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1. Introduction. Von Neumann's definition of the continuous sum of Hilbert spaces led
Segal [3] to define the continuous sum of measures on a measurable space. In this note we
employ Segal's definition to investigate the measure structures associated with a self-adjoint
transformation of pure point spectrum and a self-adjoint transformation of pure continuous
spectrum. While these transformations, as operators on separable Hilbert spaces, are the
antithesis of each other we show that in their measure structure one is a particular case of the
other.

In Theorem 2 we show that to every self-adjoint transformation T there corresponds a
simple self-adjoint transformation A such that T has pure point (resp. pure continuous)
spectrum if and only if A has pure point (resp. pure continuous) spectrum. This shows that
it is enough to consider simple self-adjoint transformations in the proof of the Main Theorem.
This theorem asserts that, if T is a self-adjoint transformation defined in a Hilbert space H,
and E(k) the resolution of the identity corresponding to T, then there exists an element z in H
such that a necessary and sufficient condition for T to have pure point (resp. pure continuous)
spectrum is that the measure n defined by the function || E(X)z ||2 is the discrete (resp. con-
tinuous) sum of mutually disjoint measures of point mass.

In this paper, the term " Hilbert space " stands for " complex separable Hilbert space ";
if S is a set of everywhere defined operators in a Hilbert space H, and w e H, the closed linear
manifold generated by the set (Aw: A eS) is denoted by [Aw: AeS]. If \i and v are measures
on a measure space, we write fi P v (or v <£ n) to denote that v is absolutely continuous with
respect to fi.

2. Preliminaries.

DEFINITION 1. Let X be a locally compact Hausdorff space, and B be the a-ring generated
by the open subsets of X. The members of B are called the Borel sets of X, and the pair
(X, B) is called a Borel space. A non-negative function \i of the Borel sets of X is called a
measure of the Borel space if n has the property ^(U Bn) = £/*(£„), where BnnBm =0 if

n n

n-£m. (X, B, n) is called a Borel measure space.

Let (X, B) be a Borel space, and (F, D, v) a Borel measure space. Let \itt {n = 1, 2, ...)
and ny(ye Y) be measures of (X, B).

DEFINITION 2. A measure n of (X, B) is said to be the discrete sum of the measures \in, if,
for each B e B, n(B) = £ Hn(B). The measure \i is said to be the continuous sum of the measures
A*, if
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(i) for each B e B, the function b(y) = fiy(B) is integrable with respect to v, and

= f
(See [3], Definition 8.1.)

Let H be a complex separable Hilbert space.

DEFINITION 3. A mapping P of the Borel sets of a Borel space (X, B) into the set of
projections of H is called a projection-valued measure if

(i) Pg = 0, Px = / , where / is the identity operator of H,

( u ) •f>Bi<~>fl2
 = °Bi*B2'

(iii) PUBn = I PBK, where BnnBm = 0 if n * m.
" n

If P is a projection-valued measure of a Borel space (X, B), then to each element of H
there corresponds a measure of (X, B); for, if z e H, then \iz, where nz(B) - || PBz ||2, is a
measure of (A', B).

Let T be a self-adjoint transformation defined in H, and let £(A) be the resolution of the
identity corresponding to T.

DEFINITION 4. T is said to have pure point spectrum if H contains a complete ortho-
normal set of characteristic elements of T. T is said to have pure continuous spectrum if H
contains no non-zero characteristic element of T. T is said to be simple if there exists an
element z in H such that \E(X)z: - oo ^ k ^ oo] = H .

THEOREM 1. Let P be a projection-valued measure of a Borel space (X, B) to a Hilbert space
H. There exists an element z in H with the property that nz{B) = 0 if and only ifPB = 0, where
H,(B) = \\PBz\\2.

Proof. Let II be the von Neumann algebra (i.e., weakly closed self-adjoint algebra)
generated by the set S = {PB: Be B) of projections in H. It follows from (ii) of Definition 3
that the members of S commute with each other, and therefore the members of U commute
with each other. We recall the definition of ordered additive decomposition [2] of H relative
to the Abelian von Neumann algebra U:

(i) H =H

where

(ii)Hn = [^2n: AelX]

and

(iii) n2l^nZ2^ ... ^fiZn^ . . . .

Let z = zv Assume that nz(B) = 0. It follows from (iii) that || PBzn ||2 = nln(B) = 0 for
n = 2, 3 , . . . . Hence PBAzn = APBzn = 0 for each n and all A e U. That is, PBw = 0 when
w = Azn. The set (vv = Azn: A e U) is dense in Hn. Hence PBHn = 0. It follows from (i) that
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Conversely, PB = 0 implies that nz(B) = | | PBz \\2 = 0.
This proves the theorem.

COROLLARY 1. For every element w e H , / i B < \iz.
For \i.(B) = 0 implies that PB = 0; hence nw(B) = \\ PBw \\2 = 0.

THEOREM 2. Let Tbe a self-adjoint transformation in H andE(X) the resolution of the identity
corresponding to T. There exists an element z in H such that the transformation A = TEy is
simple and has pure point (resp. pure continuous) spectrum if and only if T has pure point (resp.
pure continuous) spectrum, where Et is the projection of ft on \E(X)z: — oo ^ A ^ oo].

Proof. Let X be the extended real line (x: — oo ^ x ^ oo) with the usual topology and
B the set of all Borel subsets of X. B is the a-ring generated by the bounded semi-closed
intervals [a, b) = (x: ag,x< b). (See [1], § 15, Theorem B).

It is an easy consequence of the spectral theorem that every self-adjoint transformation
defines a projection-valued measure on the Borel space (X, B); for, if B = (x: a £ x < b),
let E(B) = E(b) — E(a). From the last paragraph it is obvious that the mapping B-* E(B)
can be extended to all members of B, and that the extended mapping B -* E(B) is a projection-
valued measure.

We can find an element z in H with the property that nz(B) = || E(B)z ||2 = 0 if and only
if£(J?) = O. Let

Hj = [E(B)z: B e B] = [E(X)z: - oo g X g oo],

and let Ex be the projection of H onto H t . Since E^E(X) = E(X)EU for all A ( - oo g I ^ oo),
it follows that TEt = EtT. Hence the transformation

A = TEy ( = E1T = E1TE1)

is self-adjoint in H t and its resolution of the identity F(X) is E(X)El. The transformation A
is simple; for F(X)z — E(X)E1z = E(X)z (z being an element of H t ) implies that

[F(X)z: - o o ^ A ^ o o ] = [£(A)z: - o o ^ A ^ oo] = H t .

Now assume that A has pure point spectrum and that B = {A1, A2,...} are the points of
the point spectrum of A. If Awn = Xnwn, with wn ̂  0, it follows from

T(Exwn) = TE{wn = Awn = Xnwn = Xn(Etwn)

that An is a point of the point spectrum of T. Let Mn be the characteristic manifold of T for the
characteristic value An. We shall show that £ © Mn =H, which would prove that Thas pure

n

point spectrum. Choose w e H 0 £ ® Mn. Since

= || E(X-B)ElZ ||2 = || F(X-B)z f = 0,

it follows from Corollary 1 that nw(X—B) = 0. Since w is orthogonal to Mn and E({Xn}) is
the projection of H on Mn, it follows that

|| = 0 (« = 1,2,..., N).
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Hence nw(B) = 0, and therefore

|| w f = || E(X)w ||2 = nw(X) = (iw(B)+(iw(X-B) = 0.

It is easy to verify that, if T has pure point spectrum, then A = TEt has pure point
spectrum.

Finally, we observed earlier that fiz(B) = || F(B)z ||2. Now, A being a simple self-adjoint
transformation, a point X is in the point spectrum of A (resp. T) if and only if nz({X})
(resp. E({X})) =£ 0. But from the choice of z we know that nz({X}) ^ 0 if and only if E({X})
# 0. Hence X is in the point spectrum of A if and only if X is in the point spectrum of T.
Equivalently, A has pure continuous spectrum if and only if T has pure continuous spectrum.

This proves the theorem.

COROLLARY 2. The self-adjoint transformation A of Theorem 2 is unique up to unitary
equivalence.

For, let Au A2 be two simple self-adjoint transformations satisfying the condition of
Theorem 2; let zu z2 be the elements which define Au A2 respectively. It is easy to show that
fiZl(B) = 0 if and only if fiZ2(B) = 0. Hence A^ and A2 are unitarily equivalent.

3. MAIN THEOREM. Let T be a self-adjoint transformation defined in a Hilbert space H,
E(X) the resolution of the identity corresponding to T, and z an element in H possessing the
properties of Theorem 2. Then a necessary and sufficient condition for T to have pure point
(resp. pure continuous) spectrum is that the measure \x defined by the function || E(X)z ||2 is the
discrete (resp. continuous) sum of mutually disjoint measures of point mass.

Proof. As we pointed out in the introduction, there is no loss of generality in assuming
that T is a simple self-adjoint transformation and that \E(X)z: — oo ^ X ̂  oo] = H . The
proof depends on certain known results concerning simple self-adjoint transformations, which
we list here.

Let n be the measure on the Borel subsets of the real line defined by the monotone in-
creasing function || E(X)z ||2.

(1) ([4], Definition 7.2 and Theorem 7.9.) If Xo is a point of the point spectrum of T,
then there exists an s > 0 such that the range of E(A) is a one-dimensional manifold in H,
where A = (A0-e, X0 + s).

(2) ([4], Theorem 7.16.) A non-zero closed linear manifold M is an invariant subspace
for T if and only if M is isometric to a subspace M' of L2(ji) consisting of the functions which
vanish outside a Borel set B of positive measure; in particular, if M is the characteristic
manifold corresponding to a characteristic value Xo, then B ={X0}.

(3) T has pure continuous spectrum if and only if /i is absolutely continuous with respect
to Lebesgue measure. For, if Thas a point Xo in the point spectrum, then fi({X0}) > 0. Since
the Lebesgue measure of {Xo} is zero, it follows that n is not absolutely continuous with re-
spect to Lebesgue measure. Conversely, if T has pure continous spectrum, then the monotone
increasing function/(A) = || E(X)z ||2 is continuous. It follows from Lemma 7.1 of [4] that
H is the Lebesgue measure o n O ^ > > ^ r = | | z ||2.
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Pure point case.
The condition is necessary. Assume that (wn) is a complete orthonormal set of charac-

teristic elements; let wn correspond to the characteristic value Xn. We know from (1) that it
is possible to choose £„ > 0, such that the range of E(An) is generated by wn, where

We may assume that An n Am = 0 for n # m. If ii(B) > 0, where B £ An — {An}, then it follows
from (2) that T has a non-zero invariant subspace contained in the range of E(An)
and orthogonal to wn, which is impossible. Hence n(An) = /*({AM}). Now suppose that

CO

A s [ — oo, oo] — U An is a Borel set. Then E(A)E(An) = 0 for every n. Since (wn) is com-
n = l

plete, it follows that E(A) = 0, and therefore fi(A) = 0. Hence, for every Borel set B, we have

H{B) = , / ( U A\nB\ = J U (AnnB)\

n = l n = l

It is clear that the fin have point mass, and are mutually disjoint.
The condition is sufficient. Assume that /i = //„, where nn, has its mass at An. Since

v({An}) # 0, by a known theorem (see [1], pp. 178-182), the points An are points of discon-
tinuity for the function || E{X)z0 ||2. Hence ([4], p. 184) the points An are in the point spectrum
of T. Let A = {Aj, A2, ...} and let N = H 0 M, M being the characteristic manifold of T.
Since N is an invariant subspace for T, there is, by (2), a Borel set B which corresponds
to it. Since N is orthogonal to M, B is contained in [ — oo, oo] —A, and consequently
H(B) =£X(f i ) = 0. Hence N = 0. That is, M = H, and T has pure point spectrum.

Pure continuous case.
The condition is necessary. Let the spectrum of T be purely continuous. Since fi is then

absolutely continuous with respect to Lebesgue measure, we have, by the Radon-Nikodym
theorem,

= 1 f(y)dy,
JB

where/0 ') is a non-negative Lebesgue integrable function. For each real number y, define a
function ny on the Borel subsets of the real line as follows:

where B is an arbitrary Borel subset of the real line, and

fl if ^ eB,

[0 if y i B.
f l
[0
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It is easy to verify that, for each y, \iy is a measure on the Borel subsets of the real line, and that
the mass of \iy is at y. Finally,

= f /GO dy = [" /GOfcGO dy = f" n,{B) dy,
J B J — oo J-oo

and this shows that n is the continuous sum of the measures piy.
The condition is sufficient. Let /i be the continuous sum, with respect to Lebesgue measure,

of the measures ny, y being real. Assume that ny has its mass at y. Since the measures ny are
mutually disjoint, the measures ny and jis, for y ^ s, do not have their mass at the same point.
Consequently, the function f(y) = ny(X), where X is the real line, is well defined. From
property (i) of Definition 2, it follows that / ( j ) is integrable with respect to Lebesgue measure.
Finally, observing that

iiy{B) if yeB,

we see that

H(B) = [ ,iy{B) dy = f fiy(X) dy = f f(y) dy
J

= f fiy(X) dy = f
JB JB

Hence n is absolutely continuous with respect to Lebesgue measure; it follows from (3) that
T has pure continuous spectrum.

This completes the proof.
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