq
will end up unifying x and y with (as it happens) the first two pointers in the list s (in
the above example, x1 and x2). If they are not the pointers from the goal (as indeed in the
example they are not), the application of the lemma will simply fail.

For many examples, like the cancelR example in Section 4, this is not a problem since
the lemma is intended to be used only in forward mode. However, if we want noalias to
be applicable also in backward mode—in particular, if we want to rewrite repeatedly with
noalias D as shown at the beginning of this section—then we need to find a way of helping
Coq infer the pointer arguments. The approach we present in this section will demonstrate
yet another way of composing lemmas, which improves on the approach of the previous
section in that it enables one (but not both) of the pointer arguments of noalias to be
inferred. It thus serves as a useful bridge step to the final version of noalias in Section 6.5,
which will be applicable both forwards and backwards.

The idea is to replace the equality hypothesis in the previous formulation of the lemma
with a bespoke structure, check, which serves to unify the output of scan and the in-
put of search2. To understand where we put the “trigger” for this structure, consider the
noaliasR fwd lemma from the previous section. There, the trigger was placed strategically
after the hypothesis def f to fire the search after the list of pointers is computed. If we want
to remove the equality hypothesis, then we do not have any other choice but to turn one of
the pointers into the trigger.

We show first the reformulated lemma noaliasR fwd to explain the intuition behind this
change. As in our last version of the lemma, we move the hypothesis def f before the
pointer arguments x and y to avoid redundant recomputation of the scan algorithm.

noaliasR fwd : ∀s : seq ptr.∀ f : scan s.∀d : def f .∀x y : ptr. ∀g : check x y s.

x != y of g

As before, when the lemma is applied to a hypothesis D of type def h, the heap h will be
unified with the (implicit) projection untag (heap of f ). This will execute the scan algo-
rithm, producing as output the pointer list s. However, when this lemma is subsequently
applied in order to solve a goal of the form x′ != y′, the unification of that goal with the
conclusion of the lemma will trigger the unification of y′ with y of ?g (the projection from
check, which we have made explicit here for clarity), and that will in turn initiate the
automated search for the pointers in the list s. Note that we could use the unification with
either x′ or y′ to trigger the search, but here we have chosen the latter.
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We define the structure check and its canonical instance start as follows:

structure check (x y : ptr) (s : seq ptr) :=
Check { y of : ptr;

: y = y of;
: uniq s → x != y of }

canonical start x y (s2 : search2 x y) :=
Check x y (untag2 (seq2 of s2)) y (erefl ) . . .

The sole purpose of the canonical instance start for the check structure is to take the
pointers x′ and y′ and the list s, passed in as parameters, and repackage them appropriately
in the form that the search2 structure expects. In particular, while check is keyed on the
right pointer (here, y′), search2 is keyed on the list of pointers s, so a kind of coercion
between the two structures is necessary. Notice that this coercion is only possible if the
structure’s pointer parameter y is constrained to be equal to its y of projection. Without
this constraint, appearing as the second field (first proof field) of check, we obviously
cannot conclude x != y of from x != y.

Knowing that Coq unifies subterms in a left-to-right order, it should be clear that we can
avoid mentioning the pointer x′, since Coq will unify ?x with x′ before unifying y of g with
y′ and triggering the search. Consequently, if we have the goal

x1 != x3 && x2 != x3

and D has the same type as before, we can solve the goal by repeated rewriting as follows:

rewrite !(noaliasR fwd D x3)

It is thus sensible to ask if we can avoid passing in the instantiation for the y parameter
(here, x3) explicitly. Unfortunately, we cannot, and the reason will become apparent by
following a trace of application.

Assume D as before. We solve the goal

x1 != x3

by

apply: (noaliasR fwd D x3)

For the application to succeed, it must unify the goal with the inferred type for the lemma
being applied. Let us write ?s, ? f , ?d, ?x, ?y and ?g for the unification variables that
Coq creates for the arguments of noaliasR fwd. As usual in type inference, the type of D
must match the type of ?d, i.e., def ? f . As mentioned above, this produces the unification
problem that triggers the scanning:

untag (heap of ? f ) =̂ i1 • (x1 �→ v1 • x2 �→ v2)• (i2 • x3 �→ v3)

In solving this problem, Coq instantiates variables ? f and ?s with I f and [x1,x2,x3] respec-
tively, where I f stands for an instance that we omit here.

Now Coq continues the inference, instantiating ?y with x3, and getting the following
type for the conclusion of the lemma:

?x != y of ?g
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where ?g : check ?x x3 [x1,x2,x3]. Coq proceeds to unify this type with the goal:

?x != y of ?g =̂ x1 != x3

This generates two subproblems:

1. ?x =̂ x1

2. y of ?g =̂ x3

The first one is solved immediately, and the second one triggers the search for an instance.
The only available instance is start. After creating unification variables ?x′,?y′ and ?s′2, one
for each argument of the instance, Coq unifies the type of the instance with the expected
type, i.e.,

check ?x′ ?y′ (untag2 (seq2 of ?s′2)) =̂ check x1 x3 [x1,x2,x3]

therefore creating the following unification problems:

1. ?x′ =̂ x1

2. ?y′ =̂ x3

3. untag2 (seq2 of ?s′2) =̂ [x1,x2,x3]

After solving the first two problems right away, the third problem triggers the search for
the pointers in the list. It is only now, after successfully solving these equations, that Coq
unifies the y of projection of the instance with the expected one from the original equation,
getting the trivial equation x3 =̂ x3. Finally, it can assign the instance to ?g, i.e.,

?g =̂ start x1 x3 ?s′2

thus successfully proving the goal.
It should now hopefully be clear why we needed to pass x3 as an explicit argument. If

we had left it implicit, the unification problem #3 above would have triggered a search on
an unknown ?y′, even though the information about the identity of ?y′ was made available
in the subsequent step.

6.5 Reordering unification subproblems via parameterized tagging

Fortunately, there is a simple fix to our check structure to make our lemma infer both
pointers from the goal without any intervention from the user.

The pattern. In order to fix our check structure, we need a way to reorder the unification
subproblems so that ?y gets unified with x3 before the search algorithm gets triggered on the
pointer list s. The trick for doing this is to embed the parameter y in the type of the projector
y of, thus ensuring higher priority in the unification order. Specifically, we will give y of

the type equals ptr y, which (as the name suggests) will serve to constrain y of to be equal
to y and to ensure that this constraint is registered before the search algorithm is triggered.
(Technically, equals ptr y is not a singleton type, but canonical instance resolution will
cause it to effectively behave like one.) We call this pattern parameterized tagging.
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To illustrate, we present the structure equals ptr, its canonical instance equate, and the
requisite changes to the check structure (and its instance) according to the pattern:

structure equals ptr (z : ptr) := Pack {unpack : ptr}

canonical equate (z : ptr) := Pack z z

structure check (x y : ptr) (s : seq ptr) :=
Check { y of : equals ptr y;

: uniq s → x != unpack y of }
canonical start x y (s2 : search2 x y) :=

Check x y (untag2 (seq2 of s2)) (equate y) . . .

Here, the instance equate guarantees that the canonical value of type equals ptr z is a
package containing the pointer z itself.

We can now revise our statement of the overloaded noaliasR fwd lemma ever so slightly
to mention the new projector unpack (which could be made implicit). We also rename it,
since this is the final presentation of the lemma:

noaliasR : ∀s : seq ptr.∀ f : scan s.∀d : def f .∀x y : ptr.∀g : check x y s.

x != unpack (y of g)

As before, suppose that noaliasR has already been applied to a hypothesis D of type def h,
so that the lemma’s parameter s has already been solved for. Then, when noaliasR is applied
to a goal x1 != x3, the unification engine will unify x1 with the argument ?x of noaliasR,
and proceed to unify

unpack (y of ?g) =̂ x3

in a context where ?g : check x1 ?y s. In order to fully understand what is going on, we
detail the steps involved in the instance search. The only instance applicable is equate.
After opening the instance by creating the unification variable ?z, Coq unifies the type of
the instance with the type of y of ?g:

equals ptr ?z =̂ equals ptr ?y

and obtains the solution ?z = ?y. Then, the unpack projection from equate ?z (which is
simply ?z) is unified with the value it is supposed to match, namely x3. This step is the key
to understanding how we pick up x3 from the goal. Replacing ?z with its solution ?y, we
thus get the equation

?y =̂ x3

Finally, Coq unifies the expected instance with the one computed:

y of ?g =̂ equate x3

which triggers the search for the pointers in s as before.

Applying the lemma. The overloaded noaliasR lemma supports a number of modes of
use: it can be applied, used as a rewrite rule, or composed with other lemmas. For example,
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assume that we have a hypothesis specifying a disjointness of a number of heaps in a union:

D : def (i1 • (x1 �→ v1 • x2 �→ v2)• (i2 • x3 �→ v3))

Assume further that the arguments x, y, s, f and g of noaliasR are implicit, so that we
can write simply (noaliasR D) when we want to partially instantiate the lemma with the
hypothesis D. Then the following are some example goals, and proofs to discharge them,
illustrating the flexibility of use. As can be seen, no tedious reordering of heap expressions
by commutativity and associativity is needed.

1. The lemma can be used in backward reasoning. The type checker picks up x1 and x2
from the goal, and confirms they appear in D.

Goal : x1 != x2
Proof : by apply: (noaliasR D)

2. The lemma can be used in iterated rewriting. The lemma is partially instantiated with
D. It performs the initial scan of D once, but is then used three times to reduce each
conjunct to true. There is no need in the proof to specify the input pointers to be
checked for aliasing. The type checker can pick them up from the goal, in the order
in which they appear in the conjunction.

Goal : (x1 != x2) && (x2 != x3) && (x3 != x1)
Proof : by rewrite !(noaliasR D)

3. The lemma can be composed with other lemmas, to form new rewrite rules. Again,
there is no need to provide the input pointers in the proofs. For example, given the
standard library lemma negbTE : ∀b:bool. !b = true → b = false, we have:

Goal : if (x2 == x3) && (x1 != x2) then false else true

Proof : by rewrite (negbTE (noaliasR D))

4. That said, we can provide the input pointers in several ways, if we wanted to, which
would correspond to forward reasoning. We can use the term selection feature of
rewrite to reduce only the specified conjunct in the goal.

Goal : ((x1 != x2) && (x2 != x3)) = (x1 != x2)
Proof : by rewrite [x2 != x3](noaliasR D) andbT

Here a rewrite by andbT : ∀b.b && true = b is used to remove the true left in the
goal after rewriting by noaliasR.

5. Or, we can supply one (or both) of the pointer arguments directly to noaliasR.

Goal : ((x1 != x2) && (x2 != x3)) = (x1 != x2)
Proof : by rewrite (noaliasR (x :=x2) D) andbT

Goal : ((x1 != x2) && (x2 != x3)) = (x1 != x2)
Proof : by rewrite (noaliasR (y := x3) D) andbT
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7 Related work

Expressive type systems for proof automation. A number of recent languages consider
specifying tactics via very expressive dependent types. Examples include VeriML (Stam-
poulis & Shao, 2010; Stampoulis & Shao, 2012) for automating proofs in λHOL, and
Delphin (Poswolsky & Schürmann, 2009) and Beluga (Pientka & Dunfield, 2008) for
proofs in LF. Their starting point is the higher-order abstract syntax (HOAS) style of
term representation; consequently, one of their main concerns is using types to track the
variable contexts of subgoals generated during tactic execution. In contrast, we do not build
a separate language on top of Coq, but rather customize Coq’s unification algorithm. This
is much more lightweight, as we do not need to track variable contexts in types, but it also
comes with limitations. For example, our automations are pure logic programs, whereas
the other proposals may freely use imperative features. On the other hand, as we have
demonstrated, canonical structures can benefit from freely mixing with Coq’s primitives for
higher-order computation. The mixing would not have been possible had the automation
and the base language been kept separated, as is the case in other proposals. Another benefit
of the tight integration is that canonical structures can be used to automate not only proofs,
but also more general aspects of type inference (e.g., overloading).

In this paper, we have not considered HOAS representations, but we have successfully
made first steps in that direction. The interested reader can find in our source files an imple-
mentation of the motivating example from VeriML, which considers a simple automation
tactic for a logic with quantifiers.

Canonical structures. One important application of canonical structures is described by
Bertot et al. (2008), where the ability to key on terms, rather than just types, is used for
encoding iterated versions of classes of algebraic operators.

Gonthier (2011) describes a library for matrix algebra in Coq, which introduces a variant
of the tagging and lemma selection patterns, but briefly, and as a relatively small part of a
larger mathematical development. In contrast, in the current paper, we give a more abstract
and detailed presentation of the general tagging pattern and explain its operation with a
careful trace. We also present several other novel design patterns for canonical structures,
and explore their use in reasoning about heap-manipulating programs.

Asperti et al. (2009) present unification hints, which generalize Coq’s canonical struc-
tures by allowing that a canonical solution be declared for any class of unification equa-
tions, not only for equations involving a projection out of a structure. Hints are shown to
support applications similar to our reflection pattern from Section 4. However, they come
with limitations; for example, the authors comment that hints cannot support backtracking.
Thus, we believe that the design patterns that we have developed in the current paper are
not obviated by the additional generality of hints, and would be useful in that framework
as well.

Type classes. Sozeau and Oury (2008) present type classes for Coq, which are similar
to canonical structures, but differ in a few important respects. The most salient difference
is that inference for type class instances is not performed by unification, but by general
proof search. This proof search is triggered after unification, and it is possible to give
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a weight to each instance to prioritize the search. This leads to somewhat simpler code,
since no tagging is needed, but, on the other hand, it seems less expressive. For instance,
we were not able to implement the search-and-replace pattern of Section 5 using Coq
type classes, due to the lack of connection between proof search and unification. We were
able to derive a different solution for bnd writeR using type classes, but the solution was
more involved (requiring two specialized classes to differentiate the operations such as
write which perform updates to specific heaps, from the operations which merely inspect
pointers without performing updates). More importantly, we were not able to scale this
solution to more advanced lemmas from our implementation of higher-order separation
logic. In contrast, canonical structures did scale, and we provide the overloaded code for
these lemmas in our source files (Gonthier et al., 2012).

In the end, we managed to implement all the examples in this paper using Coq type
classes, demonstrating that lemma overloading is a useful high-level concept and is not
tied specifically to canonical structures. (The implementations using type classes are in-
cluded in our source files as well; Gonthier et al., 2012.) Nevertheless, unlike for canonical
structures, we have not yet arrived at a full understanding of how Coq type classes perform
instance resolution. Ultimately, it may turn out that the two formalisms are interchangeable
in practice, but we need more experience with type classes to confirm this.

Spitters and van der Weegen (2011) present a reflection algorithm using Coq type classes
based on the example of Asperti et al. discussed above. In addition, they consider the
use of type classes for overloading and inheritance when defining abstract mathematical
structures such as rings and fields. They do not, however, consider lemma overloading
more generally as a means of proof automation, as we have presented here.

Finally, in the context of Haskell, Morris and Jones (2010) propose an alternative de-
sign for a type class system, called ilab, which is based on the concept of instance
chains. Essentially, instance chains avoid the need for overlapping instances by allowing
the programmer to control the order in which instances are considered during constraint
resolution and to place conditions on when they may be considered. Our tagging pattern
(Section 2.3) can be seen as a way of coding up a restricted form of instance chains directly
in existing Coq, instead of as a language extension, by relying on knowledge of how the
Coq unification algorithm works. ilab also supports failure clauses, which enable one
to write instances that can only be applied if some constraint fails to hold. Our approach
does not support anything directly analogous, although (as Morris and Jones mention)
failure clauses can be encoded to some extent in terms of more heavyweight type class
machinery.

Dependent types modulo theories. Several recent works have considered enriching the
term equality of a dependently typed system to natively admit inference modulo theories.
One example is Strub et al.’s CoqMT (Strub, 2010; Barras et al., 2011), which extends
Coq’s type checker with first-order equational theories. Another is Jia et al.’s language
λ∼= (pronounced “lambda-eek”) (Jia et al., 2010), which can be instantiated with various
abstract term-equivalence relations, with the goal of studying how the theoretical prop-
erties (e.g., the theory of contextual equivalence) vary with instantiations. Also related
are Braibant et al.’s AAC tactics for rewriting modulo associativity and commutativity in
Coq (Braibant & Pous, 2010).
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In our paper, we do not change the term equality of Coq. Instead, we allow user-supplied
algorithms to be executed when desired, rather than by default whenever two terms have
to be checked for equality. Moreover, these algorithms do not have to be only decision
procedures, but can implement general-purpose computations.

8 Conclusions and future work

The most common approach to proof automation in interactive provers is via tactics, which
are powerful but suffer from several practical and theoretical limitations. In this paper,
we propose an alternative, specifically for Coq, which we believe puts the problem of
interactive proof automation on a stronger foundational footing.

The approach is rooted in the recognition that the type checker and inference engines are
already automation tools, and can be coerced via Coq’s canonical structures into executing
user-supplied code. Automating proofs in this style is analogous to program overloading
via type classes in Haskell. In analogy with the Curry–Howard isomorphism, the automated
lemmas are nothing but overloaded programs. In the course of resolving the overloading,
the type checker performs the proof automation.

We have illustrated the flexibility and generality of the approach by applying it to a
diverse set of lemmas about heaps and pointer aliasing, which naturally arise in verifi-
cation of stateful programs. Overloading these lemmas required developing a number of
design patterns which we used to guide the different aspects of Coq’s unification towards
automatically inferring the requisite proofs.

Of course, beyond this, much remains to be done, regarding both the theoretical and
pragmatic aspects of our approach. From the theoretical standpoint, we believe it is very
important that Coq’s unification algorithm be presented in a formal, declarative fashion,
which is currently not the case. In this work we have tried to give a detailed, yet informal,
explanation of how it works, with particular focus on the inner workings of canonical
instance resolution. But this is far from the complete story.

The study of the unification algorithm is also important from the pragmatic standpoint,
as in our experience, the current implementation suffers from a number of peculiar per-
formance problems. For example, we have observed that the time to perform a simple
assignment to a unification variable is quadratic in the number of variables in the context,
and linear in the size of the term being assigned.

This complexity has so far not been too problematic in practice, as interactive proofs
tend to keep variable contexts short, for readability. However, it is a serious concern, and
one which is not inherent to overloading or to canonical structures; if addressed by an
optimization of Coq’s kernel functionality, it will likely improve many other aspects of the
system.

When specifically compared to Ltac, the measures of performance of the cancella-
tion algorithm (our most computation-intensive automation routine) were mixed, vary-
ing from version to version of Coq. In some versions, the original Ltac routine from
HTT runs faster than the one presented in Section 4, while in others it runs slower. In
terms of efficiency, we have yet to develop a clear picture of the tradeoffs between these
approaches.
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