
Ergod. Th.&Dynam. Sys. (1981), 1, 159-178
Printed in Great Britain

The structure of piecewise monotonic
transformations

FRANZ HOFBAUERt

From the Institut fur Mathematik, Universitdt Wien, Austria

{Received 3 July 1980 and revised 2 January 1981)

Abstract. Transformations on [0,1] which are piecewise monotonic and piecewise
continuous are considered. Using symbolic dynamics, the structure of their non-
wandering set is determined. This is then used to prove results about maximal and
absolutely continuous invariant measures.

0. Introduction
n

We consider dynamical systems ([0,1],/), where [0,1]= U h, the /, are disjoint

intervals and f\Jt is continuous and increasing. The /-expansion gives rise to a shift
space 2/ (cf. § 1). Our goal is to determine the structure of the non-wandering set
ft of 2 / . In [4] it is shown how these results can be extended to the case where
f\Jt is either increasing or decreasing.

§ 1 gives a summary of results proved in [3] and needed in this paper. In § 2 it
is shown that the non-wandering set ft of I'} can be written as U ft< ̂  Y u Z.

12=1

There are finitely or countably many ft,. The ft; and Y are closed, a- invariant
subsets of £/ , and ft, is topologically transitive. ft, nft,, for i #/ , and ftf n Y are
empty or finite; Z is finite and wandering in ft. The topological entropy of Y is
zero, ft, is a finite union of intervals, a Cantor set or a periodic orbit. Furthermore,
fli=XiuX2U' • • u X , ( ? a 1), the X, are closed and again pairwise disjoint up to
finitely many points; o-{Xi) <= Xi+1 for 1 :£ iis q - 1 , cr{Xq) <= Xi and <rq/Xi is topologi-
cally mixing.

The rest of the paper deals with invariant measures. It is shown in [3] that ft,
has a unique measure with maximal entropy if /jtop(ft,)>0. In § 3 this measure is
characterized as the measure with respect to which the periodic points are uniformly
distributed. § 4 considers invariant measures of ([0,1], f) which are absolutely con-
tinuous with respect to Lebesgue measure and gives an example in connection
with this.

Finally, I should like to thank Z. Nitecki for pointing out an error which was
contained in the first version of this paper.

t Address for correspondence: Dr Franz Hofbauer, Institut fur Mathematik, Universitat Wien, Strudhof-
gasse 4, A-1090 Wien, Austria.
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160 F.Hofbauer

1. Preliminaries
We give a description of results proved in [3]. Let / be as in the introduction.
Define the /-expansion <j>: [0,1]-*In = { 1 , . . . , «}N by <(>(x) = i'oii'2- • •. where »,- is
the number / of the interval Jt with /'(*) e/,. If Jk = (r, s), define afc = lim <f>(t) and

* )• Set= lim
Its

lim

(1.1)

where < denotes the lexicographic ordering and cr the shift transformation. We
, 1]) is countable, <f> is order preserving and <r°<f> =have <f>([0, l ] ) - £ /

4> °f. <f> is injective if and only if (/i, / 2 , . . . , /„) is a generator for ([0,1],/).
2/ can be characterized by all blocks xoxi... xm-\ which are admissible in 2 / ,

i.e. o[*oXi • • • *m-i] = {z 6 S/: 2, = xt for 0 < / ̂  m -1} is not empty. This is equivalent
to o-m~1(o[xo...xm-i])*0. We have o[̂ o] = [ax°, bx°], which denotes a closed
interval in 2 / . We show by induction that there are /, / , i t > l and / a 1 such that

with for 1 <r<min (fc,/).
(1.2)

The induction step is

ol>m] n<T

[a*m, bXm] n [cr a', cr b']

0, ifxm<a'fc or
[o-V, bx»], ifxm=al and
[a1-, oV], ifxm>al and (1.3)

if aJk<xm<M-

It is easy to see that crm(0[x0 • • • xm]) is either empty or satisfies (1.2). Hence we
have shown (1.2) by induction. In particular, o-"1"1^^ • • • Jtm-i]) is a closed
sub-interval of some 0 [ i ] c J / ( l S i < n ) . If it is not empty, it is either
o-k~1(o[a'0 • • • ajt-i]) or ak'x(o[bo • • • b'k-i]) for some i and k, because all intervals
one obtains by repeated use of (1.3) are such sets:

and

[ c / -V , cr '-V] = <rl-\o[b'0 • • • bU ]) if k < /.

This follows from lemma 11 of [3]. Hence many of the sets a-m~1(o[xo' ' ' xm-i])
coincide.

We form a diagram with the sets crm~1(o[xo • • • Jcm-i]) (we take n =2 for con-
venience). It will be called M.
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Piecewise monotonic transformations 161

(1.4)

There is a 1-1 correspondence between paths in M which begin with one of the
arrows ending at some o[fc](l ^ k ^ n) and which do not lead to an empty set and
the points xe2/(jc0, xi • • • are the numbers of the arrows on this path). We shall
call such paths special paths in order to distinguish them from paths beginning with
any other arrow of (1.4) (they represent also points of if, but a n x e l / may have
many such representations).

M serves also for another purpose. Set

D = {<rm-\o[xo • • • Xm-i]): <rm-l(o[xo • • • *m-i]) * 0 }

xm

Together with the arrows a-m~1(o[^o • • • xm-i]) *am(0[x0 • • • xm]), D becomes
the diagram M of (1.4). In [3] we have used o-m(0[x0 • • • Jcm-i]) instead of
(rml(o[xo • • • *m-i])- This makes no difference for the results and the proofs of
[3], but the new definition is more convenient. For example, D need not be a set
of pairs (xm-i, crm(0[x0 • • • xm-i])) as in [3] because jcm-i is determined by
O'"l"1(o[lo • • • *m-l]) c o[*m-l].

Define 1M — {y e Dz: there is an arrow from y, to y,+i in M Vi 6 Z}. Now 1f =
{% e { 1 , . . . , n}2: xmxm+\ • • • e 2/Vm e Z}, the natural extension of if, can be written
as disjoint union of sets N and X which are ar- invariant and measurable. N contains
no periodic points and is a null set for every measure with maximal entropy. (X, a)
and (SM, o) are isomorphic, the isomorphism $ is given by representing y e 1M,
which is a two-sided path of vertices in the diagram M, by the numbers of the
arrows on this path giving an x e X c J ; (cf. [3]). Two-sided paths exist in M
because many of the sets am'l(0[x0 • • • xm-\]) coincide. Examples can be found in
[3]. The map x- (^M, <T) —* (£/, a-) —* (2/ , cr) is the composition of this isomorphism
i/> and the projection v to positive coordinates, x is continuous.

We conclude § 1 with two remarks. This first one explains how the results of this
paper can be extended to maps /, for which /|/,- is continuous and increasing for
some is and decreasing for the other is. The only difference to the piecewise
increasing case is that we have another order relation in the shift space such that
<f> is order preserving (cf. [4]). 2f is defined as in (1.1), but with this different order
relation, a- is then not order preserving, hence the intervals occurring in (1.3) may
have also crkb' for some i and k as initial point or a-'a' for some / and / as endpoint
or both. One can define the diagram M as in (1.4) and also the map x- In [4], a
piecewise increasing transformation g is constructed such that (2/ , a) is a two-to-
one factor of (2g, a). The only proofs in this paper which will use the explicit form
of the intervals in (1.3) are those of lemmas 1,4 and (ii) of lemma 7. These proofs
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162 F. Hofbauer

can be extended to the piecewise increasing-decreasing case in the same way as
one obtains the diagram M for / from that of g (cf. [4]). The definitions and all
other proofs work unchanged. Hence all results of this paper are also valid for
piecewise increasing-decreasing transformations.

The second remark shows how one can determine the structure of the non-
wandering set of (fO, 1],/) from that of (£/, <r). If (Ju . . . , / „ ) is a generator for
([0, 1],/), then <{> is injective and <f>~1 can be easily extended on all of S/ to a map
p which is continuous and preserves the ordering. An x e [0,1] is wandering under
/ if and only if <£(*) £ ft, unless x is an inverse image under some iterate of / of an
endpoint of some./,, not equal to 0 or 1. which can be non-wandering, and 4> (x) i. ft.
These are exactly those *e[0,1] such that p~x(x) is not a single point but two
points x and x'. If x is non-wandering and x£ ft, x'£ ft, then there is an e >0 such
that f{x -e,x)n(x-e) = 0 andfk(x, x + e) n (x, x + e) = 0 for all k > 1 (the inter-
vals (x — e, x) and (x, x + e) correspond to neighbourhoods of x and x' respectively).
Hence x is isolated in the non-wandering set of ([0,1], /) and non-periodic (other-
wise x or x' is periodic). If we transfer the structure of ft to ([0,1], f) via p, then
we can add these points to p(Z). Hence the non-wandering set of ([0,1],/) has
the same structure as that of (2/, a) described in § 0: one has only to allow that
the set corresponding to Z is countable.

If (/i, . . . , / „ ) is not a generator, then <f> maps certain intervals to single points
(cf. [4]).

2. The non-wandering set of (i}, a)
We show that (£/, a) has the structure described in § 0. To this end we consider
M as a 0-1-matrix with index set D. Mde = 1 if and only if there is an arrow from
d to e in M. We divide M into irreducible submatrices A/, with index set Dt{i > 1),
i.e. Dt is a maximal subset of D such that, if d, e € Dt, then there is a path from d
to e in M, and Mt = M/Di. 1.Mi

 c ^M denotes the shift space corresponding to Mt.
If zV/, then D, nD,=0 and U A C D. It may happen that LJ D, ^ D. As

i l l

and because of the arrows

mt r i i -t\ m + 1/ r i i- -i\

a (oLflo • ' • am})-+o- (oLao • • ' flm+ij).

it is easy to see that, for every £>,, there are p,, qt, uh v, (1 s ; ^ n) with 0<py< qt < oo
and 0s« ; <Vjsoo such that

A={o-'(o[a£ • • • ai,]),am(0[bo • • • bk
m]): I s / , ksn, pt^l<qh uksm<vk}.

(2.1)

We introduce an order relation among the £># as follows:

Di < Dh if there is a path from D, to £>, in M (2.2)
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As the Mis are the irreducible submatrices of M, this is an order relation. Let the
indices i e N of the Dt be such that £>;<£), implies / =£/. Set

Di = I d e D: there is a path from some e e U A to d|,
t J2i J

We then have A =>D| =>D,-+i- It is easy to see that D; and D\ are subsets C of D,
which have the following property.

If d e C and there is a path from d to c in M, then eeC. (2.3)

Remark. Suppose ak(o[a'o • • • a'k])eD (or ak(o[b'o • • • b'k])) consists only of the
single point y = aka' (o-kb') such that amy is not periodic for m a it. Then
crm(o[tfo • • • a'm]) = {crma'}eD has only one successor in M for all m >k. We then
cancel the vertices <xm(o[ao • • • a'm]) for m afe in M and the corresponding (via

co

X~l) set U o-~'(a-ka') in 2/ which is open, countable, a'1-invariant and consists

only of wandering points. We denote the remainder of "L} again by 2 / , which is
closed, a- invariant and contains all non-wandering points of the original 2 / . After
this modification, every element of D is either a non-trivial interval or a single
point y, such that aky is periodic for some Jt. As there are only finitely many a'
and b', there are among the elements of D only finitely many single points, i.e.
trivial intervals.

LEMMA 1. Let C <=^D have the property (2.3). Then [_j{d: deC} is a finite union
of intervals and is a-invariant.

Proof. Set % = {deC:d = [a', a V ] for some /, Jt} and 93,, = {d e C: d = [o-'a*. b'] for
some /, k}. Aj= [_} d and B, = U ^are intervals in 2 / or are empty. Let deDbe

non-trivial and yd the minimal number of steps to go on a path in M from d e SI,
or 23/ to an element of some Slm or 93m. Because d is not a single point, -yd<oo.
This part of Mlooks as follows (d = [a', <rV], cf. (1.3)):

[a', o V ] ^ • • • -»[o-^V, <r ' + Y "-V]- [a1, al+y"bk]

[o-^a', bs][as+1, bs+1] • • • [a'"1, b'"1].

Set a, = min {yd: d € 31,} and /3, = min {yd: d e 93,}. We show that

aa> (Aj) c B , u A , u U Ak for some s and f (5 < f).
s<k<(

Let d = [a', cr'bk] e ?l, with yd = a,. Then

o-"'(d) = [o-B'«', bs] u [as+1, bs+1] u • • • u [a'"1, b'"1]

l k , u U A k .
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If yd > ajy then

tr"'(d) = [o-V, o-'+-'bk]. <x'+"'bfc < bs,

because bk
+a, = a1*, = s (cf. (1.2)) and bk e 1} (cf. (1.1)). Hence

Similar results hold for d e 93;. Hence

U d = U ( V crk(Aj) u U crfc(5,)) uU</,(V j U ,) U
deC /=1 \k=0 fc=O / dsT

where T c C is a finite (or empty) set whose elements are trivial intervals (cf. the
remark above). This is a finite union of intervals in 1}. It is cr-invariant, because
C satisfies (2.3). D

By lemma 1, F,, := U{d: deD} and G, :=LJ{<i: J e O ! } are finite unions of intervals
which are cr-invariant. We have Ft ^> d ^>Fi+i. We set G0:=S/ . Hence we have
split 2 / into a sequence of decreasing sets which are cr-invariant. For; > 1 we define

k=0

and for />Owe define

If £>,+i does not exist, we set Fi+i = 0. fi, may be empty. As fl,-c:/?-\G,- and
fi,- <= G,-\Fi+i, which are finite unions of closed intervals, it follows that the sets
O, n ft,, ft, n ft,, for / # /, and ft, n ft/, for any i and /, are at most finite.

If there are infinitely many A/,, we have to consider also an ftoo and an ftco. Set
00

D'oo = ("I Dt. This set has the property (2.3), because every Dt has the property (2.3).
i = i

Hence Goo'-^Uid: deD'x,} and ftoo:= Gco are finite unions of intervals which are
cr- invariant. Because ftoo <= /l+1 for all /, we have that ft, n ftoo and ft, n ftoo are at most
finite. If there are only finitely many MjS, we set ftoo = 0 . Now set //, = FAGX.
Then //, is closed and //,=>//,+!. Hence H - (~) Hi is closed and not empty. Set

ftoo = Pi cr k(H), which is closed and cr-invariant. If £>» = 0 , then Clx = H. As

ftooc//1+i for all /, the sets ftoo^ft., ftoo n ft, and ftoo n ftoo are at most finite. If
there are only finitely many Mt, we set ftoo = 0 .

We need one more definition. Let Z, be the set of all xe bd î Abd G, (bd means
boundary) such that there is a k with o-mxebdG, for all m>k and of all xe
bd G,\bd Fi+i such that there is a k with crmx6 bd Fi+1 for all m > k. If Goo # 0 , let
Zoo be the set of all xePlbdFjAbd G^ for some / such that there is a A: with

crmx€ bd Gco for all m > ik.
Now we have the following result.
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LEMMA 2. The set ft of non-wandering points of 2 / is contained in

U n,u U ftiu U zt.

If x e F for all i and there are infinitely many M$, then xeffuGoo. We
consider this case below. As Go = 2 / , we find otherwise an i <oo with xeFAG, or
xe Gi\Fi+\. We consider first the case xe FAG;. The following three possibilities can
occur.

(i) X€fl,,
(ii) xgflj and xeint(FAG,) (int means interior). As x£ft,-, there is a k with

x£o-~~ (FAG,). Since this set is closed, there is a neighbourhood U of x contained
in int(FAG,-)no[>o-••**] such that U r\cr~k(Fi\Gi) = 0 . But then o-fc(t/)n
FAGi=0 and </(£/)<= G,-, because o-(Ft)cFi. Because o-(Gi)cGi, we have
<rm(U) <= G, for all m>k. This means that -x is wandering, i.e. xg ft.

(iii) x^n*i and xebdFAbdG, As xgft,, there is a it with x£o-~~k{Fi\G?), i.e.
o-kx £ F,-\Gj, hence crfcx 6 G,. If a-mx 6 int G, for some m, then there is a neighbourhood
U of x with U nGt=0 and o-m(t/) <= G,, because cr is continuous. Because <r(G,) <=
Gi; we then have \£ ft. If crmx€bd G, for all m > k, then xeZj.

Now we consifler the case xe GAF+i. We have the same three possibilities.
(i) X6ft,-.
(ii) x£ ft; and xe int (GAF+i). As above, it follows that x£ ft.
(iii) xgft, and xebd GAbdFi+i. As above, we have either x£ft or xeZf.
If now x € Pi for all i and there are infinitely many Mt, then x e H u Goo- We

consider again the three possibilities as above.
(i) xeftoouftoo.
(ii) x£ ftoouftm and xe int (FAGoo) for all i. As

ftoo = n o-~k n fli) = n n o-
oo

there is an i with x£ Pi a~k(Hi). As xe int H,, it follows as above that x^ ft.
k=0

(iii) x^ftoouftco and xebdF; for some /. Because F/+i<=F, and xeF ; for all /,
one has from x e bd F that x e bd Fy for all / > /. Then it follows again as above that
either <rmx e int Goo for some m, and hence x& ft (note that x£ Goo = ftoo), or x e Zoo.

In any case, we have shown that either x & ft or x e U^- <-" LJfti u LJZ.- This proves
the lemma. •

Examples which show how the ft, look like can be found in [3]. We give here an
example where a Z, occurs. The transformation / on [0,1] shown in figure 1 is a
modification of an example given by L. Block and L. S. Young (cf. [7]). We have
0<x <d<c<p<e<l, f is increasing on the intervals [0, d), [d,c), [c,e) and
[e, 1], and it satisfies

f([O,d)) = [c,l), f([d,c)) = [x,l), f([c,e)) = [x,\) and /([«, l]) = [p, 1].
Furthermore, f(x)=f(p) = p.

The diagram M is as follows (we take the elements of D here as sub-intervals
of [0,1]).
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0 *

FIGURE 1

[x,d)

D'2=0

Go = [0,1],

fc=0
p]), a Cantor set, = [p, 1]. and

One sees that JC£ fti and x£ O,2. Hence the Z, in lemma 2 are necessary.
Before we are able to investigate fi, and H, further, we need two technical

lemmas.

LEMMA 3. Let d&D. Then xed, if and only if x can be represented as a path in
M, which begins with an arrow ending at d.
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Proof. Suppose d = ak{o[a'o • • • a'k]). Let xed. This meansy = a'o • • • a'k-iX0Xi • • •€
1}. By the 1-1 correspondence of points in 2/ and special paths in M (cf. § 1),
we have that y corresponds to the special path

in M This means x can be represented as a path in M beginning with an arrow
which ends at d. Now let x correspond to a path which begins with an arrow ending
at d. Then a'o • • • a'k~ixox\ • • • e l / because it corresponds to a special path as
above. Hence xecrk(o[a'o ••• a'k]) = d. •

L E M M A 4. Let y\ y 2 e 2 M . J / X y 1 ) = *(y2) = xe= E, wfcere F = {o-ma', o-mb ' : 1 < / < n,

m > 0}, tfien tfiere /s a K with y) = y2, for all t>K.

Proof. Suppose yo is the interval [o-ka\ ak b' ]. Using (1.3) one can determine what
y\ is. If xi = a'k+i, then y\ has initial point o-fc+1a'. If x\ 7±a'k+u then y\ has initial
point a'2, where h = x\. Proceeding in this way, we can determine the initial points
of y) for t >0. We obtain the following result. Determine r\, r2,... (r(> 1) and
i\ - i, ii, . . . ( l s / | < « ) inductively according to

a'k\,=x,

a'l
l:1

Rl=x, toTR,^t<Rl+1, a^\^xRl+l (/al), (2.4)

where we have written R, for r\ + • • • + r,. Then it follows from (1.3) that the initial
point of y,1 is cr'c+'a'1 for 0 < r < r i and o-'"R'a'l+1 for R, < r< i? , + 1 ( /> l ) .

We do the same for y2. Suppose yl = [crmaJ, am by ]. We determine s\,si,... (si >
1) and /i =/, ]2, . . . ( l s / ( < n ) inductively according to

a[l-k, = xt forS,<f<S,+ 1, a^\*xSM ( / s i ) , (2.5)

where we have written 5, for st + • • • + s,. By (1.3) we have that the initial point of
y2 is o-m+'ayi for 0 < t < st and o-'~V'+1 for S, < / < S,+1 (/ > 1).

Without loss of generality, we can assume that ri<Si. Because x&E, we have
«i<oo. If n<si, it follows then from lemma 4 of [3] that there is a u with
n + • • • + ru = si. If n = si, we set u = 1. Now it follows from (2.4) and (2.5) that
ru+i = Si+z and /„+; =j\+i for / > 1. Hence y) and y2 have the same initial points for
all t>si :=K'.

We can perform the same also for endpoints of y) and y2 and find a K" such
that y) and y2 have the same endpoints for all t>K". If one now sets K =
max (K1, K"), one has yJ = y2 for all t > .fiT and the lemma is proved. •

Remarks, (i) Lemma 4 asserts a kind of injectivity of x- 1° particular, if y1 and y2

are distinct periodic points in l.M\x~1(E), then ^(y1) ^ *(y2).
(ii) The proof of lemma 4 works also if one has instead of y1 and y2 only one-sided

paths ylylyl • • • and ylylyl in M, which correspond to the same xe2/YE. We
shall sometimes apply lemma 4 in this form.

We return to the investigation of H, and n,.
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LEMMA 5. / / 1M. does not consist of only a periodic orbit, then xC^Mi)
<=- fl,.

Proof. Let y = • • • d0did2 • • • e TLMi and suppose akxt E for k >0, where x =
By definition of x and lemma 3, we have xedoeDh hence xe iv We show xt G,.
If xe Gh then xe d'o for some d'o e £>,'. By lemma 3, there is a path in M, beginning
with an arrow ending at d'o, which corresponds to x. Let d'od[d2 • • • be the vertices
on this path. By lemma 4 there is a K > 0 such that dk = d'k for k ^ K, since x£ £.
As dk eDiy we have found a path from £>| to £>,, a contradiction to the definition
of D\. Hence xeFAGj. But also o-k(x) = x(°~ky)&E a nd therefore, as for x above,
it follows that crfcxe /\\G,- for all k >0. This implies x€ fl,.

Now suppose that cr^xe E for some fe. As SM, does not consist of only a periodic
orbit, we can find y" € IM( with o-k(x{y"))<£ E, for all k, converging to y in SMj (Af,
is irreducible). As x is continuous and fi, is closed, it follows that *(y) = lim #(y") 6
fi,-. Hence we have shown that X^-MJ C fl,-. D

Now set Di = D'i\Di+i, DO = D\DU Dac = D'oc and Mi = M/Dt for 0 < J < O O . Let
5j<=lf be the set of all x which can be represented as one-sided paths in M,. If D,
is finite, then 5, = 0 , because Mt contains no closed paths. All closed paths must
be contained in the M,s by definition.
We have now:

LEMMA 6. O, <= *(!«,) for i <oo, fl,cS, /or i s oo antf f/ie set (IAXCZM,) is at most
countable and contains only finitely many periodic points.
Proof. We give the proof only for fl,. It is the same for fl,-. First we show that X&M)
is dense in Q,. Suppose o[*o • • • xk-i]^£li ^ 0- Because o[^o • • • xk-i] is open, there
is at least one deDj with o[*o • • • xk-i]nd 9^0. For every such d, xo- • • xk-i
corresponds to a path of length k beginning with an arrow ending at d (lemma 3).
If all these paths leave M;, we have

ol>o • • • **-i]n(F,\ LJ tr-m(G,))=0.
\ m=0 /

As O[A:O • • • Xfc-i] is open, this implies o[*o • • • xk-i] n Cl,.= 0 , a contradiction. Hence
we have a path of length k in M, which corresponds to JC0 • • • JCfc-i. Let d0 • • • dk-\
be the vertices on this path. As Af, is irreducible, we can extend d0 • • • dk-i to a
two-sided path in Mt giving rise to a y € 1M.. By definition of x, x(y) s o[*o • • • xk-{\.
(In the case of O, we extend d0 • • • dk-\ to a one-sided path in D{ giving rise to an
element of 5,.) This proves that fi,

Now let V be the set of all x e fi, with <rkx e E for some k or with x 6 bd Fh Then
V is countable and contains at most finitely many periodic points. In order to show
the second assertion it suffices to prove that fi,\V^c^(2M.).

Let x e fij: \ V. As x £ bd Ft there is a d0 e D, with x e d0. By lemma 3 there is a path
in M which begins with an arrow ending at d0 and which corresponds to x. Let
d0did2 • • • be the vertices on this path. We show that dk €£),. Suppose dk£Dt, then
we have dk&D\. By lemma 3 we have o-kxedk. As the endpoints of the interval
dk are in E and x^ V, o-kx is in the interior of dk. Hence crkxe int Gt, i.e. o-kx^F,\Gi,
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a contradiction to x e ft;. Hence dk £ Dt for all k. Because M, is irreducible, we can
extend the path dod\d2 • • • to a two-sided one in M,, which gives a ye£M i. By
definition of x, #(y) = x, hence XE*(2M,) . This proves that fli\Vc^(IM.). D

Remarks, (i) If SM. is only a periodic orbit, then ft, =# (2^ ) o r ' s empty. In this
case we redefine ft, as XC^MJ- Then we have ft,- -x(1Mi) for all i by lemmas 5
and 6.

(ii) If Di is finite, then 1Mi is compact. As x is continuous, this implies that X&M,)
is closed. Hence ^(SMr) = ft;- An open question is whether this also happens if £>,
is infinite.

(iii) If Di is finite, then S, = 0 . By lemma 6 we then have ft, = 0 .

The next two lemmas give properties of ft, for iVoo.

LEMMA 7. (i) ojflj w topologically transitive.
(ii) 7 / x s S / w periodic, then x e ft, /or some i.

i>rao/. (i) Because M, is irreducible, we can find a ye£M, such that {<rky: k >0} is
dense in 2M|- As * is continuous and commutes with a, the set {crk\: k >0}, where
x = ̂ (y), is dense in ft, by lemma 6.

(ii) Let xs l / + satisfy o-px = x for some p. Choose a path yoyi • • • in M(y,eD)
which corresponds to x. Suppose first that x g E. Because cr"x = x, the path ypyp+i • • •
also corresponds to x. Hence it follows from lemma 4 that there is a K with
ym+p = ym for all m>K. Now suppose that xeE, say x = crkb'. Set ym -
o-k+m(o[b'o • • • b'k+m])- Then yoyi • • • is a path in M which corresponds to x. As in
the proof of lemma 4 define rx, r2,... (ri > 1) and i\, i2, • • • inductively such that,
for/>0,

ai-i , = *« forR,st<Ri+u a';,i\ *Z>'R,+1, (2.6)

where we have written Rm for rx + • • • + rm(R0 = 0). It follows again from (1.3) that
vm = [trk+m-Rla!>+\ o-*+mb/], where / is such that R^k + m<R,+i.

Itr,-<x> for some t, then ym ={o-k+mb'} for m > Rt_x -k=K and hence ym+p = ym

for all m>K. If r, <oo for all /, let u and v be such that /?u_i<fc<i?u and
Rv-i < k +p<Rv. If Ru +p<Rv it follows from ak+pb' = akb' and lemma 4 of [3]
that there is a w>u with /?„, + p = Rv. If Ru+p>Rv, we can increase v to obtain
equality. Hence it follows from (2.6) that rw+t = rv+l and iw+i = iv+i for all / s 1. This
implies ym+p = ym for all m >RW- k =: K.

Hence in any case we have found a closed path yK -» yK+i ->•••-» y^+p = yK in
M, which must then belong to some M, by definition of the M,s. As x is the point
which corresponds to this closed path, we have by lemma 5 that x e ft, (cf. also the
remark after lemma 6). •

LEMMA 8. (i) If Dt is maximal with respect to (2.2) and D, =0,jhen ft, is a finite
union of intervals.

(ii) / / SM( is a periodic orbit, ft,- is also a periodic orbit.
(iii) Otherwise, ft,- is a Cantor set.
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Proof, (i) Let xeF;\Gf. Then xe d for some deDh By lemma 3, x corresponds to
a path which begins with an arrow ending at d. Because D, is maximal and Dt = 0 ,
this path cannot leave M,. Extending it to a two-sided path gives a y e SM, with

= x. Hence ft, = X&M,) = Ft\Gh a finite union of intervals.
(ii) We have ft, =^(2M|) by definition (cf. the remark after lemma 6).

(iii) The set Pi a (P1\G,) is a finite union of closed intervals. The intersection
k=0

of these sets for m > 1 gives ft,. Furthermore, ft* cannot contain an interval. Suppose
o[*o • • • Xk-i]c ft,. Then one finds a path of length k in Mi which corresponds to
xo • • • *fc-i- We can extend this path to an infinite one which leaves Mt and find
an xe0[x0 • • • xk-i] with ermxeint Gt for some m. Hence xgft,, a contradiction to
o[xo • • • xfc_i]cft,. As 2M, contains uncountably many elements, the same is true
for ft, by lemmas 5 and 4. Therefore ft, is a Cantor set. D

Next we investigate ft, for 0 < / < oo.

LEMMA 9. (i) /itop(ft,) = 0.
(ii) Among the ft, for 0 < / < oo there are only finitely many which are not empty.

Proof, (i) We have shown in lemma 6 that ft,cS,. Hence it suffices to show that
lim (l/k) logNk = 0, where Nk is the number of admissible blocks of length k in

SL. But if the block xo---xk-i is admissible in 5,, i.e. o[*o • • • xk-1]n
then we also have 0[x0 • • • xfc-i]n5, # 0 , because o[*o • • • ^*c-i] is open. Hence Nk
is also the number of admissible blocks of length k in 5,. Furthermore, we can
suppose that G, is all of 2 / . Otherwise we restrict / to <t>~1(Gi), which again gives
a piecewise monotonic transformation. Then Nk is the number of special paths of
length k in M*.

Fix some e >0. By lemma 13 of [3] there is a finite subset A of Dt such that the
spectral radius r{MjB) of M, restricted t o 5 = Dt\A is less than e. This implies
that the number of paths of length / in Mt/B which begin with one of the finitely
many arrows leading from A to B, is less than C exp (2el) for some constant C
(cf. § 3 of [3]). Making A larger if necessary, we can also suppose that the finitely
many elements of Dt at which special paths begin are contained in A.

Now let K be the cardinality of A. In a special path of length k in M, every
element of £>, can occur at most once, because Mt contains no closed paths. Hence
this special path contains at most K blocks consisting of elements of A, each of
which has length at most K. One of these blocks is at the beginning of the special

/ k\
path. Hence there are not more than I 1 possibilities to choose the places of these

blocks in the special path of length k. In between there are blocks consisting of
elements of B which begin with an arrow leading from A to B. They have lengths

/
h, h,---, lj (j s K) with £ /, < k. Hence we have

K 2 " c e x p ( 2 e / l ) " ' ' c e x p ( 2 e / / ) s ( ^ ) n J C I ' c'exp {2ek)-
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This implies that lim (\/k) \ogNk <2e. As e was arbitrary, we obtain

(ii) If Di is finite, then 5, = 0 , and hence A, = 0 by lemma 6. If Dt is infinite,
then it contains a set of the form

{ak (o[a'o • • • a'k]): k > m} or {ak(o[b'o • • • b'k]): k>m} for some i and m,

because £>! and Dl+\ have the property (2.3)*\vhich implies that i5, satisfies (2.1).
Hence there can be at most 2n different Dt, which contain infinitely many elements,
and hence at most 2n different non-empty fl,-. D
Remark. The transformation x -* x + a (mod 1) on [0,1], a £ Q, is an example where
DQ = D and ft0 = 2 / . It would be interesting either to find an example where H, # 0
for some / such that there is a / > i with D, > D,, or to show that this cannot happen.

LEMMA 10. / / there are infinitely many M$, then htop ( f~) FA =0. In particular,

Proof. Fix some e > 0. We have £>, = (D,-\£>») u £>». As D (DAD'*,) = 0 , there is an
i = i

/ with r(L,)<exp e, where Li=M/(Di\D'0O), by lemma 13 of [3].
Let jtoJti • • • Xk-i be an admissible block of length k in /;. It follows from the

proof of lemma 1 that Fi is a finite union of intervals

<rmAi = U ([o-V, o-m+'br]) and o-mS, = U ([o"m+'ar, o-mb']).
r.l r,l

If oDto ' ' ' *fc-i]ocrmA/5* 0 , then there are r and / such that

By lemma 3, x0 • • • *jt-i can then be represented as a path of length k in M/Di which
begins at [crma', o-m+ br] € Dt. Let 2 be the number of intervals of which Ft consists.
Then for every k, we can find z elements d\,...,dz of Dt such that every admissible
block in Ft of length k can be represented as path of length k in M/Di beginning at
one of these z elements.

By definition of £>», no path leads from D'<x> to Di\D'x. Hence for every admissible
block x0 • • • xk-i there is an / (0 < / < k) such that x0 • • • *;-i corresponds to a path
in Di\D'oo and x, • • • xk-i to a path in Di,. Hence the number of admissible blocks

k

of length k beginning at some dj ( 1 < / < Z ) is less than X N\N"k-i, where N\ is
1=0

the number of admissible blocks of length / in Dt\D'oo beginning at dj and Nk~i is
the maximal number of blocks of length k — I in D'co beginning at some element
ofD^.

Let u be the vector, with index set DAD'ao, which has entry 1 at the d/th coordinate
and entry 0 otherwise. If djSD'x,, then u has only zero entries (this corresponds to
the case / = 0). Then N[ = ||L,'M||I < ||L,'||i < C exp (lei), for some constant C, because
r{Lt)<e.
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In the proof of lemma 9, we have shown that htov(S<x>) = 0. Hence Nl-i ^
C exp (2e (k — I)) for some constant C If Nk is the number of admissible blocks of
length k in Dh we therefore have Nk =s zkCC exp (2efc). This implies that htop(Fi) <
2e and hence

' <2e.

As e was arbitrary, this gives the desired result. •

Remark. An example, where one has infinitely many Mts and ftoo^0, is x-*
ax(l — x) on [0,1] for certain values of a e [2,4].
Let Z be the set of all non-wandering x e U Z, which are not contained in some

ft, or ft,.

LEMMA 11. (i) If xeZ, then x is an isolated point of ft which is not periodic. Hence
x is wandering in ft.

(ii) Z is finite.

Proof, (i) Let x £ Z n Z, (/ < oo). Then

i+1 => LJ (Hj u ft,- u Z7).
/>;

Also x^ U (fty u fly), which is a closed set because ft, and ft, are closed. By lemma
/si

2, we have

ft c|J (ft,-ufty)uFwuUZ,,
/si /si

As UZy is finite, we find a neighbourhood U of x such that C/nft = {x}. The
/si

non-periodicity of x follows from the definition of Zt.
(ii) It follows from (2.1) that there are only finitely many £>,, say Dh,..., Dir,

which have infinitely many elements. By the proof of (ii) of lemma 9, there are
only finitely many Dh say Dh,..., Djs, which have infinitely many elements.

If Di is finite, then U {d: d 6 D,} is already closed, because every d € D is closed.
Hence bd i^\bd G,i <= U {d: d 6 DJ and an x € bd p;\bd G, is at the boundary of some
deDt. But then x = o-kam or akbm for some fc and m (cf. (1.2)). As o-'x is periodic
for some /, we then have a-k+'am (or crfe+'bm) is periodic. Similar arguments apply
for a finite Dt. Hence

Z c {o-k'a;, <rm'b;: 1 < / , /< n, 0< ^ < i f , - 1 , 0 < m; < JW;-1,

aK'a' and o-M'b' are periodic}

U , U y ,

This is a finite set. •

We collect the results in the following theorem.
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THEOREM 1. ft = U fi,- uY<uZ {finite or countable union) such that:
izl

(i) ft; and Y are closed, a-invariant sets. Z is finite and wandering in ft.
(ii) ft, n ft, for i # j and ft, n F are at most finite. ft,, n Z = 0 , Y n Z = 0 .
(iii) A// periodic points are contained in U ft<-

i = l

(iv) ft,- /s topologically transitive. It is either a finite union of intervals, a Cantor
set, or a periodic orbit.

(v) htop{Y) = 0.
U ft, u f~l .Fl) nft if there are infinitely many M$, and

Osisco i = l / ^

V = U ftj r\ ft if there are finitely many M$. Because ft<x> u Zm <= (~\ ph it follows
Osisoo , = 1

from lemma 2 that Cl = [J (lj <u Y KJ Z. By (ii) of lemma 9, U ft, is a finite union
ial Osisoo

of closed sets, hence Y is closed. Y is cr- invariant, because ft;, /) and ft are
o--invariant. Together with lemma 11, this implies (i). (ii) follows from definitions,
because U ft, is a finite union, (iii) and (iv) are lemmas 7 and 8, (v) follows

Osisoo

from lemmas 9 and 10. •

Now we investigate ft, for some fixed i # oo. One says that the 0-1-matrix Mt has
period q if £>, = C\ u C2 u • • • u Cq (disjoint) and if deCk and Mdcr = 1 imply
d' € Ck+i (we take the indices of the Qs modulo q). q is taken as large as possible.
If q = 1, Mt is called aperiodic. Set K, = (F,\G,) n\J,d: d € C,).

LEMMA 12. Kj is a finite union of intervals. Kj n Km{j ^ m) is empty or finite.

Proof. One shows that, if d\,d2&Di and the interval dind2 contains more than
one point, then d\ and d2 are in the same Cf. This proves both assertions. It proves
the first assertion, because it implies that the A$ and 5,* in the proof of lemma 1
are subsets of one of the Kfs. If d\ n d2 is a non-trivial interval, one can choose y1,
y2e2M, with yj = dx and yl = d2 such that ^(y1) = ̂ -(y2)^£1 (lemma 3 and E is
countable). By lemma 4 there is a t with y) = y? eCm for some m. Hence yj_, and
y?_, are in Cm_,. In particular, yl =di and yl =d2 are both in Cm_,, proving the
lemma. D

Set Xj = /T/ n ft,. We have
i

THEOREM 2. ft, = \J Xs. Xj is closed and Xs n Xk is empty or finite {j ^k). <T{XJ) C

Xj+\. a-": Xj^Xj is topologically mixing.

Proof. It remains to prove the last assertion. {Xj, o~q) is an ftm for the piecewise
monotonic transformation {<f>~l{Kj),f

q). The matrix M corresponding to {Xj,<rq)
can be derived from Mt as follows. Set

D = {yl---yq:ykeCi+k-i, MykVfc+1 = 1 for 1 < k < q -1}.

We have an arrow yi • • • yq -* y\ • • • y'q in M iff there is an arrow yq -* y[ in Mi. M
is irreducible because M, is. M is aperiodic. If M has period q, then it follows that
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Mi has period qq. In the next section we shall see that there is a cr- invariant, mixing
measure on 1& which is positive on open sets if htop(iM) ^ 0, i.e. 1Ml is not a
periodic orbit. It follows from proposition (6.7) of [2] that S w and hence also
(Xj, cr") are topologically mixing. If 2Mj is a periodic orbit, the desired result is trivial.

3. The maximal measure
In this section we consider a fixed ft, satisfying htop(ili) > 0, i.e. fl,- is not only a
periodic orbit. Therefore we denote ft,-, F , M,, Dt simply by ft, F, M, D respectively.
ftc^+cl^ is expansive, hence ft has at least one measure with maximal entropy
(cf. [2]). It is proved in [3] that (ft, a-) and QLM, cr) have isomorphic sets of maximal
measures via /t-»|uo;t * and that there is a unique maximal measure fj. on 1M

given by fi(o[y0 • • • yt-i]) = 7ryoPyoyi • • • Pyfc_2yt_1, where ird = udvd, Pde = MdevJ\vd

(d,eeD). u is the unique (up to constant factors) positive left and v the unique
positive right eigenvector of M for the eigenvalue A satisfying 1udvd = 1. A = r{M)
is the spectral radius of the ^-operator w -» wM(w e Z1). A>1, because log A =
'itop(ft) > 0. § 3 of [3] shows that htop{Cl) ^ log A. The converse inequality follows
from the variational principle (cf. [2]): /itop(ft) s h(fji) = log A.

tr is a vector and P is a matrix with index set D satisfying Trd > 0, Pde >0{d,ee D),
trP -ir, Z Pde = l(deD) and X nv* = 1. Hence TT and P give rise to a Markov

chain with countable state space. Assuming that M and hence also P are aperiodic,
we can use the results proved in probability theory (cf. [1]).

(n, P) is recurrent. (3.1)

P{de •* Tte (« ̂  « ) for d, eeD. (3.2)

Pd"' denotes an entry of the matrix P". It follows from (3.2) that

M(o[yo • • • y,-i]nfc[zo • • • z,--i]) converges to (̂oCyo • • • yi-i])fi(o[zo • • • Z/-i])
as fe -» oo.

Hence ^ is mixing. This also completes the proof of theorem 2. M£' is the
number of admissible blocks of length n +1 in 2 M beginning with d and ending
with e. Therefore pn = X Mdd is the number of periodic points of period n in 1M

(pn <oo by remark (i) after lemma 4). Set fj.n=(l/pn) X ŷ» where Qn is the set of
ye On

all periodic points of period n in 2M and Sy the measure concentrated in y € J,M-

THEOREM 3. If Mis aperiodic, we have:

(i) limA-"pM = l.
n-»oo

(ii) fin converges in the weak topology to the unique maximal measure ft of SM-
Proof. Choose a sequence n, of integers such that A ~"'pni converges to C (0 < C < oo).
The sequence fj.n. has a limit point v. We suppose that it converges (take again a
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subsequence, if necessary). We have

M«,(o[yo • • • yk-i\) = Pn? card {xe <?„,: xm = ym for 0< m < k -1}

— 1 . n ( . .

— Pn, A A

— C '""ycr* yoyi ' ' ' ' yfc-2y*-i

= c~V(o[yo- • • yit-i])-

Hence v(0[y0 • • • y*-i]) = C~V(o[yo • • • y*-i]). As f is a probability measure, we
have C = 1 proving (i). But then the computation above shows that every limit
point of fin is IM. This is (ii). •

If M has period q > 1, then fl = -X\ u • • • u Xq and every .X} is an fl,- for the piecewise
monotonic transformation f. In the proof of theorem 2 we have computed M
corresponding to (Xh a"), which has period 1. Applying theorem 3 to M we have:

COROLLARY. If Mhas period q, we have:
(i) pn=0,ifq is not a divisor of n, lim pmk ~nq = 1.

(ii) finq converges in the weak topology to the unique maximal measure /A of 1M-

By lemmas 4, 5 and the second assertion of lemma 6 these results are also valid
forfl.

Now we turn to a result about the number bk of admissible blocks of length k
in ft. For this we need that the left eigenvector u of M is in I1 (the proof for this
result is not published).

THEOREM 4. If Mis aperiodic, we have that lim A ~kbk exists and is greater than zero.
fc-»oo

Proof. Without loss of generality assume that F = Fi = 1.}, considering f\<f>~l(Fi)
instead of /. Set D' ~ {o[k]: 1 < fc s «} c £). bk is the number of admissible blocks
of length k in 1M which begin with an element of D', because of the 1-1 correspon-
dence of special paths in M and points in 2 / . Hence

bk = I I
deD' eeD

We have for deD' and e e D

^{udve)~
l I TTgP^1 = (udvey

xire
ge£>

= ujud^c~1ue, where c = min ud>0.
deD'

As u € I1, we have for every e > 0 a subset DE of D with D\De finite, such that

E A " m M ^ < E fora l lm>l .
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Hence we can interchange the limit and the sums.

limA~k6t=A"1 £ I MmP%-X)vdlve
k-"x> deD' e<=D

= A - 1 Z I TTeVdlVe = A"1 £ £ Wel?d.
dsD' ee£> deD' «ED

This is a positive constant, since we / 1 . •

As for theorem 3 we can generalize this result to the periodic case.

4. Absolutely continuous invariant measures
We consider the problem of finding an invariant measure n on ([0,1],/), which is
absolutely continuous with respect to the Lebesgue measure A on [0,1]. It suffices
to consider this problem for <f>~l(Cii) and <f>~l(£ii) (we assume that <f> is injective
and denote <^~1(flf) again by ft,), because every invariant measure is a linear
combination of measures concentrated on these sets.

If / is piecewise C2 and \f'(x)\ > d > 1 for all x e [0,1], the sets L; considered in
[6] are exactly those ft,«, which are finite unions of intervals. There is exactly one
ergodic invariant measure fi absolutely continuous with respect to A on every L,-.
All other ft,* and all ft,s have Lebesgue measure zero (theorem 2 of [6]).

In [5] one finds an example of an / on [0,1], piecewise C2, f'(x) > 1 for x e (0,1]
and /'(0) = l, which has no finite invariant measure absolutely continuous with
respect to A. Below, we give an example of an /, piecewise C1, / '(x)>2 for all x,
which has a Cantor set fti with A (fli) > 0 and A/fti is /-invariant.

We consider [0, 2] instead of [0,1]. Define/ on (1, 2] by f(x) = 2x -1 for 1< x < I
and 2x -2 for f < x < 2 (or in any other way such that /((I, 2]) <= (1, 2]). ft2 = [1, 2].

OO

Now consider [0,1]. Set ai = c/i22i~l, for some c with 0 < c < ( £ T2)"1- We
i = l

define open sub-intervals Ak
m ( l < j t < 2 m ~ \ m > l ) of [0,1]. A\ has midpoint \

and length a\. Let B\ and B\ be the two closed sub-intervals of which [0,1]\A}
consists. The midpoint of A\ is the midpoint of B% and the length of A\ is
a2(k = 1,2). The mth step is as follows. Let 5^,(1 s k < 2m-1) be the closed intervals
of equal length of which

;=i y=i

consists. Then the midpoint of Ajj, is the midpoint of Bk
m and the length of Ak

m is
am(l < k £ 2m-1). The A^s are pairwise disjoint, because the length of all the A ,̂s
(1 < k < 2m~\ m > 1) together is

Set

Z 2m~1am= I cm-2<\. (4.1)
m = 1 m = 1

c=[o,i]\u UA{=n u
i = l ;«1 i=2 /=1
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To define / on [0,1], we define first f' = ge C([0,1]). Set g(x) = 2ior xeC. On
A k

m define g such that it is greater than or equal to 2 and continuous (i.e. lim g(x) = 2,
where x e Ak

m approaches one of the endpoints of A^, and

and that

f / w fa"--i f o r m s 2 ,
g(x)<fx = | (4.2)

JA£ 11 form = l.
This is possible, because a,/a;+i = 2[(i +1)//]2 |2, if / -»c». Define

f g(t)dt
Jo

/(*) =

f g(t)dt iorxeBl,
Id

where d = £( 1 +a \) is the initial point of B \. Then f/B \ u A} and / / S \ are increasing
and C1. f{x) = g(x) ^ 2 for x e [0, l]\{d}. We have

(
m — 1 \ oo

1 - I 2'-1a,)-X 2'-1a/+m_1.
From this it follows that

2X(Bk
mnC) = \(Bk

m-1nC), (4.3)
where k' = k (mod 2m"2). We show that f(Ak

m) = A^_1(=[l , 2], if m = 1). To this
end we prove that X(f(Ak

m)) = A(A*'_i)(=A([l, 2]), if m = l) and A(f(Bk
m)) =

A(fim-i) (set S i =[0,1]). The first assertion follows because of (4.2). For the
second assertion remark that

This is a union of disjoint sets. Hence

\(f(Bk
m))=\ g(x)dx=[ 2dx+\ g(x)dx

Because f\B\ u A \ and f\B\ are increasing and [0,1] is the disjoint union of the
intervals A\ ( l < / < 2 ' ~ \ l < / < m - l ) and B'm (1S/S2"1"1), it follows that
f(Ak

m-1) = Ak
m-2 and f(Bk

m) = Bk
m^ ( m a 2 ) .

Now it follows that

fti = n rkao, i])=to, i]\ u t j M=c.
fc-l i = l ; = 1

By (4.3) we have that A/fli is invariant and by (4.1) that
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