VoL. 43 (1991) [399-405]

ON HOLOMORPHIC DIFFERENTIALS OF SOME ALGEBRAIC FUNCTION FIELD OF ONE VARIABLE OVER C

Abstract

Ja Kyung Koo We give holomorphic differentials of some algebraic function field K of complex dimension one which is a generalisation of a hyperelliptic field.

1. Introduction

Let K be an algebraic function field of one variable over C. Then K is generated over C by two generic points x and y of a plane curve defined by some equation $f(X, Y)=0$, if f is the irreducible polynomial vanishing on (x, y). Here x is transcendental over \mathbf{C} and y is algebraic over the rational function field $F=\mathbf{C}(x)$. In the sense of the theory of Riemann surfaces one can identify K with the field of meromorphic functions on a compact Riemann surface ($[1,6,7,8]$). Thus all the statements parallel one another.

Let Ω be the set of differentials ($=$ differential one forms) of K. Then Ω is a one dimensional vector space over $K([3,5,8])$, which allows us to express it as $\Omega=K \cdot d x$. If $w=y d x$ is a differential of K and \mathfrak{P} a prime divisor of K, we define the order of w at \mathfrak{P} by $v_{\mathfrak{P}}(w)=\nu_{\mathfrak{P}}(y d x / d t)$ where t is a local uniformising parameter in $K_{\mathfrak{P}}$ (the completion of K with respect to the \mathfrak{P}-adic topology). As is well known, $K_{\mathfrak{P}}$ is isomorphic to the field $\mathbf{C}((t))$ of formal power series and hence $\nu_{\mathfrak{P}}$ is the standard valuation on $\mathrm{C}((t))$. Note that $v_{\mathfrak{P}}(w)$ is independent of the choice of t and $v_{\mathfrak{P}}(w)=0$ for almost all prime divisors \mathfrak{P}. We call $w \in \Omega$ a holomorphic differential (or a differential of the first kind) if $v_{\mathfrak{P}}(w) \geqslant 0$ for all \mathfrak{P}. If Ω_{1} is the set of holomorphic differentials and g is the genus of K, then Ω_{1} is a g-dimensional vector space over $\mathbf{C}([1,2,3,6,8])$. Therefore we can describe all the holomorphic differentials when we are given an algebraic function field K.

In this paper we find holomorphic differentials of $K=\mathbf{C}(x, y)$ for which x and y satisfy the following equation :

$$
\begin{equation*}
y^{n}=A\left(x-a_{1}\right)^{n_{1}}\left(x-a_{2}\right)^{n_{2}} \cdots\left(x-a_{\ell}\right)^{n_{\ell}} \tag{1}
\end{equation*}
$$

where all $a_{i}(\in \mathbf{C})$ are distinct, $A \in C^{\times}, n \geqslant 2, n_{j} \geqslant 1(j=1,2, \ldots, \ell)$ and $\left(n, n_{1}, \ldots, n_{\ell}\right)=1$. Observe that ($n, n_{1}, \ldots, n_{\ell}$) is the greatest common divisor of

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/91 \$A2.00+0.00.
the integers $n, n_{1}, \ldots, n_{\ell}$. In particular, K is called a hyperelliptic field provided that $n=2, \ell \geqslant 5$ and $n_{1}=\cdots=n_{\ell}=1$, in which case one can give an explicit basis $\left\{w_{1}, \ldots, w_{g}\right\}$ for Ω_{1} as follows ([2, 3, 8]):

$$
w_{j}=\frac{x^{j-1} d x}{y}, \quad 1 \leqslant j \leqslant g=\left[\frac{\ell-1}{2}\right]
$$

where $y=\sqrt{A} \sqrt{\left(x-a_{1}\right) \ldots\left(x-a_{\ell}\right)}$ and $[r]$ denotes the largest integer $\leqslant r$.

2. Preliminaries

To start with we need to show that the polynomial

$$
\begin{equation*}
Y^{n}-A\left(X-a_{1}\right)^{n_{1}} \ldots\left(X-a_{\ell}\right)^{n_{\ell}} \tag{*}
\end{equation*}
$$

is irreducible over \mathbf{C}.
Lemma 1. Let D be a unique factorisation domain of characteristic O and F be the quotient field of D. For $a \in D$, put $a=\pi_{1}^{e_{1}} \pi_{2}^{e_{2}} \cdots \pi_{l}^{e_{l}}$ with π_{j} prime elements in D. If n is a positive integer such that $\left(n, e_{1}, \ldots, e_{\ell}\right)=1$, then the polynomial $\varphi(Y)=Y^{n}-a$ over D is irreducible over F.

Proof: Let ξ be a primitive n-th root of unity in F and α be an element of the algebraic closure \bar{F} of F for which $\varphi(\alpha)=0$. Since $F(\alpha)$ is a (finite) Galois extension of F, let G be the Galois group of $F(\alpha)$ over F and $m=[F(\alpha): F]$. It suffices to show that $m=n$.

Suppose $\boldsymbol{m}<\boldsymbol{n}$. Take an \boldsymbol{F}-automorphism σ from G. Then

$$
\sigma(\alpha)^{n}=\sigma\left(\alpha^{n}\right)=\sigma(a)=a ;
$$

hence $\sigma(\alpha)=\xi^{\nu(\sigma)} \alpha$ for $\nu(\sigma) \in \mathbf{Z} / n \mathbf{Z}$. We derive from this an injective homomorphism ν from G into the additive group $\mathbf{Z} / n \mathbf{Z}$. Thus we may view G as a subgroup of $\mathbf{Z} / n \mathbf{Z}$ which is cyclic of order n. Let $G=\langle\tau\rangle$. Since $F(\alpha)$ is Galois over $F,|G|=m$ divides n. We observe by the definition of ν that $\tau(\alpha)=\xi^{\nu(\tau)} \alpha$ implies $\tau^{m}(\alpha)=\xi^{\nu\left(\tau^{m}\right)} \alpha=$ $\xi^{m \nu(r)} \alpha$.

But, $\boldsymbol{\tau}^{\boldsymbol{m}}(\alpha)=\alpha$; hence

$$
\begin{equation*}
m \nu(\tau) \equiv 0 \quad(\bmod n) \tag{2}
\end{equation*}
$$

On the other hand, by (2),
and

$$
\begin{aligned}
& (\tau(\alpha))^{m}=\xi^{m \nu(r)} \alpha^{m}=\alpha^{m} \\
& (\tau(\alpha))^{m}=\tau\left(\alpha^{m}\right)
\end{aligned}
$$

Therefore α^{m} belong to F. Set $\alpha^{m}=b$. Then $b^{n / m}=\left(\alpha^{m}\right)^{n / m}=\alpha^{n}=a$.
Since m divides n, let $b^{n / m}=b^{r}$. Obviously $r>1$. Now we have $a=b^{r}$ with $a=\pi_{1}^{e_{1}} \cdots \pi_{l}^{e_{l}}$, from which we conclude that r is a common divisor of e_{1}, e_{2}, \ldots, and e_{ℓ}. Since r also divides $n,\left(n, e_{1}, \ldots, e_{\ell}\right)>1$. This is a contradiction.

Lemma 1 asserts that the polynomial in (*) is irreducible over C.
Theorem 2 (Riemann-Hurwitz's formula). Let K be an algebraic function field of one variable over \mathbf{C} of genus g, and $F=\mathbf{C}(x)$ for $x \in K-\mathbf{C}$ such that $[K: F]=n$. Let \mathfrak{P} be a prime divisor of K and $e_{\mathfrak{P}}$ be the ramification index of \mathfrak{P}. Then

$$
\frac{1}{2} \sum_{\mathfrak{P}}\left(e_{\mathfrak{P}}-1\right)=n+g-1
$$

Proof: ([2, 3, 4, 5, 8]).
Since \mathfrak{P} lies over some prime divisor \mathfrak{F}_{α} of $F(\alpha \in \widehat{\mathbf{C}}$ the extended complex plane), we have the following diagram :

where $F_{\mathfrak{F}_{\alpha}}$ is the completion of F and u is a local uniformising parameter in $F_{\mathfrak{F}_{\alpha}}$. If $e=e\left(\mathfrak{P} \mid \mathfrak{F}_{\alpha}\right)$ is the ramification index of \mathfrak{P} over \mathfrak{F}_{α}, then $\boldsymbol{u}=\boldsymbol{t}^{e}$. Hence

$$
u= \begin{cases}x-\alpha & \text { if } \alpha \neq \infty \\ 1 / x & \text { if } \alpha=\infty\end{cases}
$$

implies that

$$
v_{\mathfrak{P}}(d x)=\nu_{\mathfrak{P}}\left(\frac{d x}{d t}\right)= \begin{cases}e-1 & \alpha \neq \infty \tag{3}\\ -e-1 & \alpha=\infty\end{cases}
$$

3. Main Theorem

Following the Riemann-Hurwitz's formula one can derive the genus g of K as follows

$$
\begin{equation*}
g=\frac{1}{2} n(\ell-1)-\frac{1}{2}\left\{\sum_{j=1}^{\ell}\left(n, n_{j}\right)+(n, N)\right\}+1 \tag{4}
\end{equation*}
$$

where $N=\sum_{j=1}^{\ell} n_{j}$. We first consider the differential of the form $w=d x / y$ with $y=\sqrt[n]{A} \sqrt[n]{\left(x-a_{1}\right)^{n_{1}} \cdots \cdots\left(x-a_{\ell}\right)^{n_{\ell}}}$.

It follows from (3) that

$$
v_{\mathfrak{P}}(d x)= \begin{cases}1-1=0 & \text { if } \alpha \neq \infty \text { and } a_{j} \tag{5}\\ \frac{n}{\left(n, n_{j}\right)}-1 & \text { if } \alpha=a_{j} \\ -\frac{n}{(n, N)}-1 & \text { if } \alpha=\infty\end{cases}
$$

Next, we obtain from (1) that

$$
n \nu_{\mathfrak{P}}(y)=\nu_{\mathfrak{P}}\left(\left(x-a_{1}\right)^{n_{1}}\right)+\cdots+\nu_{\mathfrak{P}}\left(\left(x-a_{\ell}\right)^{n_{\ell}}\right)
$$

because $v_{\mathfrak{P}}(y)=\nu_{\mathfrak{P}}(y)$ and $\nu_{\mathfrak{P}}(A)=0$. Since all $\left(x-a_{j}\right)$ belong to the field F,

$$
\begin{equation*}
n \nu_{\mathfrak{P}}(y)=n_{1} e_{\mathfrak{P}} \nu_{\mathfrak{F}_{\alpha}}\left(\left(x-a_{1}\right)\right)+\cdots+n_{\ell} e_{\mathfrak{P}} \nu_{\mathfrak{F}_{\alpha}}\left(\left(x-a_{\ell}\right)\right) \tag{6}
\end{equation*}
$$

where $\nu_{\mathcal{F}_{\alpha}}$ is the discrete (exponential) valuation of F. Thus, by (6),

$$
\nu_{\mathfrak{P}}(y)= \begin{cases}\frac{1}{n}\left\{n_{1} \cdot 1 \cdot 0+\cdots+n_{\ell} \cdot 1 \cdot 0\right\}=0, & \alpha \neq \infty \text { and } a_{j} ; \tag{7}\\ \frac{1}{n}\left\{0+\cdots+0+n_{j} \cdot \frac{n}{\left(n, n_{j}\right)} \cdot 1+0+\cdots+0\right\}=\frac{n_{j}}{\left(n, n_{j}\right)}, & \alpha=a_{j} ; \\ \frac{1}{n}\left\{n_{1} \cdot \frac{n}{(n, N)} \cdot-1+\cdots+n_{\ell} \cdot \frac{n}{(n, N)} \cdot-1\right\}=-\frac{N}{(n, N)}, & \alpha=\infty .\end{cases}
$$

Since $v_{\mathfrak{P}}(w)=v_{\mathfrak{P}}(d x)-\nu_{\mathfrak{P}}(y)$, it follows from (5) and (7) that for a prime divisor \mathfrak{P} over $\mathfrak{F}_{\boldsymbol{\alpha}}$

$$
\nu_{\mathfrak{P}}(w)= \begin{cases}0 & \text { if } \alpha \neq \infty \text { and } a_{j} \\ \frac{n-\left(n_{j}+\left(n, n_{j}\right)\right)}{\left(n, n_{j}\right)} & \text { if } \alpha=a_{j} \\ \frac{N-(n+(n, N))}{(n, N)} & \text { if } \alpha=\infty\end{cases}
$$

Therefore, $d x / y$ is holomorphic if and only if $n \geqslant n_{j}+\left(n, n_{j}\right)(1 \leqslant j \leqslant \ell)$ and $N \geqslant n+(n, N)$. We readily see from this that the necessary conditions are

$$
\begin{equation*}
n>n_{j} \quad(j=1,2, \ldots, \ell) \quad \text { and } \quad N>n . \tag{8}
\end{equation*}
$$

For instance, look at the case $n=3$ and $\ell=3$. Then by (4)

$$
g=3-\frac{1}{2}\left\{\left(3, n_{1}\right)+\left(3, n_{2}\right)+\left(3, n_{3}\right)+\left(3, n_{1}+n_{2}+n_{3}\right)\right\}+1
$$

and hence, by the restriction (8), we come up with the following table :

n_{1}	n_{2}	n_{3}	validity	g
1	1	1	\times	1
1	1	2	0	2
1	2	2	0	2
2	2	2	0	1

In the first case $d x / y$ is not a holomorphic differential; then what is the basis element of Ω_{1} ? In the other cases $d x / y \in \Omega_{1}$, moreover in the last case every holomorphic differential is a constant multiple of $d x / y$. But, there still remains a question in the second and the third case; what is another basis element w independent of $d x / y$?

To have complete answers we consider the differentials of the form

$$
\begin{equation*}
w=\frac{\prod_{j=1}^{\ell}\left(x-a_{j}\right)^{k_{j}} d x}{y^{m}} \tag{9}
\end{equation*}
$$

where $m \geqslant 1, k_{j} \geqslant 0$ and $y=\sqrt[n]{A} \sqrt[n]{\left(x-a_{1}\right)^{n_{1}} \cdots \cdots\left(x-a_{\ell}\right)^{n_{\ell}}}$.
Theorem 3. A differential w in (9) is holomorphic if and only if $n\left(k_{j}+1\right) \geqslant$ $m n_{j}+\left(n, n_{j}\right)(1 \leqslant j \leqslant \ell)$ and $m N \geqslant\left(\sum_{j=1}^{\ell} k_{j}+1\right) n+(n, N)$.

Proof: For a prime divisor \mathfrak{P} over $\mathfrak{F}_{\boldsymbol{\alpha}}$,

$$
\begin{aligned}
v_{\mathfrak{P}}(w) & =v_{\mathfrak{P}}(d x)+\sum_{j=1}^{\ell} k_{j} \nu_{\mathfrak{P}}\left(\left(x-a_{j}\right)\right)-m \nu_{\mathfrak{P}}(y) \\
& =v_{\mathfrak{P}}(d x)+\sum_{j=1}^{\ell} k_{j} e_{\mathfrak{P}} \nu_{\mathfrak{J}_{\alpha}}\left(\left(x-a_{j}\right)\right)-m \nu_{\mathfrak{P}}(y) .
\end{aligned}
$$

Here

$$
\sum_{j=1}^{\ell} k_{j} e_{\ngtr} \nu_{\mathfrak{F}_{a}}\left(\left(x-a_{j}\right)\right)= \begin{cases}0 & \text { if } \alpha \neq \infty \text { and } a_{j} \tag{10}\\ k_{j} \cdot \frac{n}{\left(n, n_{j}\right)} & \text { if } \alpha=a_{j} \\ \sum_{j=1}^{\ell} k_{j} \cdot \frac{-n}{(n, N)} & \text { if } \alpha=\infty\end{cases}
$$

Therefore, by (5), (7) and (10)

$$
v_{\mathfrak{P}}(w)= \begin{cases}0, & \alpha \neq \infty \text { and } a_{j} \\ \frac{n\left(k_{j}+1\right)-\left(m n_{j}+\left(n, n_{j}\right)\right)}{\left(n, n_{j}\right)}, & \alpha=a_{j} \\ \frac{m N-\left(\left(\sum_{j=1}^{\ell} k_{j}+1\right) n+(n, N)\right)}{(n, N)}, & \alpha=\infty\end{cases}
$$

from which we have the theorem.

4. Applications

In Section 3 we see that $d x / y$ is not a holomorphic differential when $n=3$ and $n_{1}=n_{2}=n_{3}=1$. Applying Theorem 3, however, we can get appropriate basis element to this case. Since $N=n_{1}+n_{2}+n_{3}=3,\left(n, n_{j}\right)=1$ and $(n, N)=3, w$ in (9) is holomorphic if and only if $3\left(k_{1}+1\right) \geqslant m+1,3\left(k_{2}+1\right) \geqslant m+1,3\left(k_{3}+1\right) \geqslant m+1$ and $3 m \geqslant 3\left(k_{1}+k_{2}+k_{3}+1\right)+3$, or equivalently $3 k_{1} \geqslant m-2,3 k_{2} \geqslant m-2,3 k_{3} \geqslant m-2$ and $m \geqslant k_{1}+k_{2}+k_{3}+2(m>1)$.

Taking smallest possible integers, $m=2$ and $k_{1}=k_{2}=k_{3}=0$. Therefore every holomorphic differential in this case is a constant multiple of $d x / y^{2}$ with $y=$ $\sqrt[3]{A} \sqrt[3]{\left(x-a_{1}\right)\left(x-a_{2}\right)\left(x-a_{3}\right)}$.

Likewise, in the second and third cases holomorphic bases are
and

$$
\begin{aligned}
& \left\{\frac{d x}{y}, \frac{\left(x-a_{3}\right) d x}{y^{2}}\right\} \quad\left(y=\sqrt[3]{A} \sqrt[3]{\left(x-a_{1}\right)\left(x-a_{2}\right)\left(x-a_{3}\right)^{2}}\right) \\
& \left\{\frac{d x}{y}, \frac{\left(x-a_{2}\right)\left(x-a_{3}\right) d x}{y^{2}}\right\} \quad\left(y=\sqrt[3]{A} \sqrt[3]{\left(x-a_{1}\right)\left(x-a_{2}\right)^{2}\left(x-a_{3}\right)^{2}}\right)
\end{aligned}
$$

respectively.
In the case of a hyperelliptic field K, we can derive a different basis for Ω_{1} from the one described in Section 1 such as $\left\{w_{1}^{\prime}, \ldots, w_{g}^{\prime}\right\}$ with

$$
w_{k}^{\prime}=\frac{\prod_{j=1}^{\ell}\left(x-a_{j}\right)^{k-1} d x}{y^{2 k-1}} \quad(1 \leqslant k \leqslant g)
$$

and

$$
y=\sqrt{A} \sqrt{\left(x-a_{1}\right) \cdots \cdots\left(x-a_{\ell}\right)}
$$

References

[1] C. Chevalley, Introduction to the theory of algebraic functions of one variable, AMS Mathematical Surveys No. 6, 1951.
[2] H.M. Farkas and I. Kra, Riemann surfaces (Springer-Verlag, Heidelberg, New York, Berlin, 1980).
[3] O. Foster, Lectures on Riemann surfaces (Springer-Verlag, Berlin, Heidelberg, New York, 1981).
[4] R. Hartshorne, Algebraic geometry (Springer-Verlag, Berlin, Heidelberg, New York, 1977).
[5] S. Lang, Introduction to algebraic and abelian functions (Springer-Verlag, Berlin, Heidelberg, New York, 1982).
[6] C.L. Siegel, Topics in complex function theory Vol I, II (Wiley-Interscience, 1970).
[7] G. Shimura, Introduction to the arithmetic theory of automorphic functions (Princeton University Press, 1971).
[8] G. Springer, Introduction to Riemann surface (Chelsea Publishing Co., New York, 1957).

Korea Advanced Institute of Science and Technology
Department of Mathematics
Taejon 305-701
Korea

[^0]: Received 6th June, 1990.

