J. Austral. Math. Soc. (Series A) 66 (1999), 297-302

MOORE-PENROSE INVERSION IN COMPLEX CONTRACTED INVERSE SEMIGROUP ALGEBRAS

W. D. MUNN

(Received 13 November 1998; revised 3 March 1999)

Communicated by D. Easdown

Abstract

It is shown that every element of the complex contracted semigroup algebra of an inverse semigroup $S = S^0$ has a Moore-Penrose inverse, with respect to the natural involution, if and only if S is locally finite. In particular, every element of a complex group algebra has such an inverse if and only if the group is locally finite.

1991 Mathematics subject classification (Amer. Math. Soc.): primary 20M25.

Let A be an algebra over the complex field \mathbb{C} with an involution *. By a *Moore-Penrose inverse* of an element $a \in A$ (relative to *) we mean an element $a^{\dagger} \in A$ such that

$$aa^{\dagger}a = a, \qquad a^{\dagger}aa^{\dagger} = a^{\dagger},$$

 $(aa^{\dagger})^{*} = aa^{\dagger}, \qquad (a^{\dagger}a)^{*} = a^{\dagger}a.$

It is readily demonstrated that there is at most one such a^{\dagger} for a given a (see [6]); and clearly $0 = 0^{\dagger}$. The fundamental case is that in which A is the algebra $M_n(\mathbb{C})$ of all $n \times n$ matrices over \mathbb{C} and * is hermitian conjugation. In [6, Theorem 1], Penrose proved that a^{\dagger} exists for each $a \in M_n(\mathbb{C})$. An equivalent result, using a different definition of a^{\dagger} , had been obtained earlier by Moore [2]. The purpose of this note is to extend Penrose's theorem to a wider class of complex algebras.

The semigroup algebra of a semigroup S over C is designated by $\mathbb{C}[S]$. Adopting the convention in [1], we write ' $S = S^0$ ' to indicate that a semigroup S has a zero and at least one other element. Given such a semigroup S, we denote the set of nonzero elements of S by \hat{S} and the *contracted* semigroup algebra of S over C by $\mathbb{C}_0[S]$

^{© 1999} Australian Mathematical Society 0263-6115/99 \$A2.00 + 0.00

[1, Section 5.2]. The elements of $\mathbb{C}_0[S]$ are regarded as the formal sums $\sum_{x\in\hat{S}} \alpha_x x$, where in each case at most finitely many of the (complex) coefficients α_x are nonzero. Multiplication in $\mathbb{C}_0[S]$ is induced by that in S in the obvious way, the zero of S being identified with the zero of the algebra. For a typical element $a = \sum_{x\in\hat{S}} \alpha_x x$ we define supp (a), the support of a, to be $\{x \in \hat{S} : \alpha_x \neq 0\}$. Thus supp (a) is a finite subset of \hat{S} and is empty if and only if a = 0. (Note that every semigroup algebra can be viewed as a contracted semigroup algebra; for if T is an arbitrary semigroup then $\mathbb{C}[T] = \mathbb{C}_0[T^+]$, where T^+ is obtained from T by adjoining a zero.)

A semigroup S is said to be *locally finite* if and only if every finite nonempty subset of S generates a finite subsemigroup of S. The following result, which is a special case of [5, Theorem 2], provides a necessary condition for a complex contracted semigroup algebra to be regular. (An algebra A is regular, in the sense of von Neumann, if and only if, for all $a \in A$ there exists $x \in A$ such that axa = a.)

LEMMA 1 (Okniński). Let $S = S^0$ be a semigroup. If $\mathbb{C}_0[S]$ is regular then S is locally finite.

We now confine our discussion to inverse semigroups. A semigroup S of this type has the defining property that to each $x \in S$ there corresponds a unique $x^{-1} \in S$ (the 'inverse' of x) such that $xx^{-1}x = x$ and $x^{-1}xx^{-1} = x^{-1}$. It can be shown that the idempotents of S necessarily commute and that the inversion $(x \mapsto x^{-1})$ is an involution on S [1, Theorem 1.17 and Lemma 1.18]. Now consider an inverse semigroup $S = S^0$. For each $\alpha \in \mathbb{C}$ denote the complex conjugate of α by $\overline{\alpha}$. Then the mapping $^* : \mathbb{C}_0[S] \to \mathbb{C}_0[S]$ defined by

$$\left(\sum_{x\in\hat{S}}\alpha_x x\right)^* := \sum_{x\in\hat{S}}\overline{\alpha_x}x^{-1} \qquad (\alpha_x\in\mathbb{C})$$

is readily seen to be an involution. We call this the *natural involution* on $\mathbb{C}_0[S]$. For the case in which S is the semigroup of $n \times n$ matrix units (that is,

$$S = \{e_{ij} : 1 \leq i, j \leq n\} \cup \{0\}, \quad \text{with } e_{ij} e_{kl} = \delta_{jk} e_{il}\},$$

 $\mathbb{C}[S] = M_n(\mathbb{C})$ and * coincides with the hermitian conjugation.

A version of the next lemma, for a non-contracted complex inverse semigroup algebra, was used by the author to show that the algebra has no nonzero nil ideals [4, Lemma 2.3]. With minor adjustment, the proof applies also to the contracted case. The same result was obtained independently by Shehadah [8].

LEMMA 2 (Munn-Shehadah). Let $S = S^0$ be an inverse semigroup and let * denote the natural involution on $\mathbb{C}_0[S]$. Then

$$(\forall a \in \mathbb{C}_0[S]) \quad aa^* = 0 \quad \Rightarrow \quad a = 0.$$

Moore-Penrose inversion

Before proceeding to the main result we observe the following. Let S be an inverse semigroup, let T be a finite nonempty subset of S and let T^{-1} denote $\{x^{-1} : x \in T\}$. Then the inverse subsemigroup of S generated by T is the subsemigroup generated by $T \cup T^{-1}$. Thus S is locally finite if and only if every finite nonempty subset of S generates a finite *inverse* subsemigroup of S.

THEOREM 1. Let $S = S^0$ be an inverse semigroup. Then every element of $\mathbb{C}_0[S]$ has a Moore-Penrose inverse, relative to the natural involution, if and only if S is locally finite.

PROOF. Assume first that every element of $\mathbb{C}_0[S]$ has a Moore-Penrose inverse. Then, in particular, $\mathbb{C}_0[S]$ is regular and so, by Lemma 1, S is locally finite.

For the converse part, we adapt Penrose's argument in [6, Theorem 1]. Denote the natural involution on $\mathbb{C}_0[S]$ by *. We show first that, for all $a, b, c \in \mathbb{C}_0[S]$,

(i) $ba^*a = ca^*a \Rightarrow ba^* = ca^*$, (ii) $baa^* = caa^* \Rightarrow ba = ca$.

To see that (i) holds, suppose that $a, b, c \in \mathbb{C}_0[S]$ are such that $ba^*a = ca^*a$. Then $(ba^* - ca^*)(ba^* - ca^*)^* = (ba^*a - ca^*a)(b - c)^* = 0$ and so, by Lemma 2, $ba^* = ca^*$. Result (ii) follows by replacing a by a^* in (i).

Now assume that S is locally finite. Consider a nonzero element a of $\mathbb{C}_0[S]$. Let $T (= T^0)$ denote the inverse subsemigroup of S generated by supp $(a) \cup \{0\}$. Then $aa^* \in \mathbb{C}_0[T]$. But $\mathbb{C}_0[T]$ is finite-dimensional. Hence, for some $k \ge 2$, there exist complex numbers $\lambda_1, \lambda_2, \ldots, \lambda_k$, with $\lambda_i \ne 0$ for some i < k, such that $\sum_{i=1}^k \lambda_i (aa^*)^i = 0$. Applying * to both sides, we see that also $\sum_{i=1}^k \overline{\lambda_i} (aa^*)^i = 0$. From these equations, it follows readily that there exist *real* numbers $\mu_1, \mu_2, \ldots, \mu_k$, with $\mu_i \ne 0$ for some i < k, such that

$$\mu_1(aa^*) + \mu_2(aa^*)^2 + \dots + \mu_k(aa^*)^k = 0.$$

Let r be the smallest integer i for which $\mu_i \neq 0$. Define $x \in \mathbb{C}_0[S]$ by

$$x := -\mu_r^{-1}[\mu_{r+1}a^* + \mu_{r+2}a^*(aa^*) + \dots + \mu_k a^*(aa^*)^{k-r-1}].$$

Clearly, $(ax)^* = ax$ and $(xa)^* = xa$. Further, it is easily verified that $ax(aa^*)^r = (aa^*)^r$ and so, by repeated applications of (i) and (ii), $axaa^* = aa^*$. Therefore $(axa - a)(axa - a)^* = (axaa^* - aa^*)x^*a^* - (axaa^* - aa^*) = 0$. Hence, by Lemma 2, axa = a. From this, we have that xaxa = xa; also $a^* = a^*x^*a^*$ and so $x = ya^*$ for some $y \in \mathbb{C}_0[S]$. Thus $xaya^*a = ya^*a$. Hence, by (i), $xaya^* = ya^*$; that is, xax = x. Consequently, x is the Moore-Penrose inverse of a in $\mathbb{C}_0[S]$.

REMARKS. (1) Penrose's result on $M_n(\mathbb{C})$ is included as a special case of Theorem 1: take S to be the semigroup of $n \times n$ matrix units.

W. D. Munn

(2) Note that $\mathbb{C}_0[S]$ need not have an identity element. However, for a finite inverse semigroup $T = T^0$, $\mathbb{C}_0[T]$ does have an identity. A formula expressing this element in terms of the idempotents of T has been obtained by Penrose (see [3, p. 11]).

We conclude with a discussion of equations of the form ax = b in complex contracted inverse semigroup algebras. First, it is easy to verify (as in [6]) that, if a and b are elements of an arbitrary ring R and there exists $a' \in R$ such that aa'a = a, then the equation ax = b is soluble in R if and only if aa'b = b, the solutions (where they exist) being precisely the elements of the form a'b + r - a'ar, where r ranges over R. In particular, these observations apply when R is a complex contracted inverse semigroup algebra and $a' = a^{\dagger}$.

Let $S = S^0$ be a semigroup. We define the (Euclidean) norm ||a|| of $a \in \mathbb{C}_0[S]$ by the rule that, if $a = \sum_{x \in \hat{S}} \alpha_x x$, then

$$||a|| := \left(\sum_{x\in\hat{S}} |\alpha_x|^2\right)^{1/2}$$

Following Penrose [7], for a and b in $\mathbb{C}_0[S]$ we say that $t \in \mathbb{C}_0[S]$ is a best approximate solution of the equation ax = b if and only if, for all $u \in \mathbb{C}_0[S]$, (1) $||at-b|| \le ||au-b||$ and (2) if ||at-b|| = ||au-b|| then $||t|| \le ||u||$.

Now suppose that $S = S^0$ is an inverse semigroup. Denote the set of all nonzero idempotents of S by \hat{E} . We say that S is *primitive* if and only if

$$(\forall e, f \in \hat{E}) \quad ef \neq 0 \quad \Rightarrow \quad e = f.$$

It can be shown [1, Section 6.5, Example 6] that S is primitive if and only if it is a 0direct union of Brandt semigroups (that is, completely 0-simple inverse semigroups). Thus complex contracted semigroup algebras of primitive inverse semigroups include, as special cases, complex group algebras and full matrix algebras over \mathbb{C} .

The next theorem mirrors Penrose's result on best approximate solutions of matrix equations [7].

THEOREM 2. Let $S = S^0$ be a primitive inverse semigroup, let a and b be elements of $\mathbb{C}_0[S]$ and assume that a^{\dagger} exists. Then $a^{\dagger}b$ is the unique best approximate solution of ax = b in $\mathbb{C}_0[S]$.

REMARK. By Theorem 1, a sufficient condition for a^{\dagger} to exist is that the (inverse) subsemigroup of S generated by supp (a) is finite.

PROOF. Let $x, y \in \hat{S}$ be such that $x^{-1}y \in \hat{E}$. Then, since $x^{-1}x \in \hat{E}$ and $(x^{-1}x)(x^{-1}y) \neq 0$ we have that $x^{-1}y = x^{-1}x$ and therefore that $x^{-1}yx^{-1} = x^{-1}$.

Moore-Penrose inversion

Similarly, $yx^{-1}y = y$. Hence $y = (x^{-1})^{-1} = x$. Thus we have that

(1)
$$(\forall x, y \in \hat{S}) \quad x^{-1}y \in \hat{E} \Leftrightarrow x = y.$$

Next, we define a linear functional $\tau : \mathbb{C}_0[S] \to \mathbb{C}$ by the rule that

$$\tau\left(\sum_{x\in\hat{S}}\alpha_x x\right):=\sum_{e\in\hat{E}}\alpha_e\qquad(\alpha_x\in\mathbb{C}).$$

As before, denote the natural involution on $\mathbb{C}_0[S]$ by *. It follows readily from (1) that

(2)
$$(\forall u \in \mathbb{C}_0[S]) \quad \tau \ (u^*u) = \|u\|^2.$$

Let $u \in \mathbb{C}_0[S]$ and write $c := au - aa^{\dagger}b$, $d := aa^{\dagger}b - b$. Then

(3)
$$c^*d = (u^* - (a^{\dagger}b)^*)a^*(aa^{\dagger}b - b) = 0,$$

since $a^*(aa^{\dagger}) = (aa^{\dagger}a)^* = a^*$. Thus, by (2) and (3),

$$\|au - b\|^{2} = \|c + d\|^{2} = \tau \left((c + d)^{*} (c + d) \right) = \tau \left(c^{*}c + c^{*}d + (c^{*}d)^{*} + d^{*}d \right)$$
$$= \tau \left(c^{*}c + d^{*}d \right) = \tau \left(c^{*}c \right) + \tau \left(d^{*}d \right) = \|c\|^{2} + \|d\|^{2}.$$

Hence $||d|| \le ||au - b||$; that is, $||aa^{\dagger}b - b|| \le ||au - b||$.

Suppose now that equality holds here. Then ||c|| = 0 and so $au = aa^{\dagger}b$. Thus $a^{\dagger}au = a^{\dagger}b$. Consequently, u = e + f, where $e := a^{\dagger}b$ and $f := u - a^{\dagger}au$. Now $(a^{\dagger})^*(u - a^{\dagger}au) = 0$ and so $e^*f = 0$. Hence, by (2),

$$\|u\|^{2} = \tau \left((e+f)^{*}(e+f) \right) = \tau \left(e^{*}e + f^{*}f \right) = \|e\|^{2} + \|f\|^{2}.$$

Therefore $||e|| \le ||u||$; that is, $||a^{\dagger}b|| \le ||u||$.

Finally, suppose additionally that $||a^{\dagger}b|| = ||u||$. Then ||f|| = 0. Hence f = 0 and so $u = e = a^{\dagger}b$. Thus we have shown that $a^{\dagger}b$ is the unique best approximate solution of ax = b in $\mathbb{C}_0[S]$.

Acknowledgments

I am grateful to Dr M. J. Crabb and Dr D. Easdown for some valuable advice on the preparation of this note.

W. D. Munn

References

- [1] A. H. Clifford and G. B. Preston, *The algebraic theory of semigroups*, Math. Surveys of the Amer. Math. Soc. 7 (Providence R.I., 1961 (vol. I) and 1967 (vol. II)).
- [2] E. H. Moore, 'On the reciprocal of the general algebraic matrix', Bull. Amer. Math. Soc. 26 (1920), 394-395.
- [3] W. D. Munn, 'Matrix representations of semigroups', Proc. Cambridge Philos. Soc. 53 (1957), 5-12.
- [4] ——, 'Semiprimitivity of inverse semigroup algebras', Proc. Roy. Soc. Edinburgh, Sect. A 93 (1982), 83–98.
- [5] J. Okniński, 'On regular semigroup rings', Proc. Roy. Soc. Edinburgh, Sect. A 99 (1984), 145-151.
- [6] R. Penrose, 'A generalized inverse for matrices', Proc. Cambridge Philos. Soc. 51 (1955), 406-413.
- [7] ——, 'On best approximate solutions of linear matrix equations', Proc. Cambridge Philos. Soc. 52 (1956), 17–19.
- [8] A. A. Shehadah, *Embedding theorems for semigroups with involution* (Ph.D. Thesis, Purdue University, Indiana, 1982).

Department of Mathematics University of Glasgow Glasgow G12 8QW Scotland UK e-mail: wdm@maths.gla.ac.uk