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Introduction

Let (S, Z,/i) and (7^©,v) be two measure spaces of finite measure where we assume
S, T are compact Hausdorff spaces and \i, v are regular Borel measures. We construct
the product measure space (TxS,Q>,a) in the usual way. Let G = [jgl,g2,...,gp] and
H = [hl,h1,...,hm\ be finite dimensional subspaces of C(S) and C(T) respectively where
G and H are also Chebyshev with respect to the Lj-norm. Note that a subspace Y of
a normed linear space X is Chebyshev if each xeX possesses exactly one best
approximation yeY. For example, in C(S) with the Lj-norm, the subspace of
polynomials of degree at most n is a Chebyshev subspace. This is an old theorem of
Jackson. Now set

U = C(T)®G, V = H®C{S), W=U+V.

It is easy to prove [7] that U and V are proximinal subspaces of C(TxS). That is, every
feC(TxS) possesses at least one best approximation from U or from V. A metric
selection Pv:C{TxS)-*U is a mapping which associates each/eC(TxS) with one of
its best approximations in U. The metric selection Pv is similarly defined.

We shall investigate the behaviour of the Diliberto-Straus algorithm [2]. This
algorithm generates a sequence of functions {/„} and may be described by taking fo = f
and setting

This algorithm is essentially the "alternating method" of Von Neumann [11] although
his discussion centred on the Hilbert space setting. This investigation extends work in
[8] where G and H were both restricted to being 1-dimensional. Other papers directly
related to this work are [4], [7] and [9]. We shall show that if one or other of G and H
is one dimensional and if / satisfies certain hypotheses than the norms of the iterates
converge to dist(/,W)=infweir||/— w\\. In contrast to the Diliberto-Straus paper [2]
(which dealt with the L^-case) it is impossible to obtain convergence of these Z^-norms
to dist(/, W) for al l / e C(T x S) as is shown by an example from [9].

It will be convenient to assume throughout that S and T have measure 1. We shall
use unadorned norm symbols ||.|| to denote the Lj-norm on TxS while ||.||s and ||.||r
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32 W. A. LIGHT AND S. M. HOLLAND

will denote Li-norms on S and T respectively. We shall also need to assume that the
bases in G and H are such that they each form one half of a bi-orthonormal set of bases
for G,G* and if, if*. Thus

gl,...,gpeG;4>u...,<j>peG*

<gt,<i>j>=Stj

1= ĥ

The algorithm

Given / e C(T x S) the sections /, and f, are defined by the equation ft(s) = f(t, s) = fs(t).
fteC(S) for all teT. Every section/, possesses a unique best approximation geG
because G is Chebyshev. We claim that when these "sectional" approximations are
pieced together, we obtain an element of U. Before we can establish this we need a
result from [4], whose proof we provide on account of its brevity.

Lemma 1 There exists a function g in C(S) such that for each u in U,

for all teT,seS.

Proof. Set d]'1=infCi£R\\£iii!jCigi+gj\\s. Since the g( are linearly independent we
have dJ1>0 for j=l,2,...,n. Let w = X?xfg,- and let Tj = {teT:xj(i)j=O}. Then for t in
T: we have

\P i = i

Thus for all ter|x7(t)|^^||«,||s. Now

\u(t, s)\ ^t \xt(t)\ \gt(s)\ ^ h\\

Choosing ^ = X?^t|?«| gives (i), while for (ii) we need only observe

lk||r = J \u(t, s)\dv£ M\\ut\\s dv=g(S)\\u\\.

Let A be the best approximation operator for G, i.e.
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where <j> e C(S). By a well-known result [5], A is a continuous operator from C(S) onto
G. Consider the map Av on C(Tx S) defined by

(Avf)(t,s)={Aft)(s).

We claim that the range of Av is indeed U.

Lemma 2. LetfeC(TxS). Then,

Auf(,t,s) = ^xi(t)gi(s)

where xt e C(T).

Proof. From the construction of Av it is clear that Av has the correct form and we
need only check the claim that xteC(T). Let feC(Tx S). Since T and S are compact, /
is uniformly continuous o n T x S and so given <5X>0 there is a <52 such that

so that ||/,'—/,||
<5>0 such that

or

i.e.

/(s, t') — f(s, t)|^<5i for |t' —t|^<52 and all seS,

for |t' —1\^52- Now by the continuity of A, given e>0 there is a

| |4/; ,-4/; | | sge for ||/,-/,.||s^<5

ft.-Aft\\s£e for | f- t |^5'

<e for \t'-t\<d'.

Now from the proof of Lemma 1 we can see that if x;(t') =)= x,(t) then

; ^(fj-x^t)

Hence

|x;(O-x/t)|^^j£ for \t'-t\^5'

and so XjeC(T). Q

Clearly the map Av:C(TxS)-+V can be similarly defined. We remark that both Av

and Av are metric selections. For a fixed feC(TxS) we can define mappings BV:V-*U
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34 W. A. LIGHT AND S. M. HOLLAND

and By-.U^V by

BuV^Ayif — v) and Bvu = Av(f — u).

Lemma 3. The mappings Bv and Bv are continuous.

Proof. We shall only establish that Bv is continuous. Consider first the mapping
</>:Fx T^G given by

<j) is clearly continuous since A is continuous and the operation of taking t-sections of
functions in C(T x S) is also continuous. Now fix voe V. Then given e>0 we choose <5, to
be the largest real number such that

\\A(f-vo)t-A(f-v)t\\s<e whenever ||(i>0),-i>,||s<<5t.

Now by Lemma 1 applied to V rather than U, there is a function heC(T) such that

foralHeT

Hence we can modify 8, to be the largest real number such that

\\Af-Vo)t-Af-v)t\\s<e whenever ||DO-J;||<<5,,

i.e.,

\\<j)(vo,t) — (l)(v,t)\\s<£ whenever \\v0 — v\\<5t.

Set <5 = inf(er<5r. We claim that <5>0. Suppose to the contrary we have 8 = 0. Set

Osc(</>,t,/)= sup \<j){vut)-(f>(v2,t)\.
vvv2el

Then Osc(</»,t,B(v0,5,))^e where B(vo,dt) = {v:\\vo — v\\ = 5,}. Now by our hypothesis
there is a sequence {tn}eT such that ^ r , |0- By the compactness of T we may as well
assume that tn-*t*eT. Now Osc((j>,tn,B(v0,dtJ) — e violates the continuity of (f> at (vo,t*).
We have thus shown that given e > 0 there is a 8 > 0 such that

\\A(f-vo)t-A(f-v)t\\s<e whenever ||tfo-i;||<<5.

Integrating over T gives the required result

\\Au(f — v0) — Au(f — u)\\<e whenever ||t)0-u||<8. •

Note that the continuity of the metric selection in general is not being asserted here
since Av is being restricted to act on V. Nevertheless, Lemma 3 provides a class of
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INVERSION OF THE DILIBERTO-STRAUS ALGORITHM IN C(TxS) 35

functions and a Lt-metric selection which is continuous on that (infinite-dimensional)
class.

We are now in a position to define the algorithm for a fixed feC(TxS) we set

fi = f

Jin — 72/1-1 "-VJln-1

fin + 1 = fin ~ A-Vfin

If we also put

then the algorithm can be rewritten

It is easy to establish that

Hn = Av{f-Gn) =

Our main question can now be stated more carefully. Given an feC(TxS) we want to
know when ||/n||-»dist(/ W). It will become clear shortly that {||/n||} is a decreasing
sequence of real numbers bounded below by dist(/, W) so that we are really asking—
when is this lower bound attained?

Preliminary results

We shall need several results which are not in the mainstream of our argument. For
convenience we collect them in this section. The first is a characterisation theorem of
James [6].

Theorem 4. In order that 0 be a best L^approximation to an feL^S) from some
linear subspace K it is necessary and sufficient that Jksgn/^jZ(y,\k\for all keK. Here
Z(f) denotes the set of points where /(s) = 0.

Corollary 5. / / K is a one-dimensional subspace spanned by a non-negative function k
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36 W. A. LIGHT AND S. M. HOLLAND

then 0 is a best Li-approximation to anfeL^S) if and only if

J **
P(f)

k and j k^
N(f)

Here N(f) and P(f) denote the sets where f is negative or positive respectively.

This result is an elementary special case of Theorem 4, and we omit the proof.

Lemma 6. Suppose K is a one-dimensional subspace of Lt(S) generated by a non-
negative function k0. Then there exists a metric selection 7t:L1(S)-+X with the following
properties

(i) n(f + XkQ) = nf + lk0 for allXeUJe L^S).
(ii) Wf-nfWs^WfWsforallfeL.iS).
(iii) nfi ^ nf2 whenever/, ^f2JiJi
(iv) ||K/1

Proof. We begin by observing that only (iv) needs the requirement that S has a
Borel measure defined on it. Further (i) and (ii) are elementary. To establish (iii) we
firstly recall that the set of best approximations to ft from K is convex and closed. If K
is generated by k0 then this set corresponds to some interval [ a^ j J J cR in the sense
that ck0 is a best approximation toft if and only if ce[a1,fi1']. Now suppose/2^/i with
corresponding interval [a2,/?2]. Suppose further that x2<ix1. Then since a2k0 is not a
best approximation to/x we have by Corollary 5 either

I Jc >̂ I K, o r I fc ~^> \ k.
PUt-a2k0) ° 2s JVf/.-^o) s

Now if the former obtains then $p(f2-a2k0)k0>^jsk0 s ince/2^/i . In the latter case
IN(/I-<«2*O)'C°>MS'CO- These two conditions violate the fact that a2fc0 and a^o are best
approximations to f2 and ft respectively. A similar argument shows f}1^fi2. Now
defining nf, =kk0 where A is the midpoint of [_a.l,fil~] gives the result. The proof of (iv) is
as follows. Firstly, (iv) involves no selection since in this case nf is unique for / e C(S)
[10; p. 235] so

or

Now by parts (iii) and (i)

nf2 - \\A - /2||s. oo ^ nf, < nf2 + \\f, - /2|

or

IKl-«f2||S..£||/l-/2||S... •
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INVERSION OF THE DILIBERTO-STRAUS ALGORITHM IN C(TxS) 37

Note that we cannot relax the condition that K be generated by a non-negative function
for if k0 has both P(k0) and N(k0) of positive measure then we cannot have afco^a^o
unless a = ax.

We now give three results which appeared in [7]. We provide the proofs of two for
completeness, the third being elementary.

Lemma 7. The subspace W is closed in C(TxS). Hence each element weW has the
representation w = u + v with ueU, veV and ||u|| + ||t>||^/?||w||, /? constant.

Proof. Recalling our bi-orthonormal bases we define

(Pf)(t,s)=t </„<t>i>gi(s) feC(Tx S)

(Qf)(t,s)= £ <fs^i>hi(t) feC{TxS).

These are bounded linear projections onto U and V respectively. It is easily verified that
PQ = QP. By [3], p. 481] P + Q-PQ is a projection of C(TxS) onto W. W is therefore
closed and given weW defining u = Pw—PQw and v = Qu completes the proof. •

Lemma 8. If veV then

n

sup||u,||s^||u|| ^
t i = 1

Proof. Let v = Yj = iyihi. By the bi-orthonormality property

Therefore, since ||i/'j||00 = 1 we have

This gives

ds

Lemma 9. IffeC(TxS) then | |/, | | s^
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38 W. A. LIGHT AND S. M. HOLLAND

We shall now show that the sequence {/„}, generated by our algorithm has cluster
points. The proof is surprisingly intricate when compared with similar results from [8].
We begin by observing that the mechanism by which w = u + v is shown to have a
representation w = u' + v' where ||u'|| + ||i/||^/?||w|| in Lemma 7 is in fact to take an
appropriate zeU nV and set u' — u~z, v' = v + z. Now given our algorithm we set

where zn is chosen in U n V so that

Notice that

=Au(f-{Hn.1-zn))

Similarly, H'n = Av(f—G'n) and H'^1 = .
Note further that Avf produces a best approximation to / out of U since

IK/),-/,||s = |M/;-/,M i*t(t)gt-f for A,(t)eK.
i s

Integrating over T gives

K / - / | | ^ | | / - « | | for all UE 17.

Similarly

Now from f2n = f2n-i—Avf2n-i we see that ||/2n||^||/2n-i|| a nd m a similar way
/2n + i||^||/2n|| i.e. the sequence {||/n||} is decreasing. Hence

or
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and similarly

Using the fact that ||G;||^)?||Hn we see that

Now since ||G|,|| is bounded we have

and again

Hence | |H;| | , ||G;||, | |H;,'-I||, and are all bounded

Lemma 10. Let feC(TxS) and let G have metric selection satisfying condition (iv) of
Lemma 6. Then the sequence {G'n} has cluster points in U with respect to the supremum
norm on C(TxS).

Proof. Consider {G^is^t,) — G'n(s,i)\

i(si,-)-G.(s,-)||r.» by Lemma 6

S, oo T, oo

In these last two expressions the yl and xt depend on n. We need to show that the sums
E™=i INIs.co and Zf=i ||xi||r.co a r e uniformly bounded.
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40 W. A. LIGHT AND S. M. HOLLAND

We already know (G;), = A(ft-(HJJ.O,) so that

by Lemma 9

,||ri0O by Lemma 8

m

+ 2>'||/|| X ll^llr.oo by the remarks preceding this lemma
i = 1

Now from the proof of Lemma 1 we obtain

M|r..A

which gives the boundedness of ||x,||r>00.
Similarly, (H'^_1)s is the best approximation from H to/s—(G^'-OJ to that

s.oo by Lemmas 8, 9

Again from the proof of Lemma 1 applied to an element of V rather than U we
obtain
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where

The first of these two arguments shows further that llGjJIa, is bounded for n= 1,2,...,
and we may now conclude that {G'n} is a bounded equicontinuous family of functions in
U. Since U is closed {G'n} has cluster points in U with respect to the supremum norm.

Theorem 11. Let feC(TxS) and let G be one-dimensional generated by a non-
negative function g. Then the sequence {/„} generated by the L^version of the Diliberto-
Straus algorithm has cluster points with respect to the sup-norm topology on C(Tx S).

Proof. By Lemma 10 the sequence {G1,} has cluster points. Now H'n = Av(f—G'n)
= By(G'n) and Bv is continuous by Lemma 3. Thus if G'nk-*CeU, H'nk-*By(C) and so

fnk - • / • = / - C - BV{Q. Since W is closed C - BV(C) lies in W. •

Finally, we have the following result from [8]. An alternative proof is provided.

Lemma 12. Let (H,A,fi) be a finite measure space and let {/„} be a convergent
sequence in Lt(H,A,p) with limit e. Suppose {Fn} is a sequence of measurable sets in H
such that

(i) J | / . |#-0 as n-*oo

(ii) P(Z{e))=0.

Then

Proof. Let Em = {h:e(h)> 1/m}. Then the Em form an increasing sequence of sets in H
with limit H. Suppose that the desired conclusion is false. Then by passing to
subsequences if necessary we may assume P(Fn)^d>0 for all n. Choose Em so that
P(EJ^l-6/2. Then 0(EmnFn)^S/2. Now take e>0. Since fn-*e we deduce that there
is an n0 for which

J |/n~e\dfi%E when n ^

or

Now
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Choosing nt such that

j\fn\dp£e iorn^n,

we have (l/m)P(Em n Fn)^2e for large enough n.

This contradicts f}(Em n Fn) ̂  5/2. D

Convergence of the algorithm

We shall throughout this section assume that G is one-dimensional generated by a
non-negative function g,feC(TxS) and that the sets of points at which / agrees with
any member of W have measure zero, so that if

Xw = {(t,s):{f-w)(t,s) = 0}

then a(Xw) = 0 for all weW. This condition is analogous to the idea of smoothness in Lt

spaces. We are requiring that each element f—w, weW should be smooth (almost
everywhere different from 0), see [6] for details.

Lemma 13. Let Fn = {(t,s):sgnfn + l(t,s) = —sgnfn(t,s)}, and let {/MJ be a convergent
subsequence of the algorithm. Then <r(Fnt)-»0.

Proof. Recall that {||/n||i} is a decreasing sequence bounded below and hence
convergent. Given e>0 take N sufficiently large so that ||/2n-i|| — ||/2n||<£ f°r a'l n^N-
By our assumption on / the functions /„ agree with members of W only on sets of
measure zero and so by the characterisation theorem in the form given by Theorem 4
we obtain

jgsgnf2ndii = 0 for almost all teT and all geG.

Furthermoref2n — f2n-1€U and sof2n(t,-)—f2n-1(t,-)eG for almost all teT. Hence

H/2n(V)-/2n-i(',-)]sgn/2n(t, -)dn=0 for almost all teT,

and so

This gives

j] /2B_1-sgn/2l I_1=0.

||/2n-i||~||/2n||<£ s o t n a t w e m ay conclude

2 JJ |/2n_1|d<7<£.
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A similar argument applies for F2n so that JJFn|/n|-*O. Now suppose fKk-*e. Then
again e agrees with members of W only on sets of measure zero and so Lemma 12 can
be applied to give tr(Fnt)-+O. •

We shall now show that for the convergent subsequence {/nJ with limit e, we have

JJwsgneda = 0 for all weW

It will be sufficient to show

$$usgneda=0 foralluel/

and

§§ v sgn e da = 0 for all v e V

or again sufficient to demonstrate that

Jhsgnedv = 0 for all heH, almost all seS
T

and

§ = 0 for almost all t e T
s

when the former limits will follow from an application of the Fubini Theorem. If nk is
odd then

Jhsgn f dv=0 for all heH, almost all s6S

while if nk is even then

jg sgn /„ d\i = 0 for almost all t e T.
s

Suppose nk is even, nk = 2p say. Then JTftsgn/nit + 1<iv=O for almost all seS. Set Fn(t) =
{s:(s,t)eFn} and Fn(s) = {t:(s,t)eFn}. Then

$hsgnfntdv\dn=$ J

https://doi.org/10.1017/S0013091500022094 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500022094


44 W. A. LIGHT AND S. M. HOLLAND

Now take k0 sufficiently large to ensure that for a given e and fixed heH

(i)

(ii) r , . , . . e > for all k>k0, and almost all teT
j / i ( sgne-sgn/ )dv - '
r

Then

Thus

j h sgn e do = 0 for almost all s e S.
T

In a similar manner we show that

Jgsgnedfj. = O for almost all teT and all geG.
r

With this preamble we are able to state and prove our main result.

Theorem 14. Let G be a one-dimensional subspace generated by a non-negative
function. Let feC(TxS) with the sets

having o(Xw)=0 for all weW. Then the sequence {/„} generated by the L^version of the
Diliberto-Straus algorithm has the property ||/B|| J, dist(/, W).

Proof. We shall show that if {fnk} is a convergent subsequence with limit e then
||e|| = dist(/, W). Then we already know {{||/B||} is a decreasing sequence and so the
theorem will be proved. From the preamble we already know jJwsgncd<j=O for all
weW. Now

Thus by the fact that W is closed and

e = lim fnk = lim / - wnjt = / - w*

we have

dist(/,W)= inf | | / -HI= inf ||e-l-w1||^|[e|| = ||/-vV*|j=lim ||/J|=lim ||/.||. •
k->a> n->ooi "
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Remarks

Other theorems of this nature are easily obtained after one has observed that the
assumption that G be one-dimensional generated by a positive function is only needed
to ensure that Lemma 6(iv) holds. An alternative approach is to assume that G has the
property given in Lemma 6(iv) i.e. its metric selection is Lipshitz with constant unity on
C(TxS). Apart from the one-dimensional subspaces generated by positive functions this
phenomenon would seem to be somewhat rare.

REFERENCES

1. F. DEUTSCH, The alternating method of von Neumann, Multivariate Approximation Theory,
eds. W. Schempp and K. Zeller (Birchhauser Verlag, Basel, 1979).

2. S. P. DILIBERTO and E. G. STRAUS, On the approximation of a function of several variables by
the sum of functions of fewer variables, Pacific J. Math. 1 (1951), 195-210.

3. N. DUNFORD and J. T. SCHWARTZ, Linear Operators, Part J (Interscience, New York, 1959).

4. S. M. HOLLAND, W. A. LIGHT and L. J. SULLEY, On proximinality in L^TxS), Proc. Amer.
Math. Soc, to appear.

5. R. B. HOLMES, A Course on Optimization and Best Approximation (Springer-Verlag, 1972).

6. R. C. JAMES, Orthogonality and linear functionals in normed linear spaces, Trans. Amer.
Math. Soc. 61 (1947), 265-292.

7. W. A. LIGHT and E. W. CHENEY, Some best approximation theorems in Tensor Product
Spaces, Math. Proc. Camb. Phil. Soc. 8 (1981), 385-390.

8. W. A. LIGHT, The Diliberto-Straus algorithm in Lt(X x Y), J. Approx. Th., to appear.

9. W. A. LIGHT, J. H. MCCABE, G. H. PHILLIPS and E. W. CHENEY, The approximation of

bivariate functions by sums of univariate ones using the L,-metric, Proc. Edinburgh Math. Soc. 25
(1982), 173-181.

10. I. SINGER, Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces
(Springer-Verlag, New York, Heidelberg, Berlin, 1970).

11. J. VON NEUMANN, Functional Operators Part II, The geometry of orthogonal spaces (Annals
of Math. Studies, no. 22, Princeton University Press, 1950).

MATHEMATICS DEPARTMENT
TEXAS A. & M. UNIVERSITY
COLLEGE STATION
TEXAS

https://doi.org/10.1017/S0013091500022094 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500022094

