GRADED COMPLEXES OVER POWER SERIES RINGS

PAUL ROBERTS

A common method in studying a commutative Noetherian local ring A is to find a regular subring R contained in A so that A becomes a finitely generated R-module, and in this way one can obtain some information about the original ring by applying what is known about regular local rings. By the structure theorems of Cohen, if A is complete and contains a field, there will always exist such a subring R, and R will be a power series ring $k[[X_1, \ldots, X_n]] = k[[X]]$ over a field k. In this paper we show that if R is chosen properly, the ring A (or, more generally, an A-module M), will have a comparatively simple structure as an R-module. More precisely, A (or M) will have a free resolution which resembles the Koszul complex on the variables $(X_1, \ldots, X_n) = (X)$; such a complex will be called an (X)-graded complex and will be given a precise definition below. For low dimensions (≤ 3) it is possible to list all modules which have such a resolution, and there are finitely many indecomposable ones; for higher dimensions this does not appear to be possible.

Nonetheless, in any dimension (X)-graded complexes have some nice properties. The only one we will consider here is the following: if F_* is an (X)-graded complex, then it is possible to define a filtration on each module F_i so that the complex of associated graded modules one obtains is a complex of free graded modules over the associated graded ring of $k[\mathbf{X}]$ with homology equal to the associated graded module of a good filtration on the homology of F_* . Such complexes will be called graded complexes; again, the exact definition will be given below. Interest in "approximating" a complex by a complex of graded modules came partly from the results of Peskine and Szpiro [2], where some conjectures on multiplicity are proven for graded modules by defining a sequence of invariants related to dimension and multiplicities from a complex of free graded modules. The results here allow one to define an analogous sequence of invariants in a more general situation; however, they will not have all the properties one has in the graded case, due to the inevitable dependence on the subring R. If A is Cohen-Macaulay, it is possible to produce from this a complex of modules over the graded ring of A (graded by powers of the ideal (X), and, if the original complex is the resolution of a module M, the new complex will be a resolution of the associated

Received September 4, 1984. This research was supported in part by a grant from the National Science Foundation.

graded module of M by modules which are not necessarily free, but can be described in terms of the ring A/(X). However, we do not develop this in this paper.

1. (X)-graded complexes. Let $A = K[[X]] = k[[X_1, ..., X_n]]$. Before defining the concept of (X)-graded complex, we give a definition of the usual Koszul complex $K_*(X_1, ..., X_n)$ which will serve as a model for the more general definition.

In what follows, the word "complex" will mean "bounded complex of finitely generated free A-modules."

The definition of the Koszul complex we give here is by induction on n.

1. If n = 0, we let $K_* = A = k$ in degree zero (that is, $K_i = k$ if i = 0 and $K_i = 0$ if $i \neq 0$).

2. Suppose $K_*(X_1, \ldots, X_{n-1})$ is defined and is a complex of free $k[[X_1, \ldots, X_{n-1}]]$ -modules. Then $K_*(X_1, \ldots, X_n)$ is the total complex of the double complex

$$K_*(X_1,\ldots,X_{n-1}) \otimes k[[\mathbf{X}]] \xrightarrow{X_n} K_*(X_1,\ldots,X_{n-1}) \otimes k[[\mathbf{X}]]$$

where the two copies of $K_*(X_1, \ldots, X_{n-1}) \otimes k[[\mathbf{X}]]$ are given degrees 1 and 0 respectively and the tensor product is taken over $k[[X_1, \ldots, X_{n-1}]]$.

We recall that if L_{**} is a double complex, then the total complex of L_{**} , denoted tot (L_{**}) , is the complex with

$$\operatorname{tot}(L_{**})_i = \bigoplus_{j+k=i} L_{jk}$$

and differentials induced by those of L_{**} .

We next give a preliminary definition.

Definition 1.1. A *projective* complex is a direct sum of complexes of the forms:

$$\dots \to 0 \to A \xrightarrow{1} A \to 0 \to \dots$$
 and
 $\dots \to 0 \to A \to 0 \to \dots$

where the non-zero part can occur in any degree.

For the sense in which it is reasonable to consider such a complex projective, we refer to [3]. We note that if A is a field, every complex is projective.

Definition 1.2. We define what it means for a complex to be (X)-graded by induction on n.

1. If n = 0, every complex is (X)-graded.

2. If n > 0, an (X)-graded complex is a complex which is quasiisomorphic to a complex of the form

tot[
$$(K_* \otimes k[[\mathbf{X}]]) \xrightarrow{X_n \phi} (P_* \otimes k[[\mathbf{X}]])$$
]

where we have a short exact sequence of complexes

$$0 \to L_* \to K_* \xrightarrow{\phi} P_* \to 0$$

in which K_* and P_* are (X_1, \ldots, X_{n-1}) -graded complexes and L_* is projective.

We give three examples:

Example 1. Every projective complex is (X)-graded.

Example 2. The Koszul complex is (**X**)-graded. More generally, if we truncate the Koszul complex by letting $K_i = 0$ for all *i* less than some integer *j*, the resulting complex is (**X**)-graded.

Example 3. The complex over $A = k[[X_1, X_2]]$ given by

 $A^2 \xrightarrow{(X_1, X_2)} A$

is also a truncated Koszul complex, but it is not in the form of part 2 of the above definition. However, it is quasi-isomorphic to the complex

$$A \xrightarrow{\begin{pmatrix} -X_2 \\ X_1 \\ 1 \end{pmatrix}} A^3 \xrightarrow{(X_1 X_2 0)} A$$

which is in the correct form, so it is (X)-graded.

We next prove a result we will use later.

PROPOSITION 1.3. Every (X)-graded complex is quasi-isomorphic to one of the form given in part 2 of Definition 1.2 in which L_* has zero differentials.

Proof. Let

$$0 \to L_* \to K_* \xrightarrow{\phi} P_* \to 0$$

be a short exact sequence of complexes of $k[[X_1, \ldots, X_{n-1}]]$ -modules as in part 2 of Definition 1.2. Suppose there exists an *i* such that $d_i:L_i \rightarrow L_{i-1}$ is not zero. Since L_* is projective, this means that there is a direct summand F_* of L_* isomorphic to

$$\ldots \rightarrow 0 \rightarrow A \xrightarrow{1} A \rightarrow \ldots;$$

furthermore, since L_j is a direct summand of K_j for each j, the image of F_* in K_* is a direct summand of K_* . Denoting K_*/F_* by \overline{K}_* , we have a short exact sequence

$$0 \to F_* \to K_* \to \overline{K}_* \to 0$$

so that \overline{K}_* is quasi-isomorphic to K_* and is thus (X_1, \ldots, X_{n-1}) -graded. Furthermore, we have

$$0 \to F_* \otimes k[[X]] \to \operatorname{tot}(K_* \otimes k[[X]] \to P_* \otimes k[[x]])$$
$$\to \operatorname{tot}(\bar{K}_* \otimes k[[X]] \to P_* \otimes k[[x]]) \to 0$$

so that the above total complexes are also quasi-isomorphic. By continuing to remove trivial direct summands in this way we can eventually arrive at the situation in which L_* has zero differentials.

2. Graded complexes. Let A be a local ring with maximal ideal m. We define in this section an associated graded complex with respect to m for any complex of free A-modules. If the complex is minimal, so that the differentials are zero modulo m, this can be done very easily by using the m-adic filtration on each F_i shifted by i; however, we will need a more general case so we will not assume that the complex is minimal, even though this makes the definition somewhat more complicated.

Let F_* be a bounded complex of finitely generated free A-modules. We will assume, as we can, that bases are chosen for each F_i so that $d_i:F_i \to F_{i-1}$ is given by a matrix of the form

(1)
$$\begin{pmatrix} 0 & 0 & 0 \\ I & 0 & 0 \\ M_i & N_i & P_i \end{pmatrix}$$

where I is an identity matrix and M_i , N_i , and P_i all have entries in m. We denote the corresponding decomposition of F_i into a direct sum by

$$F_i = F_i^1 \oplus F_i^2 \oplus F_i^3.$$

The fact that $d_i d_{i+1} = 0$ translates into the equations

$$N_i + P_i M_{i+1} = 0$$
 $P_i N_{i+1} = 0$ $P_i P_{i+1} = 0.$

Thus the matrix (1) becomes

(2)
$$\begin{pmatrix} 0 & 0 & 0 \\ I & 0 & 0 \\ M_i & -P_i M_{i+1} & P_i \end{pmatrix}$$

and the only condition is $P_i P_{i+1} = 0$.

We now wish to produce from this a complex of free graded modules over the graded ring

$$\bar{A} = \bigoplus_{i=0}^{k} m^{i}/m^{i+1}.$$

We use the following terminology and notation: if M is a finitely generated A-module, a good filtration on M is a decreasing filtration of A-submodules

$$M = \mathbf{F}_k(M) \supseteq \mathbf{F}_{k+1}(M) \supseteq \dots$$

such that $m\mathbf{F}_j(M) \subseteq \mathbf{F}_{j+1}(M)$ for all j and $m\mathbf{F}_j(M) = \mathbf{F}_{j+1}(M)$ for all but finitely many j. If M is a module with a good filtration, then \overline{M} , the associated graded module, is a finitely generated \overline{A} -module. If $f: M \to N$ satisfies

$$f(\mathbf{F}_i(M)) \subseteq \mathbf{F}_i(N)$$
 for all j ,

f induces a map from \overline{M} to \overline{N} which we denote \overline{f} .

Now let F_* be the complex above, and define a good filtration on each F_i by letting

$$\mathbf{F}_k(F_i) = m^{k-i} F_i^1 \oplus m^{k-i-1} F_i^2 \oplus m^{k-i} F_i^3.$$

The fact that $d_i(\mathbf{F}_k(F_i)) \subseteq \mathbf{F}_k(F_{i-1})$ follows from the fact that d_i is defined by the matrix (2) and M_i , M_{i+1} , and P_i have entries in *m*. Thus there is an associated complex \overline{F}_* of free \overline{A} -modules; \overline{F}_i is isomorphic as a graded module to

$$\overline{A}\left[-i\right]^{s_1} \oplus A\left[-i + 1\right]^{s_2} \oplus \overline{A}\left[-i\right]^{s_3},$$

where s_i is the rank of F_i^j .

The filtration on F_i induces a good filtration on Ker d_i and $\text{Im}d_{i+1}$ (by the Artin-Rees Lemma), and thus also on the homology $H_i(F_*)$. Furthermore, there is a short exact sequence

$$0 \to \overline{\mathrm{Im}d_{i+1}} \to \overline{\mathrm{Ker}\ d_i} \to \overline{H_i(F_*)} \to 0.$$

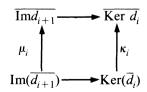
PROPOSITION 2.1. There are natural maps:

$$\kappa_i: \overline{\operatorname{Ker} d_i} \to \operatorname{Ker} (\overline{d_i})$$

and

$$\mu_i: \operatorname{Im}(\overline{d_{i+1}}) \to \overline{\operatorname{Im}d_{i+1}}$$

making



commute.

Proof. The maps κ_i and μ_i are induced by the identity on F_i ; the fact that they are well-defined and the commutativity of the diagram are straight forward to verify.

Definition 2.2. The complex F_* is graded if κ_i and μ_i are isomorphisms for all *i*.

If F_* is graded, we have a commutative diagram

$$0 \longrightarrow \operatorname{Im}(\overline{d}_{i+1}) \longrightarrow \operatorname{Ker}(\overline{d}_{i}) \longrightarrow H_{i}(\overline{F}_{*}) \longrightarrow 0$$

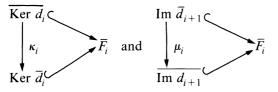
$$\mu_{i} \downarrow 2 \qquad \kappa_{i}^{-1} \downarrow 2 \qquad \downarrow$$

$$0 \longrightarrow \overline{\operatorname{Im} d_{i+1}} \longrightarrow \overline{\operatorname{Ker} d_{i}} \longrightarrow \overline{H_{i}(F_{*})} \longrightarrow 0$$

so that $H_i(\overline{F}_*)$ is isomorphic to $\overline{H_i(F_*)}$ as a graded module.

PROPOSITION 2.3. F_* is graded if and only if κ_i is surjective for all *i*.

Proof. We have commutative diagrams



so that κ_i and μ_i are automatically injective. Thus the proposition will be proven if we can show that the surjectivity of κ_{i+1} implies the surjectivity of μ_i . We first express these conditions in terms of elements:

Surjectivity of μ_i : This says that if $\alpha \in \mathbf{F}_{i+1}$ and $d\alpha \in \mathbf{F}_k(F_i)$, then there exists a $\beta \in \mathbf{F}_k(F_{i+1})$ with $d\alpha - d\beta \in \mathbf{F}_{k+1}(F_i)$.

Surjectivity of κ_{i+1} : this says that if $\alpha \in \mathbf{F}_k(F_{i+1})$ and $d\alpha \in \mathbf{F}_{k+1}(F_i)$, then there exists $\beta \in \mathbf{F}_k(F_{i+1})$ with $\alpha - \beta \in \mathbf{F}_{k+1}(F_i)$ and $d\beta = 0$.

Suppose now that κ_{i+1} is surjective. Let $\alpha \in F_{i+1}$ with $d\alpha$ in $\mathbf{F}_k(F_i)$. If $\alpha \in \mathbf{F}_k(F_{i+1})$ we are done; if not, choose j < k such that $\alpha \in \mathbf{F}_i(F_{i+1})$. Then

$$d\alpha \in \mathbf{F}_k(F_i) \subseteq \mathbf{F}_{i+1}(F_i),$$

so by the surjectivity of κ_{i+1} , there is a β in $\mathbf{F}_i(F_{i+1})$ with

$$d\beta = 0$$
 and $\alpha - \beta \in \mathbf{F}_{i+1}(F_{i+1})$.

Then $d(\alpha - \beta) = d\alpha - d\beta = d\alpha$, so we can replace α by $\alpha - \beta \in \mathbf{F}_{j+1}(F_{i+1})$. This process can be continued until we find $\gamma \in \mathbf{F}_k(F_{j+1})$ with $d\gamma = d\alpha$, proving that μ_i is surjective.

The next result we wish to prove is that the property of being graded depends only on the quasi-isomorphism class of the complex F_* . Since we

are only concerned here with complexes of free modules, this amounts to saying that if we represent a complex F_* as a direct sum $F_* = G_* \oplus M_*$, where G_* is chain homotopic to zero and M_* is minimal, then F_* is graded if and only if M_* is. If we represent F_* as in (2), the associated minimal complex is F_*^3 with boundary maps d_i^3 defined by the matrices P_i .

PROPOSITION 2.4. If F_* and G_* are quasi-isomorphic, then F_* is graded if and only if G_* is graded.

Proof. As outlined above, it suffices to show that F_* with boundary maps given by (2) is graded if and only if F_*^3 is. We use the criterion of Proposition 2.3.

Assume that F_*^3 is graded. Let

$$\eta = \begin{pmatrix} 0 \\ \overline{\alpha} \\ \overline{\beta} \end{pmatrix}$$

be in the kernel of \overline{d}_i with

$$\begin{pmatrix} 0\\ \alpha\\ \beta \end{pmatrix} \text{ in } \mathbf{F}_{k}(F_{i}) \text{ and}$$
$$d\begin{pmatrix} 0\\ \alpha\\ \beta \end{pmatrix} = \begin{pmatrix} 0\\ 0\\ -PM\alpha + P\beta \end{pmatrix} \text{ in } \mathbf{F}_{k+1}(F_{i-1}).$$

We then have

 $-M\alpha + \beta \in \mathbf{F}_k(F_i^3)$ and $P(-M\alpha + \beta) \in \mathbf{F}_{k+1}(F_{i-1}^3)$, so, since F_*^3 is graded, there exists a $\gamma \in \mathbf{F}_k(F_i^3)$ with $P\gamma = 0$ and

$$(-M\alpha + \beta) - \gamma \in \mathbf{F}_{k+1}(F_i^3).$$

Then

$$\begin{pmatrix} 0\\ \alpha\\ \gamma + M\alpha \end{pmatrix} \in \text{Ker } d_i \text{ and}$$
$$\begin{pmatrix} 0\\ \alpha\\ \beta \end{pmatrix} - \begin{pmatrix} 0\\ \alpha\\ \gamma + M\alpha \end{pmatrix} = \begin{pmatrix} 0\\ 0\\ \beta - \gamma - M\alpha \end{pmatrix} \in \mathbf{F}_{k+1}(F_i).$$

Hence F_* is graded.

Conversely, assume that F_* is graded, and let $\alpha \in \mathbf{F}_k(F_i)$, be such that

164

$$P\alpha \in \mathbf{F}_{k+1}(F_{i-1}^3).$$

Then

$$\begin{pmatrix} 0\\0\\\alpha \end{pmatrix} \in \mathbf{F}_k(F_i)$$

with

$$d\begin{pmatrix}0\\0\\\alpha\end{pmatrix} \in \mathbf{F}_{k+1}(F_{i-1}),$$

so there exists

$$\begin{pmatrix} 0\\ \beta\\ \gamma \end{pmatrix} \in \mathbf{F}_k(F_i)$$

with

$$d_i \begin{pmatrix} 0 \\ \beta \\ \gamma \end{pmatrix} = 0 \quad \text{and} \begin{pmatrix} 0 \\ 0 \\ \alpha \end{pmatrix} - \begin{pmatrix} 0 \\ \beta \\ \gamma \end{pmatrix} \in \mathbf{F}_{k+1}(F_i).$$

We claim that the element $\theta = \gamma - M\beta$ in F_i^3 satisfies the condition of Proposition 2.3. Since

$$d_i \begin{pmatrix} 0\\ \beta\\ \gamma \end{pmatrix} = 0$$

we have $P\theta = P\gamma - PM\beta = 0$. Furthermore, since $\beta \in \mathbf{F}_{k+1}(F_i^2)$, we have $M\beta \in \mathbf{F}_{k+1}(F_i^3)$, so

$$\alpha - \theta = \alpha + M\beta - \gamma = (\alpha - \gamma) + M\beta \in \mathbf{F}_{k+1}(F_i).$$

Thus $d_i^3(\theta) = 0$ and $\alpha - \theta \in \mathbf{F}_{k+1}(F_i^3)$, so F_*^3 is graded.

As a final result in this section, we wish to show that the (X)-graded complexes defined above are graded. Let

 $A = k[[X_1, ..., X_n]]$ and $m = (X_1, ..., X_n)$.

PROPOSITION 2.5. An (X)-graded complex is graded.

Proof. The proof is by induction on n. If n = 0, A is a field and there is nothing to prove.

Assume the result for n - 1, and let F_* be an (X)-graded complex. By Proposition 1.3, we can assume that

$$F_* = \operatorname{tot}(K_* \otimes k[[\mathbf{X}]] \xrightarrow{X_n \phi} P_* \otimes k[[\mathbf{X}]]),$$

where

$$0 \to L_* \to K_* \xrightarrow{\phi} P_* \to 0$$

is exact, K_* and P_* are (X_1, \ldots, X_{n-1}) graded complexes, and L_* is a complex of free A-modules with zero differentials.

If the complex P_* is not minimal, we can remove a trivial summand from P_* and K_* to make P_* minimal while replacing all complexes involved by quasi-isomorphic ones. It is not always possible to make K_* minimal, but by a proper choice of splitting

$$K_i \cong P_i \oplus L_i^1 \oplus L_i^2,$$

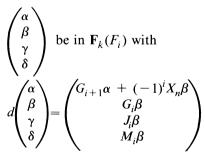
the boundary maps of K_* can be put in the form

$$\begin{pmatrix} G_i & 0 & 0 \\ J_i & 0 & 0 \\ M_i & 0 & 0 \end{pmatrix}$$

where J_i is of the form (I 0) for an identity matrix I and G_i and M_i have coefficients in m. The boundary map in the total complex to $X_n \phi$ will now have the form

$$\begin{pmatrix} G_{i+1} & (-1)^{i}X_{n} & 0 & 0 \\ 0 & G_{i} & 0 & 0 \\ 0 & J_{i} & 0 & 0 \\ 0 & M_{i} & 0 & 0 \end{pmatrix}$$

This is now in the proper form, and we can use the criterion of Proposition 2.3 to show that this total complex is graded, using the inductive hypothesis on K_* and P_* .



in $\mathbf{F}_{k+1}(F_{i-1})$. It is clear that the choices of γ and δ are arbitrary and they can be taken to be zero. We must thus find

$$\begin{pmatrix} \widetilde{\alpha} \\ \widetilde{\beta} \\ 0 \\ 0 \end{pmatrix} \equiv \begin{pmatrix} \alpha \\ \beta \\ 0 \\ 0 \end{pmatrix} \mod F_{k+1}(F_i) \quad \text{with} \quad d \begin{pmatrix} \widetilde{\alpha} \\ \widetilde{\beta} \\ 0 \\ 0 \end{pmatrix} = 0.$$

166

$$\alpha = \sum \alpha_j X_n^j$$
 and $\beta = \sum \beta_j X_n^j$

with α_j and β_j in $k[[X_1, \ldots, X_{n-1}]]$. Since G and M have coefficients in $k[[X_1, \ldots, X_{n-1}]]$, the condition

$$G_{i+1}\alpha + (-1)^{i}X_{n}\beta \in \mathbf{F}_{k+1}(F_{i-1})$$

becomes:

$$G_{i+1}(\alpha_0) \in \mathbf{F}_{k+1}(P_{i-1})$$

$$G_{i+1}(\alpha_j) + (-1)^i \beta_{j-1} = \theta_{j-1} \in \mathbf{F}_{k+1-j}(P_{i-1}) \text{ for } j > 0.$$

Since P_* is graded, we can find $\tilde{\alpha}_0$ with $\tilde{\alpha}_0 - \alpha_0 \in \mathbf{F}_{k+1}(P_i)$ and $d\tilde{\alpha}_0 = 0$. Let

$$\widetilde{\alpha} = \widetilde{\alpha}_0 + \alpha_1 X_n + \alpha_2 X_n^2 + \dots$$

and let

$$\widetilde{\beta} = \sum (\beta_j - (-1)^i \theta_j) X_n^j.$$

It is then clear from the equations above that $\tilde{\alpha}$ and $\tilde{\beta}$ will satisfy

$$G_{i+1}(\widetilde{\alpha}) + (-1)^i X_n \widetilde{\beta} = 0$$

and that

$$\begin{pmatrix} \alpha \\ \beta \\ 0 \\ 0 \end{pmatrix} \equiv \begin{pmatrix} \widetilde{\alpha} \\ \widetilde{\beta} \\ 0 \\ 0 \end{pmatrix} \mod \mathbf{F}_{k+1}(F_i).$$

The fact that

$$X_n \widetilde{\beta} = G_{i+1}((-1)^i \widetilde{\alpha})$$

now implies that

$$X_n G_i(\widetilde{\beta}) = 0, X_n J_i(\widetilde{\beta}) = 0, \text{ and } X_n M_i(\widetilde{\beta}) = 0,$$

so

$$G_i(\tilde{\beta}) = J_i(\tilde{\beta}) = M_i(\tilde{\beta}) = 0$$
 and
 $d\begin{pmatrix} \tilde{\alpha} \\ 0 \\ 0 \end{pmatrix} = 0.$

Thus F_* is graded.

3. General complexes over power series rings. Let $A = k[[Y_1, \ldots, Y_n]]$ be a power series ring, and let F_* be a bounded complex of finitely generated A-modules. We wish to show that there is a sub-power series ring $k[[X]] \subseteq k[[Y]]$ such that k[[Y]] is a finite k[[X]]-module and such that F_* is an (X)-graded complex. The proof is by induction; as usual, there is nothing to prove if n = 0. If n > 0, we reduce to dimension n - 1 by taking the dual of a Cartan-Eilenberg resolution of F_* and showing that it is quasi-isomorphic in positive degrees to a double complex of modules of dimension less than or equal to n - 1. One can then recover F_* up to a projective summand using a method of [1] and show that for proper choice of k[[X]], F_* is (X)-graded. For the homological results in this section which are not well-known, we refer to [2].

Let

$$0 \to C_{k^*} \to C_{k-1,*} \to \dots C_{1^*} \to C_{0^*} \to F_* \to 0$$

be a finite Cartan-Eilenberg resolution of F_* .

Let $P^{**} = \text{Hom}_A(C_{**}, A)$. For each *i*, *j* we have boundary maps:

$$d_P^{ij}: P^{ij} \to P^{i+1,j}$$
$$\delta_P^{ij}: P^{ij} \to P^{i,j+1}.$$

LEMMA 3.1. For each i > 0 and for each j, we have:

- a. dim $(H^i(P^{*j})) \leq n-1$
- b. dim $(H^i(\text{Ker } \delta^{*j})) \leq n 1$.

Proof. These homology groups are

 $\operatorname{Ext}^{i}(F_{i}, A)$ and $\operatorname{Ext}^{i}(F_{i}/d_{i}(F_{i+1}), A)$

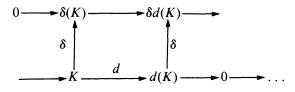
respectively; since A is an integral domain of dimension n, they have dimension $\leq n - 1$ for i > 0 (in fact, $\operatorname{Ext}^{i}(F_{i}, A) = 0$).

LEMMA 3.2. There exists a sub-double complex $K^{**} \subseteq P^{**}$ such that: a. dim $P^{ij}/K^{ij} \leq n-1$ for all i and j.

b. $P^{*j} \rightarrow P^{*j}/K^{*j}$ induces isomorphisms in homology in degrees > 0 for all j.

c. Ker $\delta_p^{*j} \to \text{Ker } \delta_{P/K}^{*j}$ induces isomorphisms in homology in degrees > 0 for all j.

Proof. We proceed step by step, dividing at each stage by a subcomplex of the form



where K is a submodule of $P^{k,l}$ such that dim $P^{k,l}/K \leq n-1$ and the projection from P^{**} onto the quotient modulo this subcomplex satisfies conditions b and c of the lemma. Thus we assume that this has been done for i < k and for i = k and j < l, so that dim $P^{i,j} \leq n-1$ for these indices, and show that it can then be done for $P^{k,l}$. Since there are only a finite number of non-zero modules in P^{**} , this will prove the lemma.

Fix k, l as above. The procedure is now as follows: we give several conditions on a submodule K of $P^{k,l}$ so that if K satisfies all of them, it will satisfy conditions b and c of the lemma. We show that there is a submodule K satisfying each condition with

$$\dim P^{k,l}/K \leq n-1.$$

Finally, each condition has the property that if K satisfies it so does any submodule of K. Then the intersection of submodules satisfying each of them will satisfy all of them and $P^{k,l}/K$ will still have the correct dimension.

CONDITION 1. $K \xrightarrow{d} dK$ is an isomorphism if k > 0 and surjective if k = 0.

Surjectivity is of course obvious. For injectivity, assume k > 0 and consider the sequence

$$P^{k-1,l} \to P^{k,l} \xrightarrow{d^{k,l}} P^{k+1,l}.$$

Since $P^{k-1,l}$ and $H^*(P^{k,l})$ have dimension $\leq n-1$, Ker $d^{k,l}$ must also. Thus we can choose a K with

$$K \cap \text{Ker } d^{k,l} = 0$$
 and $\dim P^{k,l}/K \leq n - 1$.

CONDITION 2. $\delta K \xrightarrow{d} d\delta K$ is an isomorphism if k > 0 and surjective if k = 0.

As for Condition 1, we can find a submodule L of $P^{k,l+1}$ with

dim $P^{k,l+1}/L \leq n-1$ and $L \cap \text{Ker } d = 0$.

We then let $K = \delta^{-1}(L)$.

We assume henceforth that the module K under consideration satisfies Conditions 1 and 2.

CONDITION 3. For k > 0, and for all j,

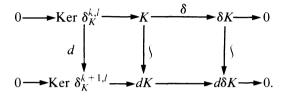
$$\operatorname{Ker} \delta_K^{k,j} \xrightarrow{d} \operatorname{Ker} \delta_K^{k+1,j}$$

is an isomorphism. For k = 0, for all j we have

 $K \cap d^{-1}(\operatorname{Ker} \delta_P^{k+1,l}) \subseteq \operatorname{Ker} \delta_P^{k,l} + \operatorname{Ker} d_P^{k,l}$

This condition is trivial if $j \neq l$ or l + 1 and is Condition 2 if j = l + 1. Hence we assume j = l.

If k > 0, Condition 3 follows from Conditions 1 and 2 and the diagram



Let k = 0. Both Ker $\delta_P^{k,l}$ and Ker $d_P^{k,l}$ are mapped by d into Ker $\delta_P^{k+1,l}$, and we have an injective map

 $0 \to d^{-1}(\operatorname{Ker} \ \delta_P^{k+1,l})/(\operatorname{Ker} \ \delta_P^{k,l} + \operatorname{Ker} \ d_P^{k,l}) \to H^1(\operatorname{Ker} \ \delta^{*,l}).$ Since dim $H^1(\operatorname{Ker} \ \delta_P^{*,l}) \leq n - 1$, we can then find a submodule K with

 $\dim P^{k,l}/K \leq n - 1$

and satisfying

$$K \cap d^{-1}(\operatorname{Ker} \delta_P^{k+1,l}) \subseteq \operatorname{Ker} \delta_P^{k,l} + \operatorname{Ker} d_P^{k,l}.$$

CONDITION 4. For all k > 0, and for all j, the sequence

$$0 \to \operatorname{Ker} \delta_K^{*,j} \to \operatorname{Ker} \delta_P^{*,j} \to \operatorname{Ker} \delta_P^{*,j} \to 0$$

is exact.

With no assumptions on K, we have an exact sequence

 $0 \to \operatorname{Ker} \delta_P^{*,j} \to \operatorname{Ker} \delta_P^{*,j} \to \operatorname{Ker} \delta_{P,K}^{*,j} \to \operatorname{Coker} \delta_K^{*,j}$.

Thus we must make the map from Ker $\delta_{P/K}^{*,j}$ to Coker $\delta_{K}^{*,j}$ zero. Since Coker $\delta_{K}^{*,j} = 0$ unless j = l - 1, we assume j = l - 1. In this case, the map looks like:

Coker
$$\delta_K^{*,i-1} = \dots \to 0 \to K \xrightarrow{d} dK \to 0 \to \dots$$

$$\begin{cases} \delta_{K}^{k,i-1} & \delta_{K}^{k+1,i-1} \\ \delta_{K}^{k,i-1} & \delta_{K}^{k+1,i-1} \\ \delta_{K}^{k+1,i-1} & \delta_{K}^{k+1,i-1} \\ \delta_{K}^{k,i-1} & \delta_{K}^{k,i-1} \\ \delta_{K}^{k,i-1} & \delta_{K}^{k,$$

We must now choose K so that both vertical caps are zero. To make $\delta^{k,i-1} = 0$ in this diagram, it suffices to make

$$K \cap \delta(P^{k,l-1}) = 0.$$

Now dim $P^{k,l-1} \leq n-1$ by hypothesis, so

$$\dim \delta(P^{k,l-1}) \leq n-1$$

and we can do this. To make $\delta^{k+1,l-1}$ zero, we need

 $\delta P^{k+1,l-1} \cap dK = 0.$

First, the short exact sequence of complexes:

 $0 \rightarrow \text{Ker } \delta^{*,l-1} \rightarrow P^{*,l-1} \rightarrow \text{Im } \delta^{*,l-1} \rightarrow 0$

together with Lemma 3.1 imply that Im $\delta^{*,l-1}$ has homology of dimension $\leq n-1$ in degrees ≥ 1 . Since $d(\operatorname{Im} \delta^{k,l-1})$ has dimension $\leq n-1$, we deduce that

Im $\delta^{k+1,l-1} \cap \operatorname{Ker} d^{k+1,l}$

has dimension $\leq n - 1$. Hence we can find a submodule L of $P^{k+1,l}$ with

 $\dim P^{k+1}/L \le n-1$

and such that

 $L \cap \operatorname{Im} \delta^{k+1,l-1} \cap \operatorname{Ker} d^{k+1,l} = 0$

It then suffices to take $K = d^{-1}(L)$.

We now show that if Conditions 1-4 are satisfied, the map $P^{**} \rightarrow$ P^{**}/K^{**} satisfies Conditions b and c of the lemma.

Condition b. Conditions 1 and 2 imply that for each i, and each i > 0, we have $H^{i}(K^{*,j}) = 0$. Thus the long exact sequence associated to

 $0 \rightarrow K^{*,j} \rightarrow P^{*,j} \rightarrow (P/K)^{*,j} \rightarrow 0$

implies Condition b.

Condition c. We divide this into two cases.

First assume k > 0. Then Condition 3 says that

 $H^{i}(\operatorname{Ker} \delta_{K}^{*,j}) = 0$ for all *i*,

and Condition 4 says that

 $0 \to \operatorname{Ker} \delta_{K}^{*,j} \to \operatorname{Ker} \delta_{P/K}^{*,j} \to \operatorname{Ker} \delta_{P/K}^{*,j} \to 0$

is exact. Hence the long exact sequence implies Condition c.

Now assume k = 0. We must check that

 $H^{1}(\text{Ker } \delta_{P}^{*,j}) \rightarrow H^{1}(\text{Ker } \delta_{P/K}^{*,j})$

is an isomorphism.

Surjectivity follows from Condition 4 as in the case when k > 0. We now show that Condition 3 is enough to imply that this map is injective. This is non-trivial only if i = l.

Let $\eta \in H^1(\text{Ker } \delta_{P/K}^{*,l})$ be such that its image in $H^1(\text{Ker } \delta_{P/K}^{*,l})$ is zero. Represent η by x in $P^{k+1,l}$ with $\delta x = dx = 0$. Then, since the image of η is zero in $H^1(\text{Ker} \delta_{P/K}^{*,l})$, there exists \overline{y} in $P^{k,l}/K$ with $\overline{\delta y} = 0$ in $P^{k,l+1}/\delta K$ and $\overline{dy} = \overline{x}$ in $P^{*,l}/dK$. In other words, there exists $y \in P^{k,l}$ and k, k' in K with

 $\delta y = \delta k'$

dy = x + dk.

Replacing y by y - k' and k by k - k', we can replace the first equation by

$$\delta v = 0.$$

We have

4

$$\delta(dk) = \delta(dy - x) = d\delta y - \delta x = 0,$$

so

$$lk \in \text{Ker } \delta_P^{k+1,l}.$$

Thus, by Condition 3 we can write k = s + t, with

 $s \in \operatorname{Ker} \delta_p^{k,l}$ and $t \in \operatorname{Ker} d_p^{k,l}$.

Now let y' = y - s. Then:

$$\delta y' = \delta y - \delta s = 0$$

$$dy' = dy - ds = x + dk - dk = x$$

Thus $x \in d(\text{Ker } \delta^{k,l}), \eta = 0$ in $H^1(\text{Ker } \delta_p^{*,l})$. This completes the proof of the lemma.

We now return to the inductive proof that there is a power series subring R of A such that F_* is an (X)-graded complex of R-modules. Let K^{**} be as in Lemma 3.5, and let $M^{**} = P^{**}/K^{**}$. Then the dimension of M^{ij} is less than n for all i and j, so there is a non-zero element $X_n \in A$ such that $X_n M^{ij} = 0$ for all i, j. Choose $\tilde{X}_1, \ldots, \tilde{X}_{n-1}$ in A so that $A/X_n A$ is a finitely generated $k[[\tilde{X}_1, \ldots, \tilde{X}_{n-1}]]$ -module. We note that A is then a finitely generated $k[[\tilde{X}_1, \ldots, \tilde{X}_{n-1}, X_n]]$ -module. The procedure is now to reconstruct F_* from M^{**} . Let $Q^{**} \to M^{**}$

The procedure is now to reconstruct F_* from M^{**} . Let $Q^{**} \to M^{**}$ be a Cartan-Eilenberg resolution of the complex of complexes of $k[[\tilde{X}_1, \ldots, \tilde{X}_{n-1}]]$ -modules:

 $0 \to M^{0*} \to M^{1*} \to \ldots \to M^{k*} \to 0.$

Let S^{**} be the total complex (or mapping cone) of the map of complexes of complexes of $k[[\tilde{X}_1, \ldots, \tilde{X}_{n-1}, X_n]]$ modules given by

$$\widetilde{Q}^{**} \xrightarrow{X_n} \widetilde{Q}^{**},$$

where

$$\widetilde{Q}^{**} = Q^{**} \bigotimes_{k[[\widetilde{X}_1, \ldots, \widetilde{X}_{n-1}]]} k[[\widetilde{X}_1, \ldots, \widetilde{X}_{n-1}, X_n]].$$

Thus for each *i*, we have

$$S^{i*} = \widetilde{Q}^{i*} \oplus \widetilde{Q}^{i+1,*},$$

with differentials induced by those of \tilde{Q}^{**} and by X_n .

Then S^{**} is a resolution of M^{**} over $k[[\tilde{X}_1, \ldots, \tilde{X}_{n-1}, X_n]]$. Since P^{**} is a resolution of M^{**} in degrees ≥ 1 (by the construction in Lemma 3.2), S^{**} and P^{**} agree in degrees ≥ 1 up to trivial direct summands and in degree zero up to a projective direct summand. Let T^{**} denote S^{**} truncated by omitting everything in degrees < 0. The complex T^{**} is constructed from \tilde{Q}^{**} as follows: let $\tilde{Q}_{\geq 0}^{**}$ denote \tilde{Q}^{**} truncated by omitting \tilde{Q}^{i*} for i < 0 (i.e., replacing these \tilde{Q}^{i*} with zeros), and let $\tilde{Q}_{\geq 1}^{**}$ by \tilde{Q}^{**} truncated by omitting \tilde{Q}^{i*} for i < 1; similarly define $Q_{\geq 1}^{**}$ and $Q_{\geq 0}^{**}$. Then if

$$\widetilde{\mathcal{Q}}_{\geq 1} \xrightarrow{\psi} \widetilde{\mathcal{Q}}_{\geq 0}^{**}$$

is the inclusion, we have

$$T^{**} = \operatorname{tot}(\widetilde{Q}_{\geq 1}^{**} \xrightarrow{X_n \psi} \widetilde{Q}_{\geq 0}^{**}).$$

We now dualize to get back to C_{**} . Let

$$R = k[[\widetilde{X}_1, \ldots, \widetilde{X}_{n-1}, X_n]].$$

We have:

$$C_{**} \cong \operatorname{Hom}_{\mathcal{A}}(P^{**}, A).$$

We also know that

$$\operatorname{Hom}_{R}(T^{**}, R) \cong \operatorname{Hom}_{R}(P^{**}, R)$$

up to trivial summands in positive degrees and a projective summand in degree zero. We wish to show that the total complexes of all these complexes are isomorphic as complexes of R-modules up to a projective direct summand, and to do this it will suffice to show that

$$\operatorname{Hom}_{A}(P^{**}, A) \cong \operatorname{Hom}_{R}(P^{**}, R)$$

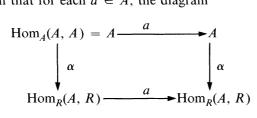
as complexes of R-modules.

To see this last isomorphism, we note that since P^{**} is a complex of free modules, we can decompose it into summands isomorphic to A and maps given by multiplication by elements of A. Hence it suffices to find an isomorphism

$$\alpha: \operatorname{Hom}_{A}(A, A) \xrightarrow{\sim} \operatorname{Hom}_{R}(A, R)$$

https://doi.org/10.4153/CJM-1986-008-8 Published online by Cambridge University Press

such that for each $a \in A$, the diagram



commutes. But this is the same as an isomorphism of A-modules:

 $\operatorname{Hom}_{R}(A, R) \xrightarrow{\sim} A,$

and this exists whenever A is a Gorenstein ring.

Putting these isomorphisms together, we deduce that

 $F_* \cong \operatorname{tot}(\operatorname{Hom}_{R}(T^{**}, R))$

up to a projective direct summand. Let

$$R' = k[[\bar{X}_1, \ldots, \bar{X}_{n-1}]].$$

By changing the order in which we tensor with R and take total complexes, we have that $tot(Hom_R(T^{**}, R))$ is isomorphic to

tot[Hom(tot $Q_{i\geq 0}^{**}, R'$)

$$\bigotimes_{R'} R \xrightarrow{X_n' \operatorname{Hom}(\operatorname{tot} \psi, R') \otimes R} \operatorname{Hom}(\operatorname{tot} Q_{i \ge 1}^{**}, R') \bigotimes_{R'} R].$$

By the induction hypothesis, we can find a subring

 $k[[X_1, \ldots, X_{n-1}]] \subseteq k[[\tilde{X}_1, \ldots, \tilde{X}_{n-1}]]$

such that the complexes Hom(tot $Q_{i\geq 0}^{**}$, R') and Hom(tot $Q_{i\geq 1}^{**}$, R') are (X_1, \ldots, X_{n-1}) -graded and such that $k[[\tilde{X}_1, \ldots, \tilde{X}_{n-1}]]$ is a finitely generated $k[[X_1, \ldots, X_{n-1}]]$ -module. It then follows that A is a finitely generated $k[[X_1, \ldots, X_n]]$ -module and Hom (T^{**}, R) , so also F_* , is an (X_1, \ldots, X_n) -graded $k[[X_1, \ldots, X_n]]$ -module, as was to be shown.

4. (X)-graded complexes in low dimension. If the dimension R is one or two, it is possible to write down a list of all indecomposable (X)-graded complexes. If the dimension is three, this does not appear to be possible; however, it is still possible to list all modules whose free resolutions are of this type.

In dimension one, R is a discrete valuation ring, so there is a structure theorem for all complexes; every complex is a direct sum of free modules and complexes of the form

$$\ldots \to 0 \to R \xrightarrow{X^n} R \to 0 \to \ldots$$

We remark that the complex is (X)-graded if and only if n = 1 in every direct summand of this form; we will use this in the next example.

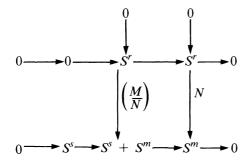
Assume now that the dimension of R is 2. Here there are numerous infinite families of indecomposable modules, but we will show that there are exactly five distinct indecomposable (X)-graded complexes. For convenience, we will write R = k[[X, Y]], and we assume that we have a map $\phi: K_* \to P_*$ of (X)-graded complexes over k[[X]] which fits into a short exact sequence

$$(*) \quad 0 \to L_* \to K_* \to P_* \to 0$$

where L_* is a complex of free modules with zero differentials. We now wish to describe the complex

$$\operatorname{tot}(K_* \otimes k[[X, Y]] \xrightarrow{Y\phi} P_* \otimes k[[X, Y]]).$$

We will do this by modifying the complex (*) by row and column operations on its matrices to split off direct summands of various types. Let S = k[[X]]. Let *n* be the highest degree for which L_n , K_n , or P_n is not zero. We can then throw out L_n and the highest two degrees of the sequence will look like:



where M and N are matrices with coefficients in S.

If we have a column of zeros in the matrix $\left(\frac{M}{N}\right)$, we can split off a summand of the form

$$s \xrightarrow{1} s$$

from the first row, which gives the complex

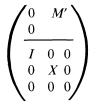
(1)
$$R \xrightarrow{Y} R$$
.

If we have a row of zeros, we can split off a summand from the second row and deal with it when considering the map from degree n - 1 to degree n - 2.

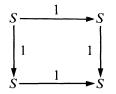
We now wish to reduce the matrix $\left(\frac{M}{N}\right)$. Note that we are not allowed

to add a row of M to N or interchange rows when one is in M and the other in N, as this will not preserve the subcomplex L_* . Other row and column operations are allowed.

We first reduce N to obtain the form



where we use X to denote X times an identity matrix of the appropriate size. This gives summands of the form

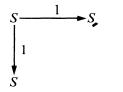


which give rise to trivial complexes.

Now reduce the part of M' lying above zeros:

$$\begin{pmatrix} 0 & I & 0 & 0 \\ M'' & 0 & X & 0 \\ 0 & 0 & 0 \\ \hline \hline X & 0 & 0 & 0 \end{pmatrix}$$

The I gives direct summands of the form



which produce the complex

(2)
$$R \xrightarrow{\begin{pmatrix} Y \\ 1 \end{pmatrix}} R^2 = R.$$

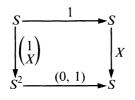
We now have:

$$\begin{pmatrix} M'' & X \\ & 0 \\ X & 0 \end{pmatrix}$$

We note that a column operation on M'' can be undone in X by an appropriate row operation, and that any multiple of X in M'' can be removed by subtracting a multiple of a row below the dotted line, so that we can reduce the part of M'' to the left of zero and obtain:

$$\begin{pmatrix} 0 & M''' & X \\ I & 0 & 0 \\ 0 & 0 & 0 \\ \hline X & 0 & 0 \\ 0 & X & 0 \end{pmatrix}$$

This produces summands of the form



which give

(3)
$$\begin{pmatrix} -Y \\ 1 \\ X \end{pmatrix}$$

 $R \xrightarrow{} R^3 \xrightarrow{(X \ 0 \ Y)} R = R^2 \xrightarrow{(X \ Y)} R$

We can now reduce M''' to get

$$\begin{pmatrix} I & 0 & X & 0 \\ 0 & 0 & 0 & X \\ \hline X & 0 & 0 & 0 \\ 0 & X & 0 & 0 \end{pmatrix}$$

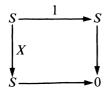
This gives three types of direct summand. The first is:

$$\begin{pmatrix} 1 & X \\ X & 0 \end{pmatrix}$$

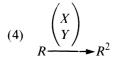
however, in diagonal form this becomes

$$\begin{pmatrix} 1 & 0 \\ 0 & X^2 \end{pmatrix}$$

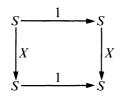
which cannot occur since K_* is (X)-graded. The others are:



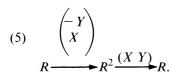
which produces



and



which gives rise to the Koszul complex



Thus there are five (X)-graded complexes over k[[X, Y]]; it is clear that these are distinct (up to quasi-isomorphism).

If R = k[[X, Y, Z]], there does not appear to be a simple classification of (X)-graded complexes of this sort. However, if F_* is the resolution of a module, we can take its dual (as in Section 3); this will give an (X)-graded complex over k[[X, Y]], and, using the above classification, one can see that there are eight modules which arise in this way. Adding a free module of rank one, this gives nine (X)-graded modules in dimension three.

References

- 1. G. Horrocks, Vector bundles on the punctured spectrum of a local ring, Proc. London Math. Soc 14 (1964), 689-713.
- 2. C. Peskine and L. Szpiro, Syzygies et multiplicités, C. R. Acad. Sci. 278 (1974), 1421-1424.
- 3. P. Roberts, Some remarks on the homological algebra of multiple complexes (to appear).

The University of Utah, Salt Lake City, Utah

178