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Vorticity generation and conservation on
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This article presents a three-dimensional theory of vorticity creation on generalised
interfaces, including both non-slip and free-slip boundaries, which generalises a previous
two-dimensional formulation (Terrington et al., J. Fluid Mech., vol. 890, 2020, p. A5).
Under this description, vorticity may be created on a boundary by the inviscid relative
acceleration between fluid elements on each side of the boundary, driven by either
tangential pressure gradients or body forces. Viscosity acts to transfer circulation between
the vortex sheet representing the slip velocity on the interface, and the fluid interior, but
is not responsible for the creation of vorticity on the interface. This formulation also
describes a principle of vorticity conservation for interfacial and free-surface flows: in
many flow configurations, the net generation of vorticity on the interface is zero, and the
total circulation remains constant throughout flow evolution.

Key words: vortex dynamics

1. Introduction

This article presents a general description of vorticity generation on interfaces and
boundaries in three-dimensional flows, which is a direct extension of our previous
two-dimensional description of vorticity generation (Terrington, Hourigan & Thompson
2020). This formulation considers a generalised interface, which may represent a wide
range of boundaries, including no-slip and free-slip walls, free surfaces and fluid–fluid
interfaces. This formulation effectively extends Morton’s (1984) inviscid model of
vorticity creation to general interfaces in three dimensions. Under this interpretation,
vorticity creation is an inviscid process, due to the relative acceleration between fluid
elements on each side of the interface, caused by tangential pressure gradients or
body forces. Moreover, the current formulation is expressed as a conservation law for
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Figure 1. The control area for Terrington et al.’s (2020) two-dimensional circulation balance (1.2). Here I is
the interface between two fluids; A1 and A2 are the portions of a control area, A, in each fluid; C is the outer
boundary of A; ˆ̄n is the outwards-facing unit normal to C; and n̂ and t̂ are the unit normal and tangent vectors
to I, respectively.

vorticity, and, given appropriate boundary conditions, the total circulation in many flow
configurations remains constant throughout flow evolution.

Our prior two-dimensional description of interfacial vorticity dynamics (Terrington
et al. 2020) is expressed as a conservation law for the circulation in a two-dimensional
region. We considered the system of control areas in figure 1, where I is the interface
between two fluids, A1 and A2 are the portions of a control area, A, on each side of
the interface, and C is the outer boundary curve. The total circulation in this system
includes vorticity in both fluids, as well as circulation contained in an interface vortex
sheet representing the slip velocity on the interface:

Γ =
∮

C
u · ds =

∫
A1

ω dA +
∫

A2

ω dA +
∫

I
γ ds, (1.1)

where γ = t̂ · (u2 − u1) is the density of circulation contained in the interface vortex
sheet.

In Terrington et al. (2020), we give the following expression for the rate of change of
total circulation:

dΓ

dt
=

∮
C

ν ˆ̄n · ∇ω ds +
∮

C

ˆ̄n · (vb − u)ω ds −
[[

p
ρ

]]
b
+

[[
p
ρ

]]
a
− [[Φg]]b + [[Φg]]a

+ γ (vb · t̂)
∣∣∣
b
− γ (vb · t̂)

∣∣∣
a
+ 1

2
[[(u · t̂)2]]a − 1

2
[[(u · t̂)2]]b, (1.2)

where double square brackets denote the jump in some quantity across the interface. The
first two terms in this equation represent the transport of vorticity across the control area
boundary, by both advection ( ˆ̄n · (vb − u)ω) and viscous diffusion (ν ˆ̄n · ∇ω) in the fluid
interior, while the terms involving vb · t̂ and u · t̂ describe transport of circulation along
the interface. The remaining terms describe the creation of vorticity on the interface, by
either tangential pressure gradients (p/ρ) or body forces (Φg). Importantly, (1.2) does
not depend on the boundary conditions at the interface, and can be applied to a wide
range of boundaries, including solid walls, free surfaces and no-slip or free-slip fluid–fluid
interfaces.

Equation (1.2) provides a general description of vorticity generation, which extends
Morton’s (1984) inviscid model of vorticity creation to general two-dimensional interfaces
(Terrington et al. 2020). Morton attributes the creation of vorticity on a solid boundary to
the inviscid relative acceleration between the fluid and the solid, driven by either tangential
pressure gradients or tangential acceleration of the solid boundary. Similarly, in (1.2),
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Vorticity generation on 3-D generalised interfaces

circulation is generated by the inviscid relative acceleration between fluid elements on each
side of the interface, due to either tangential pressure gradients or body forces. Under this
interpretation, viscosity is not responsible for the creation of vorticity; however, viscosity
is responsible for the diffusion of vorticity into the fluid interior, after it has been generated
by the inviscid mechanism.

Equation (1.2) also describes a general principle of vorticity conservation for interfacial
and free-surface flows. In many flow configurations, the right-hand side of (1.2) is zero, and
the total circulation remains constant throughout time (Brøns et al. 2014, 2020; Terrington
et al. 2020). A similar principle of vorticity conservation for free-surface flows was
presented by Lundgren & Koumoutsakos (1999), which is generalised to two-dimensional
interfaces by Brøns et al. (2014, 2020) and Terrington et al. (2020).

In this article, we extend (1.2) to three-dimensional flows, providing a general
description of vorticity generation and conservation on interfaces and boundaries
in three-dimensional flows. This formulation extends the main features of our
two-dimensional description – the inviscid theory of vorticity creation, and the
conservation of vorticity – to three-dimensional flows. Moreover, there are several new
features that must be considered in three dimensions, including the effects of vortex
stretching and tilting, and the appearance of surface-normal vorticity in the interface, that
do not occur in two dimensions.

In this article, the effects of vortex stretching and tilting are represented as boundary
fluxes, so that the current formulation retains the form of an integral conservation law.
Moreover, we provide a physical interpretation of the vortex stretching/tilting boundary
flux: the vortex stretching/tilting flux represents the advection of surface-normal vorticity
in the boundary surface of a control volume, which gives a direct measure of the net
generation of vorticity by vortex stretching and tilting in the fluid interior. If vortex
filaments do not intersect the control-volume boundary, then the total rate of change of
vorticity due to vortex stretching and tilting is zero, and the total circulation is conserved.

The second aspect that must be considered in three dimensions is the behaviour of
surface-normal vorticity at the interface. In this article, we provide a transport equation for
the surface-normal vorticity in the interface or free surface, which relates the appearance
of surface-normal vorticity in the surface to the viscous diffusion of surface-tangential
vorticity across the boundary. In particular, this leads to a new interpretation of vortex
connection to a free surface, where vortex filaments are broken near the free surface, and
the ends of these filaments attach to the free surface (Bernal & Kwon 1989; Lugt & Ohring
1994; Gharib & Weigand 1996; Ohring & Lugt 1996; Zhang, Shen & Yue 1999). Under
the interpretation proposed in this paper, the appearance of surface-normal vorticity in the
free surface is directly attributed to the viscous flux of surface-tangential vorticity out of
the fluid. Therefore, the breaking open of vortex filaments, and subsequent attachment to
the free surface, are attributed to a single physical process, which reflects the kinematic
condition that vortex lines do not end in the fluid interior.

The structure of this article is as follows. In § 2, we derive the vorticity balance for a
general interface in a three-dimensional flow. Next, in § 3, we present an interpretation of
the vortex stretching/tilting boundary flux. Then, in § 4, we consider the specific boundary
conditions for no-slip fluid–fluid interfaces, free surfaces and solid walls. Finally, in § 5,
we consider the generation of vorticity in compressible flows.

2. A three-dimensional theory of vorticity creation

In this section, we outline a three-dimensional formulation of interfacial vorticity
dynamics, for incompressible Newtonian fluids, which generalises several previous results.
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First, the total vorticity is shown to be conserved in three-dimensional flows, generalising
our two-dimensional description (Brøns et al. 2014, 2020; Terrington et al. 2020).
Second, Morton’s (1984) inviscid theory of vorticity creation is shown to hold for
generalised interfaces in three dimensions. The only mechanism by which vorticity is
created on an interface is the inviscid relative acceleration between fluid elements on
each side of the interface, due to either tangential pressure gradients or body forces. The
general formulation is independent of the tangential boundary conditions, and is therefore
applicable to a wide range of interfaces and boundaries, including no-slip fluid–fluid
interfaces, solid boundaries and free surfaces.

2.1. Preliminary theory
The dynamics of vorticity can be understood by considering the Helmholtz equation
– a transport equation for vorticity obtained from the Navier–Stokes equations. For an
incompressible Newtonian fluid of constant viscosity, this equation is expressed as

∂ω

∂t
+ u · ∇ω = ω · ∇u + ν∇2ω. (2.1)

The left-hand side of (2.1) is the material derivative of vorticity, while the first term on the
right-hand side represents the effects of vortex stretching and tilting. The final term on the
right-hand side describes the viscous diffusion of vorticity.

In this article, we develop a conservation law for the volume integral of vorticity,

Γ =
∫

V
ω dV =

∮
∂V

n̂ × u dS, (2.2)

where n̂ is the outward-directed unit normal to the control-volume boundary. Equation
(2.2) relates the total vorticity in V to the velocity on the control-volume boundary,
reminiscent of the relationship between circulation and vorticity in a two-dimensional flow.
For this reason, we refer to Γ as the ‘vector circulation’.

An integral conservation law for vorticity in a single fluid domain is constructed by first
using the Reynolds transport theorem:

dΓ

dt
= d

dt

∫
V

ω dV =
∫

V

∂ω

∂t
dV +

∮
∂V

(vb · n̂)ω dS, (2.3)

where vb is the velocity of the control-volume boundary. Then, (2.1) is substituted into
this relationship, providing the following expression:

dΓ

dt
=

∮
∂V

ω(vb − u) · n̂ dS +
∮

∂V
(ω · n̂)u dS −

∮
∂V

σ dS. (2.4)

The terms on the right-hand side of (2.4) describe (from left to right) the effects of
advection, vortex stretching/tilting and viscous diffusion, as fluxes of vorticity across the
control-volume boundary, which contribute to the net rate of change of vorticity inV .

Of particular interest is the viscous term (σ ), often referred to as the ‘boundary vorticity
flux’. This term describes the rate at which vorticity diffuses across ∂V , under the action
of viscous forces, and is generally understood to indicate the rate of vorticity creation on
solid boundaries (Lighthill 1963; Panton 1984; Wu & Wu 1993; Terrington, Hourigan &
Thompson 2021), free surfaces (Rood 1994b; Lundgren & Koumoutsakos 1999; Peck &
Sigurdson 1999) and fluid–fluid interfaces (Wu 1995; Brøns et al. 2014; Terrington et al.
2020).
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Vorticity generation on 3-D generalised interfaces

The boundary vorticity flux was first defined by Lighthill (1963), and this definition was
generalised to curved boundaries by Panton (1984):

σ ′ = −νn̂ · ∇ω. (2.5)

The Lighthill–Panton definition is justified by integration of the viscous diffusion term
across V , ∫

V
ν∇2ω dV =

∮
∂V

νn̂ · ∇ω dS. (2.6)

However, this definition is not unique, and an alternative representation of the viscous
term, ∫

V
−ν∇ × (∇ × ω) dV = −

∮
∂V

νn̂ × (∇ × ω) dS, (2.7)

led Lyman (1990) to propose an alternative definition of the boundary vorticity flux as

σ = νn̂ × (∇ × ω). (2.8)

There is no obvious physical argument to prefer either Lighthill’s or Lyman’s definition
(Terrington et al. 2021), and we are free to take either definition. Lyman’s definition is
used in this article, as it offers several compelling advantages over the Lighthill–Panton
definition (Terrington et al. 2021). This approach differs from previous formulations of
interfacial and free-surface vorticity dynamics, which have used the Lighthill–Panton
definition (Lugt & Ohring 1992; Rood 1994a,b; Wu 1995; Sarpkaya 1996; Peck &
Sigurdson 1998, 1999; Lundgren & Koumoutsakos 1999).

The first benefit of Lyman’s definition is that it allows Morton’s (1984) inviscid
description of vorticity generation to be directly applied to three-dimensional flows
(Lyman 1990; Terrington et al. 2021). Under the Lighthill–Panton definition, an additional
viscous contribution to the creation of vorticity must be included, which is difficult to
accommodate under Morton’s interpretation.

Lyman’s definition also more clearly explains the mechanism that enforces the
kinematic condition that vortex lines do not end inside the fluid (Terrington et al.
2021). In the reconnection of antiparallel vortex pairs, for example, the cutting of vortex
filaments and the reconnection of broken vortex lines are described by the same term
under Lyman’s definition (Terrington et al. 2021). Therefore, cutting and reconnection are
considered a single physical process, which Saffman (1990) recognises is a ‘consequence
of the kinematic theorem that vortex lines do not end inside the fluid’. Under Lighthill’s
definition, however, this relationship between cutting and reconnection of vortex filaments
is not so clear (Terrington et al. 2021). In § 4.2 of this article we show that Lyman’s
definition provides a similar description for the attachment of vortex filaments to an
interface or free surface.

Finally, Lyman’s definition can also be used to understand the conservation of
circulation in a reference surface (Terrington et al. 2021),

dΓS

dt
= d

dt

∫
S
ω · dS =

∮
∂S

n̂ × [(u − vb) × ω − ν(∇ × ω)] · ŝ ds, (2.9)

where ŝ is the unit normal to S, and n̂ is a unit vector normal to ∂S, but tangent to S.
The viscous term in (2.9), ν(n̂ × (∇ × ω)) · ŝ, is the flux of ŝ-oriented vorticity in the
n̂ direction, according to Lyman’s definition. The control-surface formulation (2.9) is a
powerful tool for interpreting various flows, and we generalise this equation to interfacial
flows in§ 2.4.
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Fluid 1

Fluid 2
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t̂
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n̂
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∂V1

∂V2

Figure 2. A control volume, V , in an interfacial flow, comprising two sub-volumes, V1 and V2 – the portion
of V in each fluid. Here ∂V is the outer boundary of V , with ∂Vi being the portion of this boundary in fluid i; I
is the surface of intersection between the interface and V , with a boundary curve ∂I; ŝ is the unit normal to the
interface, directed into fluid 2, while n̂ is the unit normal to the control-volume boundary; t̂ is the unit tangent
to ∂I; and b̂ = t̂ × ŝ is a unit vector tangent to I, but orthogonal to ∂I.

2.2. The interface vortex sheet
Inviscid descriptions of vorticity creation, such as those of Morton (1984), Morino (1986)
and Terrington et al. (2020, 2021), include an ‘interface vortex sheet’ to represent a
velocity discontinuity across an interface or boundary. Similarly, the interface vortex sheet
is included by Lundgren & Koumoutsakos (1999), Brøns et al. (2014, 2020) and Terrington
et al. (2020), so that the total vorticity/circulation is conserved. In this section, we
define the interface vortex sheet for three-dimensional flows, and outline several important
properties.

Consider a control volume, V , which contains an interface, I, between two fluids, as
illustrated in figure 2. We separate V into two smaller volumes, V1 and V2 – the portion of
V in fluid 1 and 2, respectively. The total vector circulation in V is expressed as

Γ =
∮

∂V
n̂ × u dS =

∫
V1

ω1 dV +
∫

V2

ω2 dV +
∫

I
ŝ × (u2 − u1) dS, (2.10)

where ui is the velocity of fluid i. The surface integral in (2.10) represents the density of
circulation contained in the interface vortex sheet, due to a tangential slip velocity. The
local density of circulation on a section of interface is

γ = ŝ × (u2 − u1), (2.11)

and the total vector circulation in V includes vorticity in the fluid interior, and circulation
in the interface vortex sheet,

Γ =
∫

V
ω dV +

∫
I
γ dS. (2.12)

Now, the interface vortex sheet generalises several important kinematic properties of
the vorticity field (Terrington et al. 2021). First, it satisfies a generalised divergence-free
condition for the vorticity field (Terrington et al. 2021),∮

∂V
ω · dS +

∮
∂I

γ · b̂ ds = 0. (2.13)

In (2.13), γ · b̂ is interpreted as the flux of interface circulation across ∂I, while ω · dS
represents the flux of vorticity across ∂V . (Here, flux is analogous to the magnetic flux,
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Vorticity generation on 3-D generalised interfaces

and should not be confused with the boundary vorticity flux.) The total flux of vorticity
out of a closed surface, including contributions from vorticity in the fluid interior and
circulation in the interface, is zero, effectively generalising the divergence-free property of
the vorticity field to interfaces with slip. Vortex tubes do not simply end on the interface –
they continue either in the fluid on the other side of the interface, or as circulation in the
interface vortex sheet.

The interface circulation also generalises the Biot–Savart integral to slip interfaces
(Terrington et al. 2021),

u = ∇ ×
[∫

V

ω

4πR
dV +

∫
I

γ

4πR
dS

]
. (2.14)

In order to compute the induced velocity field, contributions from the interface vortex
sheet are required to capture a velocity discontinuity on the interface.

We also consider the circulation for a control surface, S, which intersects I, as illustrated
in figure 3. Surface S is split into two smaller surfaces, S1 and S2, the portion of S in fluids
1 and 2, respectively. The total circulation in S is given by

Γ =
∮

∂S
u · ds =

∫
S1

ω · dS +
∫

S2

ω · dS +
∫

I
(u2 − u1) · ds. (2.15)

Now, the final term can be related to the interface circulation, γ = ŝ × (u2 − u1), as
follows:∫

I
(u2 − u1) · ds =

∫
I

t̂I · (u2 − u1) ds =
∫

I
(b̂ × ŝ) · (u2 − u1) ds =

∫
I
γ · b̂ ds. (2.16)

In (2.16), t̂ is the unit vector tangent to both S and I, ŝ is the unit normal to I, and b̂ is
the unit vector orthogonal to both ŝ and t̂, and is therefore tangent to the interface. The
total circulation in S includes vorticity in each fluid, and circulation in the interface vortex
sheet,

Γ =
∫

S
ω · dS +

∫
I
γ · b̂ ds. (2.17)

2.3. The total vorticity balance in three dimensions
We now derive the vector-circulation balance for a three-dimensional interfacial flow. To
begin, consider the time derivative of (2.12),

dΓ

dt
= d

dt

∫
V

ω dV + d
dt

∫
I
γ dS. (2.18)

We first consider the integral over V . From 2.4, the rate of change of vorticity in fluid i is

dΓ i

dt
= d

dt

∫
Vi

ω dV =
∫

∂Vi

ω(vb − u) · n̂ dS +
∫

∂Vi

(ω · n̂)u dS −
∫

∂Vi

νn̂ × (∇ × ω) dS

±
∫

I
(ωi · ŝ)ui dS ∓

∫
I
ν ŝ × (∇ × ωi) dS, (2.19)

where ∂Vi is the portion of ∂V in fluid i. The ± symbol indicates a term that is positive
for i = 1 and negative for i = 2, while ∓ indicates a term that is negative for i = 1 and
positive for i = 2.
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Interface

Fluid 1

Fluid 2

b̂
t̂n̂

n̂ n̂ m̂S

m̂I

t̂S

t̂I
t̂I

ŝ

b a
I

∂S2

∂S1

S1

S2

Figure 3. A control surface, S, in a three-dimensional interfacial flow, where S comprises two sub-surfaces,
S1 and S2, which are the portions of S in each fluid. These sub-surfaces are separated by the curve, I, which lies
in the interface. Here ∂S is the outer boundary of S, with ∂Si being the portion of ∂S in fluid i. The following
unit vectors are used: n̂ is the unit normal to S, while ŝ is the unit normal to the interface; t̂I and t̂S are the unit
tangent vectors to I and ∂S, respectively; m̂S = t̂S × n̂ is a unit vector tangent to S, but orthogonal to ∂S; while
m̂I = t̂I × n̂ is a unit vector normal to I, but tangent to S. Finally, b̂ = ŝ × t̂I is a unit vector normal to I, but
tangent to the interface.

This result is substituted into (2.18) to obtain the following expression:

dΓ

dt
= d

dt

∫
I
γ dS +

∮
∂V

ω(vb − u) · n̂ dS +
∮

∂V
(ω · n̂)u dS −

∮
∂V

νn̂ × (∇ × ω) dS

+
∫

I
[[ω(vb − u) · ŝ]] dS −

∫
I
[[(ω · ŝ)u]] dS +

∫
I
[[ŝ × (∇ × ω)]] dS. (2.20)

In (2.20), integrals over ∂V describe fluxes of vorticity out of the control-volume boundary
in the fluid interior, while integrals over I indicate the fluxes of vorticity out of the interface
and into the fluid interior.

We now construct an expression for the rate of change of interface circulation. First, the
interface circulation is split into contributions from the upper and lower fluids,

d
dt

∫
I
γ dS = d

dt

∫
I

ŝ × u2 dS − d
dt

∫
I

ŝ × u1 dS. (2.21)

We assume that the surface I can be parametrised as y(u, v, t), so the domain of integration
is constant in time when expressed in terms of u and v. The integrals in (2.21) then become

d
dt

∫
I

ŝ × ui dS = d
dt

∫
I

dS × ui =
∫

I

∂

∂t
(dS)

∣∣∣∣
(u,v)

× ui +
∫

I
dS × ∂u

∂t

∣∣∣∣
(u,v)

, (2.22)

where partial derivatives are with respect to a constant (u, v). Letting vb = ∂y/∂t be the
velocity of a constant (u, v) reference point, the partial derivative of u can be written as

∂u
∂t

∣∣∣∣
(u,v)

= du
dt

+ (vb − u) · ∇u. (2.23)
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Then, the second term in (2.22) becomes
∫

I
dS × ∂u

∂t

∣∣∣∣
(u,v)

=
∫

I
ŝ × du

dt
dS +

∫
I

ŝ × (vb · ∇u) dS −
∫

I
ŝ × (u · ∇u) dS. (2.24)

Finally, the advection term is expressed as

u · ∇u = ∇(1
2 u · u) − u × ω, (2.25)

and we have∫
I

ŝ × (u · ∇u) dS =
∮

I

1
2 u · u ds −

∫
I
(ŝ · ω)u dS +

∫
I
(ŝ · u)ω dS. (2.26)

If we assume that vb can be extended into a three-dimensional neighbourhood of I, the
rate of change of the surface-area element is (Batchelor 1967):

∂

∂t
(dS)

∣∣∣∣
(u,v)

= (∇ · vb) dS − (∇vb) · dS. (2.27)

Strictly speaking, vb is only defined on I. By decomposing the gradient operator into
surface-normal and surface-tangential components (Wu 1995), (2.27) can be expressed
in terms of quantities defined only on I:

∂

∂t
(dS)

∣∣∣∣
(u,v)

= (∇S · vb) dS − (∇Sv
b) · dS, (2.28)

where ∇S is the surface gradient operator (Wu 1995). For convenience, however, we use
(2.27), assuming that vb can be extended to a three-dimensional neighbourhood of I. The
first integral in (2.22) then becomes

∫
I

∂

∂t
(dS)

∣∣∣∣
(u,v)

× u =
∫

I
[(∇ · vb)ŝ − (∇vb) · ŝ] × u dS. (2.29)

The first term in the integrand can be written as

(∇ · vb)ŝ × u = ŝ × (∇ · (vbu)) − ŝ × (vb · ∇u), (2.30)

while the second term is

u × ((∇vb) · ŝ) = ω(vb · ŝ) − (∇ × (uvb)) · ŝ. (2.31)

Finally, combining various terms from (2.22)–(2.31) gives

d
dt

∫
I

ŝ × u dS =
∫

I
ŝ × du

dt
dS +

∫
I
(ŝ · ω)u dS −

∮
∂I

1
2

u · u ds +
∫

I
ŝ · (vb − u)ω dS

+
∫

I
ŝ × (∇ · (vbu)) dS −

∫
I
(∇ × (uvb)) · ŝ dS. (2.32)

The final two terms in (2.32) are related to stretching, translation and rotation of the
interface. These terms are further simplified using the relationship

ŝ × (∇ · (vbu)) − (∇ × (uvb)) · ŝ = ŝ × ∇(u · vb) − ŝ · (∇ × (uvb)), (2.33)
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which can be verified by explicitly expanding all terms in Cartesian coordinates. Surface
integrals of these terms are exact, giving∫

I
ŝ × (∇(vb · u))dS −

∫
I
∇ × (uvb) · dS =

∮
∂I

[(u · vb)t̂ − vb(u · t̂)] ds

= −
∮

∂I
u × (vb × t̂) ds, (2.34)

where t̂ is the unit tangent to ∂I. Equation (2.32) becomes

d
dt

∫
I

ŝ × u dS =
∫

I
ŝ × du

dt
dS +

∫
I
(ŝ · ω)u dS −

∮
∂I

1
2

u · u ds −
∮

∂I
u × (vb × t̂) ds,

(2.35)
where we have used (vb − u) · ŝ = 0. Finally, substituting this result into (2.21) gives an
expression for the rate of change of interface circulation:

d
dt

∫
I
γ dS =

∫
I

ŝ ×
[[

du
dt

]]
dS +

∫
I
[[(ŝ · ω)u]]dS −

∮
∂I

1
2

[[u · u]] ds

−
∮

∂I
[[u × (vb × t̂)]] ds. (2.36)

The first term in (2.36) is the relative tangential acceleration of fluid elements on each
side of the interface. This may be substituted for the momentum equation,∫

I
ŝ ×

[[
du
dt

]]
dS = −

∮
∂I

[[
p
ρ

+ Φg

]]
ds −

∫
I
[[ν ŝ × (∇ × ω)]] dS, (2.37)

where Φg is the body-force potential. The first term in (2.37) describes the effects of
inviscid forces: tangential pressure gradients and body forces. The final term describes the
effects of viscous forces, and is equal to the viscous flux of vorticity out of the interface.

Equations (2.36) and (2.37) can be substituted into (2.20), giving the following
expression for the rate of change of vector circulation in V:

dΓ

dt
=

∮
∂V

ω(vb − u) · n̂ dS +
∮

∂V
(ω · n̂)u dS −

∮
∂V

νn̂ × (∇ × ω) dS

−
∮

∂I

[[
p
ρ

+ Φg

]]
ds −

∮
∂I

1
2

[[u · u]] ds −
∮

∂I
[[u × (vb × t̂)]] ds. (2.38)

The circulation balance in (2.38) is expressed entirely in terms of vorticity fluxes across
the outer boundary, either through the fluid interior (∂V) or along the interface (∂I). These
fluxes include the effects of advection (ω(vb − u) · n̂), vortex stretching/tilting ((ω · n̂)u)
and viscous diffusion (νn̂ × (∇ × ω)) in the fluid interior (∂V), as well as fluxes of
circulation at the interface (∂I), by advection ( 1

2 [[u · u]]) and a term related to motion of
the interface ([[u × (vb × t̂)]]). Finally, circulation may be created on the interface by the
inviscid relative acceleration, by either tangential pressure gradients (p/ρ) or body forces
(Φg).

The pressure and body-force terms in (2.38) can also be interpreted as contributing to
the transport of circulation along the interface (e.g. Lundgren & Koumoutsakos 1999),
rather than the creation of vorticity at the interface. However, these are the only terms
in (2.38) that can result in the appearance of vorticity in an initially irrotational flow
(where both ω and γ are zero everywhere). Therefore, consistent with past discussions
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Vorticity generation on 3-D generalised interfaces

on vorticity dynamics (Lighthill 1963; Morton 1984; Terrington et al. 2020), we prefer
to interpret these terms as representing the creation of circulation on the interface, by
the inviscid relative acceleration between fluid elements on each side of the interface.
Note that the net vorticity creation rate depends only on the pressure or body-force
potential on the boundary (∂I), so when there is no external pressure gradient or body
force, the net generation of vorticity on the interface is zero – local creation of vorticity
on some portion of I will be balanced by equal generation of opposite-signed vorticity
elsewhere.

The viscous boundary vorticity flux at the interface, [[ν ŝ × (∇ × ω)]], does not appear
in (2.38), and therefore plays no role in the generation of vorticity. This term provides
equal and opposite contributions to the rate of change of vorticity in the fluid interior
(2.19) and the interface circulation (2.37), and therefore acts to transfer circulation
between the interface vortex sheet and the fluid interior, without generating a net
circulation.

Similarly, the vortex stretching/tilting flux on the interface, [[(ω · ŝ)u]], does not appear
in (2.38). This term provides equal and opposite contributions to (2.19) and (2.36), and
therefore does not generate a net circulation on the interface. The increase in circulation in
the interface vortex sheet due to vortex stretching and tilting is balanced by an equal and
opposite change to the vorticity in the fluid interior, with the total circulation remaining
constant. We discuss the physical interpretation of this term in more detail in§ 3.

2.4. Conservation of circulation in a control surface
We also construct a control-surface conservation law for circulation in an interfacial flow.
The time derivative of (2.17) is

dΓ

dt
= d

dt

∫
S
ω · dS + d

dt

∫
I
γ · b̂ dS. (2.39)

Then, using (2.9), the rate of change of circulation in Si is

dΓi

dt
=

∫
∂Si

{m̂S × [(u − vb) × ω − ν(∇ × ω)]} · n̂ ds

±
∫

I
{m̂I × [(ui − vb) × ωi − ν(∇ × ωi)]} · n̂ ds, (2.40)

where the integral over I is positive in fluid 1 (i = 1) and negative in fluid 2 (i = 2).
Substituting this result into (2.39) gives the following expression:

dΓ

dt
= d

dt

∫
I
γ · b̂ ds +

∮
∂S

{m̂S × [(u − vb) × ω − ν(∇ × ω)]} · n̂ ds

−
∫

I
[[(m̂I × (u − vb) × ω) · n̂]] ds +

∫
I
[[ν(m̂I × (∇ × ω)) · n̂]]ds. (2.41)

The rate of change of interface circulation can be separated into contributions from the
upper and lower fluids, using (2.16):

d
dt

∫
I
γ · b̂ ds = d

dt

∫
I

u2 · ds − d
dt

∫
I

u1 · ds. (2.42)
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If the curve, I, is parametrised as y(s′, t), where the bounds of integration in terms of s′
are constant in time, then we have

d
dt

∫
I

u · ds =
∫

I

∂u
∂t

∣∣∣∣
s′
· ds +

∫
I

u · ∂2y
∂t∂s′ ds′ =

∫
I

∂u
∂t

∣∣∣∣
s′
· ds +

∫
I

u · ∂vb

∂s
ds, (2.43)

where ∂y/∂t = vb. The partial derivative with respect to a fixed s′ can instead be expressed
in terms of the material derivative,∫

I

∂u
∂t

∣∣∣∣
s′
· ds =

∫
I

du
dt

· ds +
∫

I
[(vb − u) · ∇u] · ds. (2.44)

The advection term can be expressed in the form∫
I
(u · ∇u) · ds = 1

2

∫
I
∇(u · u) · ds −

∫
I
(u × ω) · ds = 1

2
(u · u)(b−a) −

∫
I
(u × ω) · ds,

(2.45)
where subscript (b − a) indicates the difference in function values at the endpoints of I
(θ(b−a) = θb − θa). Collecting terms involving vb, we have∫

I
[vb · (∇u) · t̂I + t̂I · (∇vb) · u] ds =

∫
I
[vb · ∇u + (∇vb) · u] · ds. (2.46)

Then, using the product rule, this expression becomes∫
I
[vb · ∇u − (∇u) · vb + ∇(vb · u)] · ds =

∫
I
(ω × vb) · ds + (u · vb)(b−a). (2.47)

Finally, (2.43)–(2.47) are substituted into (2.42), providing the following expression for
the rate of change of interface circulation:

d
dt

∫
I
γ · b̂ ds =

∫
I

[[
du
dt

]]
· ds +

∫
I
[[[m̂I × ((u − vb) × ω)] · n̂]]ds

− 1
2

[[u · u]](b−a) + [[u · vb]](b−a). (2.48)

As in (2.36), the term [[du/dt]] describes changes to the interface circulation due to
the relative acceleration between fluid elements on each side of the interface. Using the
momentum equation, this is expressed as∫

I

[[
du
dt

]]
· ds = −

[[
p
ρ

+ Φg

]]
(b−a)

−
∫

I
[[ν(m̂I × (∇ × ω)) · n̂]]ds, (2.49)

and includes contributions from inviscid forces (pressure and body forces), as well as
viscosity.

After substituting (2.49) and (2.42) into (2.41), we have an expression for the
conservation of circulation for a control surface in a three-dimensional interfacial flow:

dΓ

dt
=

∮
∂S

{m̂S × [(u − vb) × ω − ν(∇ × ω)]} · n̂ ds −
[[

p
ρ

+ Φg

]]
(b−a)

− 1
2

[[u · u]](b−a) + [[u · vb]](b−a). (2.50)

The total circulation in S may change either by the transport of vorticity across the outer
boundary (∂S) by advection and viscous diffusion, by the transport of circulation along
the interface (u · u and vb · u), or by the creation of vorticity due to tangential pressure
gradients (p/ρ) or body forces (Φg).
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Vorticity generation on 3-D generalised interfaces

As in the control-volume formulation, the viscous boundary vorticity flux,
ν(m̂I × (∇ × ω)) · n̂, does not appear in (2.50). This term provides equal and
opposite contributions to (2.40) and (2.48), and therefore acts to transfer circulation
between the interface vortex sheet and the fluid interior, without generating a net
circulation.

Similarly, the interface advection term, (m̂I × (u − vb) × ω) · n̂ – which describes the
effects of both advection and vortex stretching/tilting – also provides equal and opposite
contributions to (2.40) and (2.48), and therefore does not generate a net circulation. A
physical interpretation of this process is presented in § 3.

2.5. Summary of the formulation
We now provide a summary of our three-dimensional formulation of interfacial vorticity
dynamics, and compare it to our two-dimensional formulation (Terrington et al. 2020).
For a two-dimensional flow, both (2.38) and (2.50) reduce to (1.2), and therefore both
expressions generalise our two-dimensional formulation to three dimensions. Equation
(2.38) describes the conservation of volume-integrated vorticity in a three-dimensional
region, while (2.50) describes the conservation of circulation in a two-dimensional
reference surface.

Our three-dimensional formulation directly extends Morton’s (1984) inviscid
description of vorticity creation to three-dimensional interfacial flows. The only
mechanism by which vorticity is created on an interface is the inviscid relative acceleration
between fluid elements on each side of the interface, by either tangential pressure
gradients or body forces. Viscous forces do not create vorticity on the interface, but are
responsible for transferring circulation between the interface vortex sheet and the fluid
interior.

The effects of vortex stretching and tilting do not appear in the two-dimensional
description. In the three-dimensional formulation, vortex stretching and tilting are
represented as a boundary flux rather than as a volume source in the fluid interior. The
vortex stretching/tilting flux on the interface provides equal and opposite contributions to
the circulation in the fluid interior and in the interface vortex sheet, so does not generate
a net circulation. The boundary flux representation of vortex stretching and tilting is
discussed further in§ 3.

We have also extended the principle of vorticity conservation to three-dimensional
flows. In many flow configurations, the right-hand sides of (2.38) and (2.50) are zero,
and the total circulation – be it the vector circulation in a system of control volumes, or the
circulation in a system of control surfaces – remains constant. The global conservation of
circulation does not preclude the local generation of vorticity by either tangential pressure
gradients or body forces on some portion of the interface; however, an equal quantity of
opposite-signed vorticity must be created elsewhere.

3. Interpreting the vortex stretching/tilting boundary flux

The effects of vortex stretching and tilting are represented as a boundary flux in (2.4),
to ensure our formulation retains the form of a conservation law. This differs from the
usual representation of vortex stretching and tilting as a volume source (Kolár 2003)
– where vortex stretching and tilting are understood to be local phenomena occurring
in the fluid interior. In this section, we discuss the boundary-flux interpretation in
more detail.
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(ω · n̂)

(ω1 · n̂)

n̂

(ω1 · ŝ)

(ω2 · n̂)

(u · ŝ)ŝ(ω2 · ŝ)

(γ · b̂)

n̂
u

u u1

u2

V
V2

V1

I

ω

(a) (b)

ŝ

Figure 4. An illustration of the vortex stretching/tilting fluxes for (a) a vortex tube in a single fluid domain, and
(b) a vortex tube that intersects an interface. For a single fluid domain (a), the total change of vorticity in V due
to vortex stretching or tilting depends on the fluid velocity where the vortex tube intersects ∂V . For interfacial
flows (b), the total vortex stretching/tilting also includes a contribution from the interface vortex sheet (γ · b̂).
Vorticity fluxes on the interface ((ω · ŝ)u) provide equal and opposite contributions to the circulation in the
interface vortex sheet and the vorticity in the fluid interior, but do not create a net circulation.

3.1. Vortex stretching in a single fluid domain
In a single fluid domain, the vortex stretching/tilting term can be expressed in terms of a
boundary flux using the following expression:∫

V
ω · ∇u dV =

∮
∂V

(ω · n̂)u dS. (3.1)

The boundary flux term, (ω · n̂)u, depends on both the normal vorticity and fluid velocity
on the control-volume boundary. As illustrated in figure 4(a), the normal vorticity term,
(ω · n̂), can be interpreted as the local strength (circulation density) of vortex filaments
passing through the boundary. Since, in the absence of viscous forces, vortex tubes are
advected with the fluid velocity (u), the vortex stretching/tilting flux in (3.1) is related
to the advection of vortex filaments, at locations where these filaments intersect the
control-volume boundary.

The relationship between the advection of vortex filaments at the control-volume
boundary and the vortex stretching term can be understood by considering the following
expression for the volume integral of vorticity (Eyink 2008):∫

V
ω dV =

∮
∂V

x(ω · n̂) dS, (3.2)

where x is the position vector. Equation (3.2) relates the total volume integral of vorticity
within a control volume, V , to the position where vortex filaments cross the control-volume
boundary. The advection of surface-normal vorticity at the control-volume boundary
((ω · n̂)u) produces a change in the position where vortex filaments intersect the
control-volume boundary (x(ω · n̂)). This is accompanied by the net generation of vorticity
by vortex stretching and tilting in the interior of V , to ensure that (3.2) is satisfied.
Importantly, if no vortex filaments intersect the control volume (i.e. all vortex lines are
contained entirely within the control volume), then the total generation of vorticity in the
control volume due to the effects of vortex stretching and tilting must be zero, and the total
circulation is conserved.
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Vorticity generation on 3-D generalised interfaces

ω · ŝ u

V1

V2

Interface

Interface

circulation (γ)

Fluid 2

Fluid 1
Vorticity (ω1) New

vorticity

New

interface

circulation

Figure 5. Illustration of the vortex stretching/tilting flux on the interface. The advection of surface-normal
vorticity (ω · ŝ) along the interface changes the locations where vortex filaments intersect the interface. To
ensure that the vortex line does not end in the fluid interior, new vorticity is generated by vortex stretching or
tilting in the fluid interior. This is balanced by the generation of an equal quantity of opposite-signed circulation
in the interface vortex sheet, and the total circulation remains constant.

We remark that (3.2) holds for any divergence-free vector field, and is therefore closely
tied to the kinematic property that vortex lines do not end in the fluid. Essentially, if the
locations where vortex filaments enter and exit a fluid volume are known, then, since these
points must be connected by a continuous vortex filament, the total volume integral of
vorticity within the fluid volume can be determined.

3.2. Vortex stretching and tilting in interfacial flows
We now consider vortex stretching and tilting in interfacial flows. The total vortex
stretching and tilting in each fluid includes contributions from the outer boundary surface
(∂Vi) and the interface (I):

∫
Vi

ωi · ∇ui dV =
∫

∂Vi

(ωi · n̂)ui dS ±
∫

I
(ωi · ŝ)ui dS, (3.3)

where the integral over I is positive for i = 1 and negative for i = 2. However, only the
outer boundary term appears in (2.4). The interface terms provide equal and opposite
contributions to vorticity in the fluid interior (2.19) and circulation in the interface vortex
sheet (2.36), and therefore do not generate a net circulation.

An interpretation of the interface vortex stretching/tilting flux is illustrated in figure 5.
The vortex stretching/tilting term represents the advection of surface-normal vorticity
along the interface. This requires that new vorticity is created by vortex stretching or tilting
in the fluid interior, to ensure that the vortex lines do not end in the fluid interior. An equal
quantity of opposite-signed interface circulation is also generated in the interface vortex
sheet, to satisfy the generalised solenoidal condition (2.13), and the total change in vorticity
due to the effects of vortex stretching and tilting is zero.

In (2.4), the vortex stretching and tilting term can only generate a net circulation if vortex
filaments intersect the outer boundary (∂V). However, as illustrated in figure 4(b), vortex
filaments can also leave the control volume through the interface vortex sheet (γ · b̂). The
term [[u × (vb × t̂)]] in (2.13) can be interpreted as contributing to the tilting or stretching
of circulation in the interface vortex sheet. To illustrate this, we first use [[u]] = γ × ŝ, to

936 A44-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

91
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.91


S.J. Terrington, K. Hourigan and M.C. Thompson

show that
[[u × (vb × t̂)]] = (γ × ŝ) × (vb × t̂). (3.4)

Then, since vb × t̂ = (vb · b̂)ŝ − (u · ŝ)b̂, we have

(γ × ŝ) × (vb × t̂) = −γ (vb · b̂) − (u · ŝ)(γ · b̂)ŝ. (3.5)

The first term, (vb · b̂)γ , has the form of an advective flux, and represents the tangential
motion of the control volume along the interface. The second term, (γ · b̂)(u · ŝ)ŝ, has the
same form as the vortex stretching/tilting fluxes, and can be interpreted as describing the
tilting of circulation the interface vortex sheet, by the surface-normal velocity.

An illustration of the vortex stretching/tilting fluxes in an interfacial flow is presented in
figure 4(b). The advection of vortex filaments that intersect the interface (ωi · ŝ) provides
equal and opposite contributions to the creation of circulation in the fluid interior and in the
interface vortex sheet, and does not produce a net circulation. A net circulation is generated
by the advection of vortex filaments along the outer boundary, either as vorticity in the fluid
interior (ω · n̂) or as circulation in the interface vortex sheet (γ · b̂). If vortex filaments do
not intersect the control-volume boundary, then the net generation of circulation by vortex
stretching and tilting will be zero.

3.3. Vortex stretching and tilting in the control-surface formulation
In the control-surface formulation (2.50), the effects of vortex stretching and tilting are
included in the advection term. We first discuss the interpretation of this term for a control
surface in a single-fluid flow, before considering the interpretation for an interfacial flow.

For a control surface, S, in a single-fluid flow, the advection term from (2.9) may be
expressed in the form (Terrington et al. 2021)∮

∂S
n̂ × [(u − vb) × ω] · ŝ ds =

∮
∂S

[(ω · n̂)(u∗ · ŝ) − (ω · ŝ)(u∗ · n̂)]ds, (3.6)

where u∗ = u − vb is the fluid velocity relative to the control-surface boundary (∂S), ŝ is
the unit normal to S and n̂ is a unit vector tangent to S, but perpendicular to ∂S.

Terrington et al. (2021) provide an interpretation of the terms on the right-hand side of
(3.6), which is illustrated in figure 6(a). Terms on the right-hand side of (3.6) describe
changes to the net circulation in S, due to the advection of vortex filaments across
the control-surface boundary: the first term, (ω · n̂)(u∗ · ŝ), describes the advection of
surface-tangential vorticity (ω · n̂) in the surface-normal direction (ŝ), while the second
term, (ω · ŝ)(u∗ · n̂), indicates the advection of surface-normal vorticity (ω · ŝ) in the
surface-tangential direction (n̂). In both cases, the advection of vorticity (and hence vortex
filaments) across the boundary of S results in a change in the quantity of vortex filaments
passing through S, and therefore a change in the total circulation contained in S.

Returning to interfacial flows, the term∫
I
[[(m̂I × (u − vb) × ω) · n̂]] ds =

∫
I
[[(ω · m̂I)(u∗ · n̂) − (ω · n̂)(u∗ · m̂I)]] ds, (3.7)

in (2.48) describes the relative advection of vortex filaments on each side of the interface,
which produces a change in interface circulation passing through S. As illustrated in
figure 6(b), when the advective fluxes of vortex filaments on each side of the interface
are different, interface circulation must be created, in order to satisfy the generalised
solenoidal condition (2.13). This term also provides an opposite contribution to the
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Vorticity generation on 3-D generalised interfaces

Interface

Fluid 2

Fluid 1

(u · n̂)

ω1 · ŝ

ω2 · n̂

(u · ŝ)

ω2 · ŝ(ω · ŝ)
(ω · n̂)

γ · b̂
n̂ u1

u2

S2

S1

(a) (b)

ŝ S

Figure 6. (a) Illustration of the boundary fluxes in (3.6). The advection of vortex filaments across ∂S results in
a change in the flux of vorticity through S. (b) An illustration of the interface advection term in (3.7). The rate
of advection of vortex filaments across I in fluid 2 exceeds that in fluid 1, producing an increase in interface
circulation (γ · b̂). The increase in interface circulation is balanced by the appearance of normal vorticity in
S2, conserving the total circulation in S.

circulation in either S1 or S2 (2.40), so the change in interface circulation is balanced by
an opposite change to the circulation in the fluid interior, and the total circulation remains
constant.

4. Boundary conditions for vorticity

The general formulation presented in § 2 does not depend on the particular boundary
conditions applied to the interface, and can be applied to a range of interfaces and
boundaries, including no-slip and free-slip solid walls, fluid–fluid interfaces and free
surfaces. In this section, we discuss the particular boundary conditions for no-slip
fluid–fluid interfaces, free surfaces and no-slip solid boundaries. First, in § 4.1 we consider
the boundary conditions for tangential vorticity on free surfaces and fluid–fluid interfaces.
Then, in § 4.2 we consider the boundary conditions for normal vorticity. Finally, in § 4.3
we discuss the generation of vorticity on a solid boundary under the present formulation.

4.1. Boundary conditions on tangential vorticity
In this section, we discuss the boundary conditions for tangential vorticity on both
no-slip fluid–fluid interfaces and free surfaces. These boundary conditions are a direct
generalisation of those considered in our two-dimensional formulation (Terrington et al.
2020), and the physical interpretation of these equations is similar to the interpretation
provided for two-dimensional flows.

4.1.1. No-slip viscous interface
The velocity is continuous across a no-slip interface (u1 = u2), so no interface circulation
can exist (γ = 0). Then, the circulation balance (2.38) reduces to

dΓ

dt
=

∮
∂V

ω(vb − u) · n̂ dS +
∮

∂V
(ω · n̂)u dS −

∮
∂V

νn̂ × (∇ × ω) dS

−
∮

∂I

[[
p
ρ

+ Φg

]]
ds. (4.1)

The inviscid relative acceleration, due to tangential pressure gradients and body forces, still
contributes to the creation of vorticity on the interface. However, this relative acceleration
is opposed by viscous forces, which enforce the no-slip condition. All circulation generated
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S.J. Terrington, K. Hourigan and M.C. Thompson

by the inviscid mechanism is immediately diffused into the fluid interior by these viscous
forces, via the boundary vorticity flux.

While (4.1) provides the net rate of vorticity production at the interface, it does not
indicate the flux of vorticity into each fluid. The boundary vorticity flux on each side of
the interface can be determined from the tangential momentum equation (Lyman 1990;
Terrington et al. 2021),

σ 1 = −ŝ × (∇ × ω1) = ŝ ×
[

du1

dt
+ ∇

(
p1

ρ1
+ Φg,1

)]
, (4.2a)

σ 2 = ŝ × (∇ × ω2) = −ŝ ×
[

du2

dt
+ ∇

(
p2

ρ2
+ Φg,2

)]
. (4.2b)

However, while the net vorticity creation rate can be determined by the pressure and
body-force terms,

σ 1 + σ 2 = −ŝ × ∇
[[

p
ρ

+ Φg

]]
, (4.3)

the acceleration term in (4.2) is unconstrained, and an additional boundary condition is
required to determine individual fluxes of vorticity into each fluid.

This additional constraint is the continuity of shear stress across the interface (Wu 1995;
Terrington et al. 2020), which provides an expression for the jump in tangential vorticity
on each side of the interface (Wu 1995):

[[μω‖]] = −2ŝ × {[[μ]](∇‖(u · ŝ) + u · K)}, (4.4)

where ω‖ = ω − (ω · ŝ)ŝ is the surface-parallel component of vorticity, ∇‖ is the ‘surface
gradient operator’ and K = −∇‖ŝ is the surface-curvature tensor (see Wu 1995).

As in our two-dimensional formulation (Terrington et al. 2020), we prefer to arrange
this expression as follows:

μ2(ω‖,2 − ωr) = μ1(ω‖,1 − ωr), (4.5)

ωr = −2ŝ × (∇‖(u · ŝ) + u · K), (4.6)

where ωr, which we call the interface-rotation vorticity, is equal to twice the angular
velocity of the surface-normal vector of a material fluid element on the interface (Peck
& Sigurdson 1998), and therefore describes the rotation rate of the interface. We also
introduce the interface-relative vorticity,

ωτ,i = ω‖,i − ωr = (ŝ × ts)/μi, (4.7)

where ts = ŝ · T is the surface stress, and T is the stress tensor. The interface-relative
vorticity corresponds to twice the relative rotation rate between boundary fluid elements
(ω‖,i) and the interface (ωr), and is directly proportional to the surface stress.

Equation (4.5) indicates that the interface-relative vorticities on each side of the
interface are parallel, with relative magnitudes divided in proportion to the ratio of
dynamic viscosities. Also, from (4.6), the interface-rotation vorticities are equal in each
fluid. As illustrated in figure 7, the tangential vorticity in each fluid is the sum of
the interface-rotation and interface-relative vorticities. While (4.3) gives the net rate of
vorticity creation on a section of interface, the individual fluxes of vorticity into each fluid
(4.2a) and (4.2b) must also ensure that the vorticity in each fluid satisfies the shear-stress
condition (4.5).
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Vorticity generation on 3-D generalised interfaces

Interface

Fluid 1

Fluid 2

ω||, 1ωr

ŝ

ŝ × ts

μ1 (ŝ × ts)
μ2 (ŝ × ts)

ω||, 2

ts

Figure 7. An illustration of the tangential boundary condition (4.5). The interface-rotation vorticity, ωr, is
identical for each fluid, while the interface-relative vorticities, μi(ŝ × ts), are parallel, but with a magnitude
proportional to the dynamic viscosity of each fluid. The resultant surface-tangential vorticities, ω‖,i, in each
fluid are generally non-parallel.

We remark that, in our two-dimensional formulation (Terrington et al. 2020), we
referred to ωr as the ‘rotational vorticity’ (as it is proportional to the interface rotation
rate), and to ωτ as the ‘shearing vorticity’ (as it is proportional to the surface shear stress).
However, this terminology may lead to some confusion with the well-known problem of
vortex identification, where vorticity corresponding to global rotation (a vortex) must
be distinguished from vorticity corresponding to a shear flow (Kolář 2007). To avoid
this confusion, the terms ‘interface-rotation vorticity’ and ‘interface-relative vorticity’ are
preferred.

Finally, the normal-stress balance gives the jump in pressure across the interface (Wu
1995),

[[p]] = Tκ − 2[[μ]]∇‖ · u, (4.8)

where κ = −∇‖ · ŝ is the mean curvature and T is the surface tension. This can be related
to the vorticity generation term through the identity (Rossi & Fuster 2021)[[

p
ρ

]]
= [[p]]

(
1
ρ

)
m

+ pm

[[
1
ρ

]]
, (4.9)

where subscript m indicates the mean value across the interface (θm = (θ1 + θ2)/2). We
then obtain the following expression for the vorticity source term:

− ŝ × ∇
[[

p
ρ

]]
= −ŝ × ∇

[
Tκ

(
1
ρ

)
m

− 2[[μ]]
(∇‖ · u

) (
1
ρ

)
m

+ pm

[[
1
ρ

]]]
. (4.10)

This provides three terms that influence the creation of vorticity by tangential pressure
gradients: surface tension, viscous stresses and mean pressure gradients. These same three
terms were identified in our two-dimensional formulation (Terrington et al. 2020).

4.1.2. Free surface
For free-surface boundaries, the upper fluid exerts no stress on the lower fluid, apart from
a constant pressure, p2. Then, the normal and shear-stress balances (4.5) and (4.8) reduce
to

p1 = p2 − Tκ − 2μ1∇‖ · u, (4.11)

ω‖,1 = −2ŝ × (∇‖(u · ŝ) + u · K). (4.12)

Equation (4.12) provides a Dirichlet condition for the tangential vorticity at the free
surface. Tangential vorticity appears spontaneously at the free surface in order to
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satisfy this condition (Rood 1994b; Cresswell & Morton 1995; Terrington et al. 2020),
accompanied by the viscous flux of vorticity into the fluid interior due to corresponding
vorticity gradients.

Lundgren & Koumoutsakos (1999) provide a conservation-law formulation for
free-surface flows, by assuming the upper fluid is inviscid (ν = 0). Using a velocity
potential in the upper fluid,

∂φ2

∂t
+ 1

2
u2 · u2 + p2

ρ2
+ Φg,2 = 0, (4.13)

equation (2.38) becomes

dΓ

dt
= d

dt

∫
V1

ω dV + d
dt

∫
I
γ dS

=
∫

∂V1

ω(vb − u) · n̂ dS +
∫

∂V1

(ω · n̂)u dS −
∫

∂V1

νn̂ × (∇ × ω) dS

+
∮

∂I

[
∂φ2

∂t
+ p1

ρ1
+ Φg,1 + 1

2
u1 · u1

]
ds −

∮
∂I

[[u × (vb × t̂)]] ds. (4.14)

Equation (4.14) is similar to Lundgren & Koumoutsakos’s (1999) equation (A31).
However, Lundgren & Koumoutsakos use Lighthill’s definition of the boundary vorticity
flux, so include an additional viscous term. They also consider a material volume, with
vb = u1.

While Lundgren & Koumoutsakos (1999) consider a potential flow for the upper fluid,
the two-dimensional conservation formulations of Brøns et al. (2014, 2020) and Terrington
et al. (2020) treat the free surface as the boundary of a single fluid domain, with no fluid
above the interface. We define the interface circulation above a free surface as

γ = −ŝ × u1. (4.15)

Then, (2.35) gives the rate of change of interface circulation above a free surface:

d
dt

∫
I
γ dS = − d

dt

∫
I

ŝ × u1 dS

= −
∫

I
ŝ × du1

dt
dS −

∫
I
(ŝ · ω)u dS +

∮
∂I

1
2

u1 · u1 ds +
∮

∂I
u1 × (vb × t̂) ds.

(4.16)

Substituting this result into (2.19) gives the following conservation law:

dΓ

dt
= d

dt

∫
V1

ω dV −
∫

I
ŝ × u1 dS

=
∫

∂V1

ω1(v
b − u1) · n̂ dS +

∫
∂V1

(ω · n̂)u1 dS −
∫

∂V1

νn̂ × (∇ × ω) dS

+
∮

∂I

[
p1

ρ1
+ Φg

]
ds +

∮
∂I

1
2

u1 · u1 ds +
∫

∂I
u1 × (vb − u1) ds. (4.17)

Equation (2.38) reduces to (4.17) if u2 = 0 is assumed for the entire upper fluid.
Effectively, (4.15) can be interpreted as the circulation contained in the interface if the
velocity everywhere above the free surface is assumed to be zero.
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Vorticity generation on 3-D generalised interfaces

Under this approach, circulation is generated in the interface by the inviscid acceleration
of fluid elements on the free surface, driven by tangential pressure gradients and body
forces. The boundary vorticity flux at the free surface transfers vorticity between the
interface vortex sheet and the fluid interior, in order to maintain the shear-free condition
(4.12). Under the appropriate far-field boundary conditions, the total circulation in the
system will be conserved. Circulation may be transferred between the fluid interior, and
the interface vortex sheet, but the total circulation in the system remains constant.

4.2. Boundary conditions on normal vorticity
We now consider boundary conditions for normal vorticity on either a no-slip fluid–fluid
interface or a free surface. When Lighthill’s definition of the boundary vorticity flux
is used, the flux of surface-normal vorticity out of the boundary provides a Dirichlet
boundary condition for the surface-normal vorticity (Rood 1994b; Wu 1995). However,
under Lyman’s definition of the boundary vorticity flux, the flux of surface-normal
vorticity from any boundary is zero, and the boundary vorticity flux is not a useful
boundary condition for the surface-normal vorticity.

In this article, we do not provide a direct boundary condition for the surface-normal
vorticity. Instead, we use (2.9) to write a transport equation for surface-normal vorticity
on each side of the interface:

d
dt

∫
I
ωi · dS =

∮
∂I

(ωi · ŝ)(vb − ui) · b̂ ds +
∫

∂I
σ i · b̂ ds. (4.18)

The first term describes the advection of surface-normal vorticity along the interface, while
the second term describes the effects of viscous diffusion. The advection term acts on
surface-normal vorticity that is already attached to the interface, and which is already
attached to the interface, and does not produce any new circulation in the interface. The
viscous term, however, can result in the appearance of new circulation in the interface, so
long as equal quantities of both positive and negative circulation are generated.

The viscous term in (4.18) is equal to the viscous flux of surface-tangential vorticity in
the ŝ direction (σ i = ŝ × (∇ × ω)). Therefore, the diffusion of surface-tangential vorticity
into or out of the interface is associated with the diffusion of surface-normal vorticity
along the interface. If the surface-normal vorticity on the interface is initially zero, then
this process will produce new circulation in the interface – positive circulation will
appear on some portion of the interface, with negative surface-normal vorticity appearing
elsewhere. This leads to a new interpretation of vortex connection to a free surface, which
is discussed briefly in § 4.2.2.

The relationship between the diffusion of tangential vorticity into or out of a surface and
the change in surface-normal vorticity can be understood by considering the generalised
solenoidal condition (Terrington et al. 2021):∫

I
[[ω · ŝ]] dS +

∮
∂I

γ · b̂ ds = 0. (4.19)

First, using a similar derivation to (2.48), we obtain the following expression:

d
dt

∮
∂I

γ · b̂ =
∮

∂I
[[(ŝ × (u − vb) × ω) · b̂]] ds −

∮
∂I

[[ν(ŝ × (∇ × ω)) · b̂]] ds. (4.20)

Then, by combining (4.20) with (4.18), we have

d
dt

(∫
I
[[ω · ŝ]] dS +

∮
∂I

γ · b̂ ds
)

= 0, (4.21)
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Interface

Vortex ring

Interface circulation

Fluid 1

I1

I1

I2

I2

Fluid 2 ω||

σ||σ

∂I

ω · ŝ

ω||

σ||σ

ω · ŝ

γ

(a)

(b)

Figure 8. Illustration of the boundary flux in (4.18) for a fluid–fluid interface. (a) The diffusion of tangential
vorticity across the interface (σ ) drives the diffusion of opposite-signed surface-normal vorticity (σ ‖) away
from the connection line (∂I) and into I1 and I2. (b) The creation of circulation on the interface, and subsequent
diffusion into the fluid (σ ), also produces a corresponding diffusion of opposite-signed surface-normal vorticity
(σ ‖) into I1 and I2.

which demonstrates that the normal vorticity transport equation (4.18) maintains the
solenoidal condition (4.19). The generalised solenoidal condition essentially states that
vortex lines do not end on the interface – they continue either as vorticity on the other side
of the interface, or as circulation in the interface vortex sheet. Therefore, the diffusion
of part of a vortex filament either into, out of or across the interface must result in
corresponding changes to the surface-normal vorticity, to ensure that the vortex filament
does not end, either in the fluid interior or on the interface.

4.2.1. No-slip fluid–fluid interface
On a no-slip fluid–fluid interface, the no-slip condition requires normal vorticity to be
continuous across the interface (ω1 · ŝ = ω2 · ŝ). The value of surface-normal vorticity
is not constrained directly, however, but evolves according to (4.18). The advection term
describes the transport of vorticity that is already present in the interface, but cannot
produce the appearance of new surface-normal vorticity in the interface. The viscous
diffusion term, however, can also describe the appearance of new surface-normal vorticity
in the interface.

The appearance of new vorticity in the interface, in the case of a vortex ring attaching
to the interface, is illustrated in figure 8(a). There is a viscous flux of surface-tangential
vorticity on each side of the boundary (σ ), which results in the diffusion of the upper
part of the vortex ring across the interface. Through (4.18), this is directly associated with
the diffusion of surface-normal vorticity away from the connection line (∂I) and into the
surface I2. An equal quantity of opposite-signed vorticity is also diffused into the surface
I1, and the total circulation in the interface remains constant.

Similarly, the generation of new circulation on the interface can also produce a change
in normal vorticity, as illustrated in figure 8(b). Here, a loop of interface circulation is
generated, for example by tangential pressure gradients, and subsequently diffuses into
the fluid via the boundary vorticity flux (σ ). This is also associated with the diffusion of
opposite-signed vorticity into both I1 and I2, resulting in the appearance of surface-normal
vorticity in the interface.
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Vorticity generation on 3-D generalised interfaces

(a)

(b)

Free surface

Vortex ring
Fluid

I1

I1

I2

I2

ω||

ω||

σ||

σ

∂I

ω · ŝ

σ||

σ

ω · ŝ
γ

γ

Figure 9. Illustration of the boundary flux in (4.18) at a free surface. (a) The flux of tangential vorticity into
the free surface (σ ) transfers vorticity into the interface vortex sheet (γ ), while simultaneously driving the
diffusion of opposite-signed normal vorticity (σ ‖) away from the connection line (∂I) and into I1 and I2. (b)
The flux of surface-tangential vorticity out of the free surface (σ ) also drives the diffusion of opposite-signed
surface-normal vorticity (σ ‖) into I1 and I2.

In both cases, the appearance of surface-normal vorticity in the interface is a necessary
consequence of the diffusion of part of a vortex filament either out of or across the
interface, to ensure that the vortex line does not end, either in the fluid or on the
interface. The diffusion of surface-normal vorticity along the interface – which produces
the appearance of surface-normal vorticity in the interface – occurs as a direct consequence
of the diffusion of tangential vorticity out of or across the interface, and therefore clearly
illustrates how this kinematic condition is maintained.

4.2.2. Free surface
We do not provide a direct boundary condition for the surface-normal vorticity at a free
surface. Instead, the surface-normal vorticity evolves according to (4.18). Once again, the
advection term is responsible for the transport of vorticity that is already in the surface,
but cannot produce the appearance of new surface-normal vorticity in the free surface. The
viscous term, however, can describe the appearance of new surface-normal vorticity in the
free surface.

For example, we provide a sketch of a vortex ring connecting to a free surface in
figure 9(a). Here, the viscous boundary flux (σ ) results in the diffusion of part of the vortex
ring out of the fluid and into the interface vortex sheet. This corresponds to the diffusion of
surface-normal vorticity along the free surface (σ ‖), according to (4.18). Positive vorticity
is diffused away from ∂I and into I2, while negative vorticity is diffused into I1, and the
total circulation in the free surface remains constant.

In some situations, the tangential boundary condition (4.12) results in the viscous flux
of surface-tangential vorticity out of the free surface. As illustrated in figure 9, this is
associated with an increase in the circulation in the interface vortex sheet (γ ), and the
total circulation is conserved. The viscous flux of surface-tangential vorticity out of the
free surface (σ ) is also associated with the diffusion of opposite-signed surface-normal
vorticity into both I1 and I2, resulting in the appearance of surface-normal vorticity in the
free surface.
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In both cases, the appearance of surface-normal vorticity in the free surface is necessary
to satisfy the kinematic condition that vortex lines do not end in the fluid. Moreover,
the circulation in the interface vortex sheet also satisfies the general solenoidal condition
(4.19), so vortex lines also do not end on the free surface, but continue as circulation in the
interface vortex sheet. The diffusion of opposite-signed surface-normal vorticity into both
I1 and I2 is directly attributed to the viscous diffusion of tangential vorticity either into or
out of the free surface, and therefore clearly illustrates how the kinematic condition that
vortex lines do not end in the fluid interior is maintained.

The illustration in figure 9 represents a novel interpretation of the mechanism behind
vortex connection to a free surface. For example, while the loss of spanwise vorticity from
the fluid has been attributed to the boundary vorticity flux by many authors (Rood 1994a,b;
Gharib & Weigand 1996; Zhang et al. 1999), the appearance of surface-normal vorticity in
the free surface is usually attributed to the diffusion of surface-normal vorticity towards the
free surface from the fluid interior (Gharib & Weigand 1996; Zhang et al. 1999). Under
this approach, the mechanism responsible for the removal of part of a vortex filament
from the fluid (diffusion of tangential vorticity out of the fluid) is different from the
mechanism responsible for the attachment of vortex filaments to the free surface (diffusion
of surface-normal vorticity towards the free surface). It is not clear under this interpretation
how the kinematic condition that vortex filaments do not end in the fluid is maintained
throughout this process.

In figure 9, however, the appearance of surface-normal vorticity in the free surface
is directly attributed to the loss of tangential vorticity from the fluid, through (4.18).
Therefore, the removal of part of a vortex filament from the fluid, and the attachment
of the ends of this filament to the free surface, are effectively considered a single dynamic
process. This clearly illustrates how the kinematic condition that vortex lines do not end
in the fluid is maintained throughout the interaction.

4.3. Vorticity generation on a solid boundary
Brøns et al. (2014) show that, in two dimensions, the general formulation can be applied
to solid boundaries by taking the limit ν2 → ∞, so that fluid 2 approximates a rigid body.
In this situation, the velocity of the upper fluid may be written in terms of pure translation
(U) and rotation (Ω),

u2 = U + Ω × x, (4.22)

while the vorticity in the upper fluid becomes

ω2 = 2Ω. (4.23)

Then, the vector circulation in V2 is

Γ 2 =
∫

V2

ω2 dV = 2Ω Vol(V2), (4.24)

where Vol(V2) is the volume of the solid body.
If we assume V2 is a material volume, with vb = u2, the rate of change of vector

circulation in V2 may be expressed in terms of the following boundary fluxes:

dΓ 2

dt
=

∫
∂V2

n̂ × du2

dt
dS −

∫
I

ŝ × du2

dt
dS +

∫
∂V2

(n̂ · ω2)u2 dS −
∫

I
(ŝ · ω2)u2 dS.

(4.25)
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Meanwhile, the rate of change of vector circulation in fluid 1 is given by (2.19) as

dΓ 1

dt
=

∫
∂V1

ω(vb − u) · n̂ dS +
∫

∂V1

(ω · n̂)u dS −
∫

∂V1

νn̂ × (∇ × ω) dS

+
∫

I
(ω1 · ŝ)u1 dS −

∫
I
ν ŝ × (∇ × ω1) dS, (4.26)

and the rate of change of interface circulation is given by (2.36) as

d
dt

∫
I
γ dS =

∫
I

ŝ ×
[

du2

dt
+ ∇

(
p1

ρ1
+ Φg,1

)
+ ν1∇ × ω1

]
dS +

∫
I
[[(ŝ · ω)u]] dS

−
∮

∂I

1
2

[[u · u]] ds −
∮

∂I
[[u × (vb × t̂)]] ds, (4.27)

where we have used the momentum equation for du1/dt.
Finally, on combining (4.25)–(4.27), we have the following expression for the rate of

change of vector circulation in the entire system:

dΓ

dt
=

∫
∂V1

F1 dS +
∫

∂V2

F2 dS +
∫

∂I
FI ds +

∮
∂I

[
p1

ρ1
+ Φg,1

]
ds, (4.28a)

F1 = ω(vb − u) · n̂ + (ω · n̂)u − ν1n̂ × (∇ × ω), (4.28b)

F2 = (ω · n̂)u + n̂ × du2

dt
, (4.28c)

FI = −1
2 [[u · u]]t̂ − [[u × (vb × t̂)]], (4.28d)

where F1, F2 and FI are the total fluxes of vorticity across ∂V1, ∂V2 and ∂I, respectively.
Once again, only tangential pressure gradients or body forces can result in the generation
of vorticity on the boundary. While the acceleration of the solid boundary, du2/dt, also
generates circulation in the interface vortex sheet (4.27), it provides an equal and opposite
contribution to the vorticity in the solid body (4.25), and does not generate a net circulation
on the interface.

Perhaps the most interesting configuration is where the solid body (V2) is completely
immersed within a fluid (V1), as shown in figure 10. In this situation, I is a closed surface,
and contributions from ∂I and ∂V2 in (4.28) are zero:

dΓ

dt
=

∮
∂V1

ω(vb − u) · n̂ dS +
∮

∂V1

(ω · n̂)u dS −
∮

∂V1

ν1n̂ × (∇ × ω) dS. (4.29)

The total circulation can only change by the flux of vorticity across the outer boundary
(∂V1). If the flux of vorticity across the outer boundary is zero, then the total vorticity will
be conserved.

Equation (4.29) holds for both no-slip and free-slip solid boundaries. For the particular
case of a no-slip boundary, the rate of vorticity creation per unit area on a solid boundary
is given by (Terrington et al. 2020):

σ 1 = −ŝ × (∇ × ω) = ŝ ×
[

du2

dt
+ ∇

(
p1

ρ1
+ Φg,1

)]
. (4.30)

This equation represents the creation of vorticity on the boundary by the inviscid relative
acceleration between fluid elements and the solid body by tangential pressure gradients,
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Fluid 1

Solid

body

V1

I

V2 ∂V2

∂V1

∂I

Figure 10. System of control volumes for a solid body completely immersed within a fluid. Vorticity fluxes at
the boundaries ∂V2 and ∂I do not contribute to the vorticity balance, and the rate of change of vorticity depends
only on vorticity fluxes across the outer boundary (∂V1).

body forces and acceleration of the solid body (Morton 1984; Terrington et al. 2021).
The acceleration of the solid boundary can be further decomposed into translational and
rotational accelerations (Terrington et al. 2021):

σ 1 = −ŝ × (∇ × ω) = ŝ ×
[

dU
dt

+ d
dt

(Ω × x) + ∇
(

p1

ρ1
+ Φg,1

)]
. (4.31)

Importantly, (4.29) indicates that the total vorticity generation on a closed solid
boundary is zero. As discussed in Terrington et al. (2021), the effects of tangential pressure
gradients, potential body forces and tangential acceleration of the solid body are zero when
integrated across a closed boundary. As shown in figure 11, these terms generate solenoidal
(closed) vortex lines (Terrington et al. 2021), and the net flux of vorticity out of a closed
surface due to these terms is zero.

The effects of rotational acceleration, however, are generally non-zero when integrated
across a closed surface (Terrington et al. 2021), and therefore result in a net flux of vorticity
into the fluid. However, as shown in figure 11(a), rotational accelerations also change
the vorticity in the solid body. The net flux of vorticity into the fluid is balanced by the
change in vorticity in the solid body, and the total circulation is constant. Moreover, the
vorticity satisfies the generalised solenoidal condition across the solid boundary, which,
for a no-slip boundary, requires that vortex lines are continuous across the boundary
(ω1 · ŝ = ω2 · ŝ) (Terrington et al. 2021).

5. Compressible flows

Thus far, we have considered incompressible flows of Newtonian fluids. In this section, we
present a general vorticity balance for compressible flows, without assuming a particular
constitutive structure of the fluid.

5.1. Compressible vorticity dynamics in a single fluid
We begin by writing the vector circulation in a control volume, V , in terms of the velocity
on the boundary ∂V (2.2):

Γ =
∫

V
ω dV =

∮
∂V

n̂ × u dS, (5.1)

936 A44-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

91
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.91
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(a)

(b)

Interface circulation (γ)

Vorticity (ω)

ω1
ω2

Figure 11. Sketch of vorticity generation on a solid body, where tangential pressure gradients, body forces
and acceleration of the solid body generate circulation (γ ) in the interface vortex sheet, which is diffused into
the fluid by viscous forces. (a) Tangential pressure gradients, body forces and tangential acceleration generate
solenoidal (closed) vortex lines, and the net flux of vorticity into the fluid is zero. (b) Rotational acceleration
produces a net flux of vorticity into the fluid (ω1); however, this is balanced by the generation of opposite-signed
vorticity in the solid body (ω2), and the total circulation is conserved.

where n̂ is the outward-oriented unit normal to ∂V . Then, the rate of change of vector
circulation within a control volume is given by

dΓ

dt
= d

dt

∮
∂V

n̂ × u dS. (5.2)

Now, (2.32) holds for both compressible and incompressible flows. Using this expression,
(5.2) can be written as

dΓ

dt
=

∮
∂V

n̂ × du
dt

dS +
∮

∂V
(n̂ · ω)u dS +

∮
∂V

n̂ · (vb − u)ω dS. (5.3)

The boundary fluxes for advection and vortex stretching/tilting appear in this equation, and
are identical to their representation for incompressible flows. Therefore, these effects do
not depend on the compressibility of the fluid.

For the acceleration term in (5.3), we use the following form of the compressible
momentum equation:

du
dt

= − 1
ρ

∇p + 1
ρ

∇ · T + g. (5.4)

Here T is the viscous stress tensor and g is the acceleration due to any body forces.
Equation (5.4) does not assume any particular constitutive structure for the viscous stress
tensor, allowing a completely general description of vorticity dynamics.
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Substituting (5.4) into (5.3) gives the integral vorticity balance for a general
compressible fluid, in a single fluid domain:

dΓ

dt
=

∮
∂V

(n̂ · ω)u dS +
∮

∂V
n̂ · (vb − u)ω dS −

∮
∂V

1
ρ

n̂ × ∇p dS

+
∮

∂V

1
ρ

n̂ × (∇ · T ) dS +
∮

∂V
n̂ × g dS. (5.5)

In addition to the advection and vortex stretching/tilting terms, (5.5) reveals the general
form of the viscous boundary flux,

σ = − 1
ρ

n̂ × (∇ · T ), (5.6)

as well as boundary fluxes related to the baroclinic generation of vorticity ((1/ρ)n̂ × ∇p),
and the generation of vorticity by non-potential body forces (n̂ × g).

We note that (5.5) can also be derived by integrating the compressible vorticity transport
equation across a control volume. The derivation presented here clearly relates the viscous
boundary flux, the baroclinic term and the body-force term to the acceleration of fluid on
the control-volume boundary, which provides greater physical insight into the kinematic
relationship between vorticity and velocity.

5.2. Compressible vorticity dynamics in an interfacial flow
We now consider interfacial flows. The total circulation in the system of control volumes
(figure 2) remains equal to (2.12),

Γ =
∮

V
n̂ × u dS =

∫
V1

ω dV +
∫

V2

ω dV +
∫

I
γ dS, (5.7)

and we write the rate of change of circulation as

dΓ

dt
= d

dt

∫
V1

ω dV + d
dt

∫
V2

ω dV + d
dt

∫
I
γ dS. (5.8)

The volume integrals in (5.8) are given by (5.5). To compute the derivative of the
interface circulation, we use (2.36), which holds for a compressible fluid:

d
dt

∫
I
γ dS =

∫
I

ŝ ×
[[

du
dt

]]
dS +

∫
I
[[(ŝ · ω)u]] dS −

∮
∂I

1
2

[[u · u]] ds

−
∮

∂I
[[u × (vb × t̂)]] ds. (5.9)

Then, the acceleration term is computed using (5.4):
∫

I
ŝ ×

[[
du
dt

]]
dS = −

∫
I

ŝ ×
[[

1
ρ

∇p
]]

dS +
∫

I
ŝ ×

[[
1
ρ

(∇ · T )

]]
dS +

∫
I

ŝ × [[
g
]]

dS,

(5.10)
which gives the rate of change of interface circulation due to the baroclinic term (ŝ ×
[[(1/ρ)∇p]]), body forces (ŝ × [[g]]) and the viscous flux of vorticity out of the interface
(ŝ × [[(1/ρ)∇ · T ]]).
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Finally, by combining (5.5), (5.8) and (5.9), we give the following expression for the
rate of change of vector circulation:

dΓ

dt
=

∮
∂V

(n̂ · ω)u dS +
∮

∂V
n̂ · (vb − u)ω dS −

∮
∂V

1
ρ

n̂ × ∇p dS +
∮

∂V
n̂ × g dS

+
∮

∂V

1
ρ

n̂ × (∇ · T ) dS −
∮

∂I

1
2

[[u · u]] ds −
∮

∂I
[[u × (vb × t̂)]] ds. (5.11)

Equation (5.11) describes the rate of change of circulation within a control volume in terms
of fluxes of vorticity across the outer boundary, either in the fluid interior (∂V) or along the
interface (∂I). Reading the terms from left to right, we have: the effects of vortex stretching
and tilting, (n̂ · ω)u; the advection of vorticity across the control-volume boundary, n̂ ·
(vb − u)ω; boundary fluxes related to the generation of vorticity by the baroclinic effect,
(1/ρ)n̂ × ∇p), and non-potential body forces, n̂ × g; viscous diffusion of vorticity across
the control-volume boundary, (1/ρ)n̂ × (∇ · T ); and the transport of circulation along the
interface vortex sheet, (1/2)[[u · u]] and [[u × (vb × t̂)]].

5.3. Interpreting the compressible vorticity balance
We now discuss the compressible vorticity balance (5.11), and compare it to the
incompressible expression (2.38). Many of the terms are identical for both compressible
and incompressible flows, and need not be discussed further. In particular, the terms
in (5.11) corresponding to advection, vortex stretching and tilting, and the transport
of circulation along the interface are identical to their counterparts in (2.38), so the
interpretation of these effects is the same for both compressible and incompressible flows.
As we have discussed these effects for incompressible flows, they need not be discussed
further in this section.

The behaviour of the viscous term is also similar between compressible and
incompressible flows, although a general form of the boundary vorticity flux is used
for compressible flows. In particular, the boundary flux in (5.11) describes the diffusion
of vorticity across the control-volume boundary (∂V), while the viscous flux in (5.10)
describes the transfer of vorticity between the interface vortex sheet, and the fluid interior.
Therefore, viscous forces can transfer vector circulation between the interface vortex sheet
and the fluid interior, but do not generate new vorticity on the boundary.

The viscous flux defined in (5.6) generalises Lyman’s definition of the boundary
vorticity flux to a general, compressible fluid. In particular, for an incompressible flow
of Newtonian fluids, (5.6) reduces to Lyman’s definition of the boundary vorticity flux:

σ = − 1
ρ

n̂ × (∇ · T ) = νn̂ × (∇ × ω). (5.12)

Moreover, σ is equal to the tangential viscous acceleration of fluid elements on the
boundary, and describes the transfer of vorticity between adjacent fluid regions, due to
the viscous acceleration of fluid on the boundary between these regions.

The biggest difference between compressible and incompressible flows is the role of
pressure and body forces in the generation of vorticity. In incompressible flows, pressure
may only generate vorticity on the interface, and not in the fluid interior. In compressible
flow, however, pressure can also result in the creation of vorticity in the fluid interior,
through the baroclinic effect. Similarly, (2.38) assumes that the body-force acceleration
has a scalar potential (g = −∇Φg). Under this assumption, body forces can only generate
vorticity on the interface, and not in the fluid interior. However, (5.11) does not assume a
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potential body-force acceleration, and thus body forces can generate vorticity in the fluid
interior.

The total baroclinic generation of vorticity occurring in the interior of Vi is expressed in
terms of pressure gradients on the outer boundary (∂Vi) as well as the interface (I):∫

Vi

1
ρ2 ∇ρ × ∇p dV = −

∫
∂Vi

1
ρ

n̂ × ∇p dS ∓
∫

I

1
ρ

ŝ × ∇p dS, (5.13)

where the integral over I is negative for fluid 1 (i = 1) and positive for fluid 2 (i = 2). The
total circulation generated in the interface vortex sheet by tangential pressure gradients is

−
∫

I
ŝ ×

[[
1
ρ

∇p
]]

dS, (5.14)

which has the same form as the boundary flux representation of the baroclinic effect.
Therefore, the pressure term in (5.10) can be interpreted as the baroclinic generation
of vorticity occurring in the interface. This pressure term is also the inviscid relative
acceleration caused by tangential pressure gradients, which suggests that the inviscid
relative acceleration can be interpreted as a kind of baroclinic vorticity generation,
occurring in the interface vortex sheet.

Similarly, the total generation of vorticity by body forces in the interior of Vi is given by
∫

Vi

∇ × g dV =
∫

∂Vi

n̂ × g dS ±
∫

I
ŝ × g dS, (5.15)

while the circulation generated in the interface vortex sheet by body forces is given by∫
I

ŝ × [[g]] dS. (5.16)

Importantly, the generation of circulation in the interface vortex sheet, by either
tangential pressure gradients (5.14) or body forces (5.16), is balanced by an equal but
opposite contribution to the generation of vorticity in the fluid interior in (5.13) and (5.15).
As a result, (5.11) does not include terms related to the generation of vorticity on the
interface. Instead, the total generation of vorticity by body forces or baroclinic effects is
determined by the pressure gradients or body-force acceleration on the outer boundary
(∂V) alone. Only in the special case of an incompressible flow, where no vorticity is
generated in the fluid interior, is the total vorticity generation given by tangential pressure
gradients and body forces on the interface.

Equation (5.11) demonstrates the principle of vorticity conservation for general
compressible flows. If there is no external pressure gradient or body force, then the
right-hand side of (5.11) will be zero, and the total circulation will be conserved. This
does not preclude the generation of a net circulation at the interface. The net generation
of circulation in the interface vortex sheet, by either tangential pressure gradients or body
forces, is balanced by the generation of opposite-signed vorticity in the fluid interior, by
either the baroclinic effect or a non-potential body force, and the total circulation remains
constant.

6. Conclusions

This article has extended the two-dimensional theory of vorticity generation and
conservation on generalised interfaces (Brøns et al. 2014, 2020; Terrington et al. 2020)
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to three dimensions. We provide a general description of vorticity generation on interfaces
and boundaries in three-dimensional flows. The only mechanism that can generate
vorticity in an incompressible flow is the inviscid relative acceleration between fluid
elements on each side of the interface, due to either tangential pressure gradients or body
forces. Viscosity is responsible for the transfer of vorticity between the interface vortex
sheet and the fluid interior, but is not involved in the creation of vorticity at the interface.
In compressible flows, tangential pressure gradients and body forces are still responsible
for the generation of vorticity on the interface. However, both tangential pressure gradients
and body forces also generate vorticity in the fluid interior.

We have also demonstrated a general principle of vorticity conservation in interfacial
and free-surface flows. In many flow configurations, where there is no external pressure
gradient or body force, the total circulation – be it the volume integral of vorticity in
a system of control volumes, or the total circulation contained in a system of reference
surfaces – remains constant throughout flow evolution. Local generation of vorticity may
occur on a section of the interface, or in the interior of a compressible flow, but this will
be balanced by the generation of opposite-signed vorticity elsewhere.

The total rate of change of vorticity due to vortex stretching and tilting in a fluid volume
has been expressed as a boundary flux, which was interpreted as representing the advection
of surface-normal vorticity in the control-volume boundary. Importantly, this means that
if the surface-normal vorticity is zero over the entire boundary, then the net generation of
vorticity by vortex stretching and tilting is zero. In such situations, a net circulation may
also be generated by vortex stretching or tilting in the interface vortex sheet; however, this
is balanced by generation of opposite-signed vorticity by vortex stretching and tilting in
the fluid interior, so the total circulation remains constant.

Finally, we provided a transport equation for the surface-normal vorticity in an interface
or free surface. Advection can transport surface-normal vorticity along the interface, but
does not result in the appearance of new vorticity in the surface. Surface-normal vorticity
is also transported by viscous diffusion, which occurs as a direct consequence of the
diffusion of tangential vorticity out of the surface. In particular, this can result in the
appearance of new surface-normal vorticity in the interface, indicating the attachment of
vortex lines to the surface. Importantly, the attachment of vortex filaments to the surface in
this manner occurs as a direct consequence of the diffusion of part of the vortex filament
out of the fluid, which reflects the kinematic property that vortex lines do not end inside
the fluid.
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