ON HOLOMORPHIC DIFFERENTIALS OF SOME ALGEBRAIC FUNCTION FIELD OF ONE VARIABLE OVER C

JA KYUNG KOO

We give holomorphic differentials of some algebraic function field K of complex dimension one which is a generalisation of a hyperelliptic field.

1. INTRODUCTION

Let K be an algebraic function field of one variable over C. Then K is generated over C by two generic points x and y of a plane curve defined by some equation f(X,Y) = 0, if f is the irreducible polynomial vanishing on (x,y). Here x is transcendental over C and y is algebraic over the rational function field F = C(x). In the sense of the theory of Riemann surfaces one can identify K with the field of meromorphic functions on a compact Riemann surface ([1, 6, 7, 8]). Thus all the statements parallel one another.

Let Ω be the set of differentials (= differential one forms) of K. Then Ω is a one dimensional vector space over K ([3, 5, 8]), which allows us to express it as $\Omega = K \cdot dx$. If w = y dx is a differential of K and \mathfrak{P} a prime divisor of K, we define the order of w at \mathfrak{P} by $v_{\mathfrak{P}}(w) = v_{\mathfrak{P}}(y dx/dt)$ where t is a local uniformising parameter in $K_{\mathfrak{P}}$ (the completion of K with respect to the \mathfrak{P} -adic topology). As is well known, $K_{\mathfrak{P}}$ is isomorphic to the field $\mathbf{C}((t))$ of formal power series and hence $v_{\mathfrak{P}}$ is the standard valuation on $\mathbf{C}((t))$. Note that $v_{\mathfrak{P}}(w)$ is independent of the choice of t and $v_{\mathfrak{P}}(w) = 0$ for almost all prime divisors \mathfrak{P} . We call $w \in \Omega$ a holomorphic differential (or a differential of the first kind) if $v_{\mathfrak{P}}(w) \ge 0$ for all \mathfrak{P} . If Ω_1 is the set of holomorphic differentials and g is the genus of K, then Ω_1 is a g-dimensional vector space over \mathbf{C} ([1, 2, 3, 6, 8]). Therefore we can describe all the holomorphic differentials when we are given an algebraic function field K.

In this paper we find holomorphic differentials of K = C(x, y) for which x and y satisfy the following equation :

(1)
$$y^{n} = A(x-a_{1})^{n_{1}}(x-a_{2})^{n_{2}}\cdots(x-a_{\ell})^{n_{\ell}}$$

where all $a_i (\in \mathbb{C})$ are distinct, $A \in \mathbb{C}^{\times}$, $n \ge 2$, $n_j \ge 1$ $(j = 1, 2, ..., \ell)$ and $(n, n_1, ..., n_\ell) = 1$. Observe that $(n, n_1, ..., n_\ell)$ is the greatest common divisor of Received 6th June, 1990.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/91 \$A2.00+0.00.

the integers n, n_1, \ldots, n_ℓ . In particular, K is called a hyperelliptic field provided that $n = 2, \ell \ge 5$ and $n_1 = \cdots = n_\ell = 1$, in which case one can give an explicit basis $\{w_1, \ldots, w_g\}$ for Ω_1 as follows ([2, 3, 8]):

$$w_j = rac{x^{j-1} dx}{y}, \qquad 1 \leqslant j \leqslant g = \left[rac{\ell-1}{2}
ight]$$

where $y = \sqrt{A}\sqrt{(x-a_1)\dots(x-a_\ell)}$ and [r] denotes the largest integer $\leq r$.

2. PRELIMINARIES

To start with we need to show that the polynomial

(*)
$$Y^n - A(X - a_1)^{n_1} \dots (X - a_\ell)^{n_\ell}$$

is irreducible over C.

LEMMA 1. Let D be a unique factorisation domain of characteristic O and F be the quotient field of D. For $a \in D$, put $a = \pi_1^{e_1} \pi_2^{e_2} \cdots \pi_{\ell}^{e_{\ell}}$ with π_j prime elements in D. If n is a positive integer such that $(n, e_1, \ldots, e_{\ell}) = 1$, then the polynomial $\varphi(Y) = Y^n - a$ over D is irreducible over F.

PROOF: Let ξ be a primitive *n*-th root of unity in F and α be an element of the algebraic closure \overline{F} of F for which $\varphi(\alpha) = 0$. Since $F(\alpha)$ is a (finite) Galois extension of F, let G be the Galois group of $F(\alpha)$ over F and $m = [F(\alpha) : F]$. It suffices to show that m = n.

Suppose m < n. Take an F-automorphism σ from G. Then

$$\sigma(\alpha)^n = \sigma(\alpha^n) = \sigma(a) = a;$$

hence $\sigma(\alpha) = \xi^{\nu(\sigma)} \alpha$ for $\nu(\sigma) \in \mathbb{Z}/n\mathbb{Z}$. We derive from this an injective homomorphism ν from G into the additive group $\mathbb{Z}/n\mathbb{Z}$. Thus we may view G as a subgroup of $\mathbb{Z}/n\mathbb{Z}$ which is cyclic of order n. Let $G = \langle \tau \rangle$. Since $F(\alpha)$ is Galois over F, |G| = m divides n. We observe by the definition of ν that $\tau(\alpha) = \xi^{\nu(\tau)} \alpha$ implies $\tau^m(\alpha) = \xi^{\nu(\tau^m)} \alpha = \xi^{m\nu(\tau)} \alpha$.

But, $\tau^m(\alpha) = \alpha$; hence

(2)
$$m\nu(\tau) \equiv 0 \pmod{n}.$$

On the other hand, by (2),

and
$$(\tau(\alpha))^m = \xi^{m\nu(\tau)}\alpha^m = \alpha^m$$

 $(\tau(\alpha))^m = \tau(\alpha^m).$

Therefore α^m belong to F. Set $\alpha^m = b$. Then $b^{n/m} = (\alpha^m)^{n/m} = \alpha^n = a$.

Since *m* divides *n*, let $b^{n/m} = b^r$. Obviously r > 1. Now we have $a = b^r$ with $a = \pi_1^{e_1} \cdots \pi_\ell^{e_\ell}$, from which we conclude that *r* is a common divisor of e_1, e_2, \ldots , and e_ℓ . Since *r* also divides *n*, $(n, e_1, \ldots, e_\ell) > 1$. This is a contradiction.

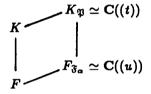
Lemma 1 asserts that the polynomial in (*) is irreducible over C.

THEOREM 2 (Riemann-Hurwitz's formula). Let K be an algebraic function field of one variable over C of genus g, and F = C(x) for $x \in K - C$ such that [K:F] = n. Let \mathfrak{P} be a prime divisor of K and $e_{\mathfrak{P}}$ be the ramification index of \mathfrak{P} . Then

$$\frac{1}{2}\sum_{\mathfrak{P}}\left(e_{\mathfrak{P}}-1\right)=n+g-1.$$

PROOF: ([2, 3, 4, 5, 8]).

Since \mathfrak{P} lies over some prime divisor \mathfrak{F}_{α} of F ($\alpha \in \widehat{\mathbf{C}}$ the extended complex plane), we have the following diagram :



where $F_{\mathfrak{F}_{\alpha}}$ is the completion of F and u is a local uniformising parameter in $F_{\mathfrak{F}_{\alpha}}$. If $e = e(\mathfrak{P}|\mathfrak{F}_{\alpha})$ is the ramification index of \mathfrak{P} over \mathfrak{F}_{α} , then $u = t^e$. Hence

$$u = \left\{egin{array}{ll} x-lpha & ext{if } lpha
eq \infty \ 1/x & ext{if } lpha = \infty, \end{array}
ight.$$

implies that

(3)
$$v_{\mathfrak{P}}(dx) = \nu_{\mathfrak{P}}\left(\frac{dx}{dt}\right) = \begin{cases} e-1 & \alpha \neq \infty \\ -e-1 & \alpha = \infty. \end{cases}$$

3. MAIN THEOREM

Following the Riemann-Hurwitz's formula one can derive the genus g of K as follows

(4)
$$g = \frac{1}{2}n(\ell-1) - \frac{1}{2}\left\{\sum_{j=1}^{\ell}(n,n_j) + (n,N)\right\} + 1$$

where $N = \sum_{j=1}^{\ell} n_j$. We first consider the differential of the form w = dx/y with $y = \sqrt[n]{A} \sqrt[n]{(x-a_1)^{n_1} \cdots (x-a_{\ell})^{n_{\ell}}}$.

It follows from (3) that

(5)
$$v_{\mathfrak{P}}(dx) = \begin{cases} 1-1=0 & \text{if } \alpha \neq \infty \text{ and } a_j, \\ \frac{n}{(n,n_j)}-1 & \text{if } \alpha = a_j, \\ -\frac{n}{(n,N)}-1 & \text{if } \alpha = \infty. \end{cases}$$

Next, we obtain from (1) that

$$n
u_{\mathfrak{P}}(y) =
u_{\mathfrak{P}}((x-a_1)^{n_1}) + \cdots +
u_{\mathfrak{P}}((x-a_\ell)^{n_\ell})$$

because $v_{\mathfrak{P}}(y) = \nu_{\mathfrak{P}}(y)$ and $\nu_{\mathfrak{P}}(A) = 0$. Since all $(x - a_j)$ belong to the field F,

(6)
$$n\nu_{\mathfrak{P}}(y) = n_1 e_{\mathfrak{P}} \nu_{\mathfrak{F}_{\alpha}}((x-a_1)) + \cdots + n_{\ell} e_{\mathfrak{P}} \nu_{\mathfrak{F}_{\alpha}}((x-a_{\ell}))$$

where $\nu_{\mathfrak{F}_{\alpha}}$ is the discrete (exponential) valuation of F. Thus, by (6), (7)

$$\nu_{\mathfrak{P}}(y) = \begin{cases} \frac{1}{n} \{n_1 \cdot 1 \cdot 0 + \dots + n_{\ell} \cdot 1 \cdot 0\} = 0, & \alpha \neq \infty \text{ and } a_j; \\ \frac{1}{n} \{0 + \dots + 0 + n_j \cdot \frac{n}{(n,n_j)} \cdot 1 + 0 + \dots + 0\} = \frac{n_j}{(n,n_j)}, & \alpha = a_j; \\ \frac{1}{n} \{n_1 \cdot \frac{n}{(n,N)} \cdot -1 + \dots + n_{\ell} \cdot \frac{n}{(n,N)} \cdot -1\} = -\frac{N}{(n,N)}, & \alpha = \infty. \end{cases}$$

Since $v_{\mathfrak{P}}(w) = v_{\mathfrak{P}}(dx) - \nu_{\mathfrak{P}}(y)$, it follows from (5) and (7) that for a prime divisor \mathfrak{P} over \mathfrak{F}_{α}

$$u \mathfrak{p}(w) = \left\{ egin{array}{ll} 0 & ext{if } lpha
eq \infty ext{ and } a_j, \ rac{n-(n_j+(n,n_j))}{(n,n_j)} & ext{if } lpha = a_j, \ rac{N-(n+(n,N))}{(n,N)} & ext{if } lpha = \infty. \end{array}
ight.$$

Therefore, dx/y is holomorphic if and only if $n \ge n_j + (n, n_j)$ $(1 \le j \le \ell)$ and $N \ge n + (n, N)$. We readily see from this that the necessary conditions are

(8)
$$n > n_j$$
 $(j = 1, 2, ..., \ell)$ and $N > n$.

For instance, look at the case n = 3 and l = 3. Then by (4)

$$g = 3 - \frac{1}{2} \{ (3, n_1) + (3, n_2) + (3, n_3) + (3, n_1 + n_2 + n_3) \} + 1,$$

402

n ₁	n_2	n_3	validity	g
1	1	1	×	1
1	1	2	0	2
1	2	2	0	2
2	2	2	0	1

and hence, by the restriction (8), we come up with the following table :

In the first case dx/y is not a holomorphic differential; then what is the basis element of Ω_1 ? In the other cases $dx/y \in \Omega_1$, moreover in the last case every holomorphic differential is a constant multiple of dx/y. But, there still remains a question in the second and the third case; what is another basis element w independent of dx/y?

To have complete answers we consider the differentials of the form

(9)
$$w = \frac{\prod_{j=1}^{\ell} (x - a_j)^{k_j} dx}{y^m}$$

where $m \ge 1$, $k_j \ge 0$ and $y = \sqrt[n]{A} \sqrt[n]{(x-a_1)^{n_1} \cdots (x-a_\ell)^{n_\ell}}$.

THEOREM 3. A differential w in (9) is holomorphic if and only if $n(k_j + 1) \ge mn_j + (n, n_j)$ $(1 \le j \le \ell)$ and $mN \ge \left(\sum_{j=1}^{\ell} k_j + 1\right)n + (n, N)$.

PROOF: For a prime divisor \mathfrak{P} over \mathfrak{F}_{α} ,

$$egin{aligned} v_{\mathfrak{P}}(w) &= v_{\mathfrak{P}}(dx) \ + \ \sum_{j=1}^{\ell} k_j
u_{\mathfrak{P}}((x-a_j)) \ - \ m
u_{\mathfrak{P}}(y) \ &= v_{\mathfrak{P}}(dx) \ + \ \sum_{j=1}^{\ell} k_j e_{\mathfrak{P}}
u_{\mathfrak{F}_{\mathbf{a}}}((x-a_j)) \ - \ m
u_{\mathfrak{P}}(y). \end{aligned}$$

Here

(10)
$$\sum_{j=1}^{\ell} k_j e_{\mathfrak{P}} \nu_{\mathfrak{F}_{\alpha}}((x-a_j)) = \begin{cases} 0 & \text{if } \alpha \neq \infty \text{ and } a_j, \\ k_j \cdot \frac{n}{(n,n_j)} & \text{if } \alpha = a_j, \\ \sum_{j=1}^{\ell} k_j \cdot \frac{-n}{(n,N)} & \text{if } \alpha = \infty. \end{cases}$$

Therefore, by (5), (7) and (10)

$$v_{\mathfrak{P}}(w) = \begin{cases} 0, & \alpha \neq \infty \text{ and } a_j, \\ \frac{n(k_j+1)-(mn_j+(n,n_j))}{(n,n_j)}, & \alpha = a_j, \\ \frac{mN-\left(\left(\sum_{j=1}^{\ell} k_j+1\right)n+(n,N)\right)}{(n,N)}, & \alpha = \infty, \end{cases}$$

from which we have the theorem.

0

4. APPLICATIONS

In Section 3 we see that dx/y is not a holomorphic differential when n = 3 and $n_1 = n_2 = n_3 = 1$. Applying Theorem 3, however, we can get appropriate basis element to this case. Since $N = n_1 + n_2 + n_3 = 3$, $(n, n_j) = 1$ and (n, N) = 3, w in (9) is holomorphic if and only if $3(k_1 + 1) \ge m + 1$, $3(k_2 + 1) \ge m + 1$, $3(k_3 + 1) \ge m + 1$ and $3m \ge 3(k_1 + k_2 + k_3 + 1) + 3$, or equivalently $3k_1 \ge m - 2$, $3k_2 \ge m - 2$, $3k_3 \ge m - 2$ and $m \ge k_1 + k_2 + k_3 + 2$ (m > 1).

Taking smallest possible integers, m = 2 and $k_1 = k_2 = k_3 = 0$. Therefore every holomorphic differential in this case is a constant multiple of dx/y^2 with $y = \sqrt[3]{A}\sqrt[3]{(x-a_1)(x-a_2)(x-a_3)}$.

Likewise, in the second and third cases holomorphic bases are

$$\begin{cases} \frac{dx}{y}, \frac{(x-a_3) dx}{y^2} \\ \left\{ \frac{dx}{y}, \frac{(x-a_2)(x-a_3) dx}{y^2} \right\} & \left(y = \sqrt[3]{A} \sqrt[3]{(x-a_1)(x-a_2)(x-a_3)^2} \right) \\ \left\{ \frac{dx}{y}, \frac{(x-a_2)(x-a_3) dx}{y^2} \right\} & \left(y = \sqrt[3]{A} \sqrt[3]{(x-a_1)(x-a_2)^2(x-a_3)^2} \right), \end{cases}$$

respectively.

In the case of a hyperelliptic field K, we can derive a different basis for Ω_1 from the one described in Section 1 such as $\{w'_1, \ldots, w'_q\}$ with

$$w'_{k} = \frac{\prod_{j=1}^{\ell} (x-a_{j})^{k-1} dx}{y^{2k-1}} \qquad (1 \leq k \leq g)$$

and

$$y = \sqrt{A}\sqrt{(x-a_1)\cdots(x-a_\ell)}.$$

References

- C. Chevalley, Introduction to the theory of algebraic functions of one variable, AMS Mathematical Surveys No. 6, 1951.
- [2] H.M. Farkas and I. Kra, *Riemann surfaces* (Springer-Verlag, Heidelberg, New York, Berlin, 1980).
- [3] O. Foster, Lectures on Riemann surfaces (Springer-Verlag, Berlin, Heidelberg, New York, 1981).
- [4] R. Hartshorne, Algebraic geometry (Springer-Verlag, Berlin, Heidelberg, New York, 1977).
- [5] S. Lang, Introduction to algebraic and abelian functions (Springer-Verlag, Berlin, Heidelberg, New York, 1982).
- [6] C.L. Siegel, Topics in complex function theory Vol I, II (Wiley-Interscience, 1970).

Holomorphic differentials

- [7] G. Shimura, Introduction to the arithmetic theory of automorphic functions (Princeton University Press, 1971).
- [8] G. Springer, Introduction to Riemann surface (Chelses Publishing Co., New York, 1957).

Korea Advanced Institute of Science and Technology Department of Mathematics Taejon 305-701 Korea

[7]

405