GRADED COMPLEXES OVER POWER SERIES RINGS

PAUL ROBERTS

A common method in studying a commutative Noetherian local ring A is to find a regular subring R contained in A so that A becomes a finitely generated R-module, and in this way one can obtain some information about the original ring by applying what is known about regular local rings. By the structure theorems of Cohen, if A is complete and contains a field, there will always exist such a subring R, and R will be a power series ring $k\left[\left[X_{1}, \ldots, X_{n}\right]\right]=k[[\mathbf{X}]]$ over a field k. In this paper we show that if R is chosen properly, the ring A (or, more generally, an A-module M), will have a comparatively simple structure as an R-module. More precisely, A (or M) will have a free resolution which resembles the Koszul complex on the variables $\left(X_{1}, \ldots, X_{n}\right)=(\mathbf{X})$; such a complex will be called an (\mathbf{X})-graded complex and will be given a precise definition below. For low dimensions ($\leqq 3$) it is possible to list all modules which have such a resolution, and there are finitely many indecomposable ones; for higher dimensions this does not appear to be possible.
Nonetheless, in any dimension (\mathbf{X})-graded complexes have some nice properties. The only one we will consider here is the following: if F_{*} is an (\mathbf{X})-graded complex, then it is possible to define a filtration on each module F_{i} so that the complex of associated graded modules one obtains is a complex of free graded modules over the associated graded ring of $k[[\mathbf{X}]]$ with homology equal to the associated graded module of a good filtration on the homology of F_{*}. Such complexes will be called graded complexes; again, the exact definition will be given below. Interest in "approximating" a complex by a complex of graded modules came partly from the results of Peskine and Szpiro [2], where some conjectures on multiplicity are proven for graded modules by defining a sequence of invariants related to dimension and multiplicities from a complex of free graded modules. The results here allow one to define an analogous sequence of invariants in a more general situation; however, they will not have all the properties one has in the graded case, due to the inevitable dependence on the subring R. If A is Cohen-Macaulay, it is possible to produce from this a complex of modules over the graded ring of A (graded by powers of the ideal (\mathbf{X})), and, if the original complex is the resolution of a module M, the new complex will be a resolution of the associated

[^0]graded module of M by modules which are not necessarily free, but can be described in terms of the ring $A /(\mathbf{X})$. However, we do not develop this in this paper.

1. (X)-graded complexes. Let $A=K[[\mathbf{X}]]=k\left[\left[X_{1}, \ldots, X_{n}\right]\right]$. Before defining the concept of (\mathbf{X})-graded complex, we give a definition of the usual Koszul complex $K_{*}\left(X_{1}, \ldots, X_{n}\right)$ which will serve as a model for the more general definition.

In what follows, the word "complex" will mean "bounded complex of finitely generated free A-modules."

The definition of the Koszul complex we give here is by induction on n.

1. If $n=0$, we let $K_{*}=A=k$ in degree zero (that is, $K_{i}=k$ if $i=0$ and $K_{i}=0$ if $i \neq 0$).
2. Suppose $K_{*}\left(X_{1}, \ldots, X_{n-1}\right)$ is defined and is a complex of free $k\left[\left[X_{1}, \ldots, X_{n-1}\right]\right]$-modules. Then $K_{*}\left(X_{1}, \ldots, X_{n}\right)$ is the total complex of the double complex

$$
K_{*}\left(X_{1}, \ldots, X_{n-1}\right) \otimes k[[\mathbf{X}]] \xrightarrow{X_{n}} K_{*}\left(X_{1}, \ldots, X_{n-1}\right) \otimes k[[\mathbf{X}]]
$$

where the two copies of $K_{*}\left(X_{1}, \ldots, X_{n-1}\right) \otimes k[[\mathbf{X}]]$ are given degrees 1 and 0 respectively and the tensor product is taken over $k\left[\left[X_{1}, \ldots, X_{n-1}\right]\right]$.

We recall that if $L_{* *}$ is a double complex, then the total complex of $L_{* *}$, denoted $\operatorname{tot}\left(L_{* *}\right)$, is the complex with

$$
\operatorname{tot}\left(L_{* *}\right)_{i}=\bigoplus_{j+k=i} L_{j k}
$$

and differentials induced by those of $L_{* *}$.
We next give a preliminary definition.
Definition 1.1. A projective complex is a direct sum of complexes of the forms:

$$
\begin{aligned}
& \ldots \rightarrow 0 \rightarrow A \xrightarrow{1} A \rightarrow 0 \rightarrow \ldots \quad \text { and } \\
& \ldots \rightarrow 0 \rightarrow A \rightarrow 0 \rightarrow \ldots
\end{aligned}
$$

where the non-zero part can occur in any degree.
For the sense in which it is reasonable to consider such a complex projective, we refer to [3]. We note that if A is a field, every complex is projective.

Definition 1.2. We define what it means for a complex to be (\mathbf{X})-graded by induction on n.

1. If $n=0$, every complex is (\mathbf{X})-graded.
2. If $n>0$, an (\mathbf{X})-graded complex is a complex which is quasiisomorphic to a complex of the form

$$
\operatorname{tot}\left[\left(K_{*} \otimes k[[\mathbf{X}]]\right) \xrightarrow{X_{n} \phi}\left(P_{*} \otimes k[[\mathbf{X}]]\right)\right]
$$

where we have a short exact sequence of complexes

$$
0 \rightarrow L_{*} \rightarrow K_{*} \xrightarrow{\phi} P_{*} \rightarrow 0
$$

in which K_{*} and P_{*} are $\left(X_{1}, \ldots, X_{n-1}\right)$-graded complexes and L_{*} is projective.

We give three examples:
Example 1. Every projective complex is (\mathbf{X})-graded.
Example 2. The Koszul complex is (\mathbf{X})-graded. More generally, if we truncate the Koszul complex by letting $K_{i}=0$ for all i less than some integer j, the resulting complex is (\mathbf{X})-graded.

Example 3. The complex over $A=k\left[\left[X_{1}, X_{2}\right]\right]$ given by

$$
A^{2} \xrightarrow{\left(X_{1}, X_{2}\right)} A
$$

is also a truncated Koszul complex, but it is not in the form of part 2 of the above definition. However, it is quasi-isomorphic to the complex

which is in the correct form, so it is (\mathbf{X})-graded.
We next prove a result we will use later.
Proposition 1.3. Every (\mathbf{X})-graded complex is quasi-isomorphic to one of the form given in part 2 of Definition 1.2 in which L_{*} has zero differentials.

Proof. Let

$$
0 \rightarrow L_{*} \rightarrow K_{*} \xrightarrow{\phi} P_{*} \rightarrow 0
$$

be a short exact sequence of complexes of $k\left[\left[X_{1}, \ldots, X_{n-1}\right]\right]$-modules as in part 2 of Definition 1.2. Suppose there exists an i such that $d_{i}: L_{i} \rightarrow L_{i-1}$ is not zero. Since L_{*} is projective, this means that there is a direct summand F_{*} of L_{*} isomorphic to

$$
\ldots \rightarrow 0 \rightarrow A \xrightarrow{1} A \rightarrow \ldots
$$

furthermore, since L_{j} is a direct summand of K_{j} for each j, the image of F_{*} in K_{*} is a direct summand of K_{*}. Denoting K_{*} / F_{*} by \bar{K}_{*}, we have a short exact sequence

$$
0 \rightarrow F_{*} \rightarrow K_{*} \rightarrow \bar{K}_{*} \rightarrow 0
$$

so that \bar{K}_{*} is quasi-isomorphic to K_{*} and is thus (X_{1}, \ldots, X_{n-1})-graded. Furthermore, we have

$$
\begin{aligned}
0 & \rightarrow F_{*} \otimes k[[X]] \rightarrow \operatorname{tot}\left(K_{*} \otimes k[[X]] \rightarrow P_{*} \otimes k[[x]]\right) \\
& \rightarrow \operatorname{tot}\left(\bar{K}_{*} \otimes k[[X]] \rightarrow P_{*} \otimes k[[x]]\right) \rightarrow 0
\end{aligned}
$$

so that the above total complexes are also quasi-isomorphic. By continuing to remove trivial direct summands in this way we can eventually arrive at the situation in which L_{*} has zero differentials.
2. Graded complexes. Let A be a local ring with maximal ideal m. We define in this section an associated graded complex with respect to m for any complex of free A-modules. If the complex is minimal, so that the differentials are zero modulo m, this can be done very easily by using the m-adic filtration on each F_{i} shifted by i; however, we will need a more general case so we will not assume that the complex is minimal, even though this makes the definition somewhat more complicated.

Let F_{*} be a bounded complex of finitely generated free A-modules. We will assume, as we can, that bases are chosen for each F_{i} so that $d_{i}: F_{i} \rightarrow F_{i-1}$ is given by a matrix of the form
(1) $\left(\begin{array}{ccc}0 & 0 & 0 \\ I & 0 & 0 \\ M_{i} & N_{i} & P_{i}\end{array}\right)$
where I is an identity matrix and M_{i}, N_{i}, and P_{i} all have entries in m. We denote the corresponding decomposition of F_{i} into a direct sum by

$$
F_{i}=F_{i}^{1} \oplus F_{i}^{2} \oplus F_{i}^{3}
$$

The fact that $d_{i} d_{i+1}=0$ translates into the equations

$$
N_{i}+P_{i} M_{i+1}=0 \quad P_{i} N_{i+1}=0 \quad P_{i} P_{i+1}=0
$$

Thus the matrix (1) becomes
(2) $\left(\begin{array}{ccc}0 & 0 & 0 \\ I & 0 & 0 \\ M_{i} & -P_{i} M_{i+1} & P_{i}\end{array}\right)$
and the only condition is $P_{i} P_{i+1}=0$.
We now wish to produce from this a complex of free graded modules over the graded ring

$$
\bar{A}=\bigoplus_{i=0} m^{i} / m^{i+1}
$$

We use the following terminology and notation: if M is a finitely generated A-module, a good filtration on M is a decreasing filtration of A-submodules

$$
M=\mathbf{F}_{k}(M) \supseteq \mathbf{F}_{k+1}(M) \supseteq \ldots
$$

such that $m \mathbf{F}_{j}(M) \subseteq \mathbf{F}_{j+1}(M)$ for all j and $m \mathbf{F}_{j}(M)=\mathbf{F}_{j+1}(M)$ for all but finitely many j. If M is a module with a good filtration, then \bar{M}, the associated graded module, is a finitely generated \bar{A}-module. If $f: M \rightarrow N$ satisfies

$$
f\left(\mathbf{F}_{j}(M)\right) \subseteq \mathbf{F}_{j}(N) \quad \text { for all } j
$$

f induces a map from \bar{M} to \bar{N} which we denote \bar{f}.
Now let F_{*} be the complex above, and define a good filtration on each F_{i} by letting

$$
\mathbf{F}_{k}\left(F_{i}\right)=m^{k-i} F_{i}^{i} \oplus m^{k-i-i} F_{i}^{2} \oplus m^{k-i} F_{i}^{3}
$$

The fact that $d_{i}\left(\mathbf{F}_{\mathbf{k}}\left(F_{i}\right)\right) \subseteq \mathbf{F}_{k}\left(F_{i-1}\right)$ follows from the fact that d_{i} is defined by the matrix (2) and M_{i}, M_{i+1}, and P_{i} have entries in m. Thus there is an associated complex \bar{F}_{*} of free \bar{A}-modules; \bar{F}_{i} is isomorphic as a graded module to

$$
\bar{A}[-i]^{s_{1}} \oplus A[-i+1]^{s_{2}} \oplus \bar{A}[-i]^{s_{3}}
$$

where s_{j} is the rank of F_{i}^{j}.
The filtration on F_{i} induces a good filtration on $\operatorname{Ker} d_{i}$ and $\operatorname{Im} d_{i+1}$ (by the Artin-Rees Lemma), and thus also on the homology $H_{i}\left(F_{*}\right)$. Furthermore, there is a short exact sequence

$$
0 \rightarrow \overline{\overline{\operatorname{Im} d_{i+1}}} \rightarrow \overline{\operatorname{Ker} d_{i}} \rightarrow \overline{H_{i}\left(F_{*}\right)} \rightarrow 0
$$

Proposition 2.1. There are natural maps:

$$
\kappa_{i}: \overline{\operatorname{Ker} d_{i}} \rightarrow \operatorname{Ker}\left(\bar{d}_{i}\right)
$$

and

$$
\mu_{i}: \operatorname{Im}\left(\overline{d_{i+1}}\right) \rightarrow \overline{\operatorname{Im} d_{i+1}}
$$

making

commute.

Proof. The maps κ_{i} and μ_{i} are induced by the identity on F_{i}; the fact that they are well-defined and the commutativity of the diagram are straight forward to verify.

Definition 2.2. The complex F_{*} is graded if κ_{i} and μ_{i} are isomorphisms for all i.

If F_{*} is graded, we have a commutative diagram

so that $H_{i}\left(\bar{F}_{*}\right)$ is isomorphic to $\overline{H_{i}\left(F_{*}\right)}$ as a graded module.
Proposition 2.3. F_{*} is graded if and only if κ_{i} is surjective for all i.
Proof. We have commutative diagrams

and

so that κ_{i} and μ_{i} are automatically injective. Thus the proposition will be proven if we can show that the surjectivity of κ_{i+1} implies the surjectivity of μ_{i}. We first express these conditions in terms of elements:

Surjectivity of μ_{i} : This says that if $\alpha \in \mathbf{F}_{i+1}$ and $d \alpha \in \mathbf{F}_{k}\left(F_{i}\right)$, then there exists a $\beta \in \mathbf{F}_{k}\left(F_{i+1}\right)$ with $d \alpha-d \beta \in \mathbf{F}_{k+1}\left(F_{i}\right)$.
Surjectivity of κ_{i+1} : this says that if $\alpha \in \mathbf{F}_{k}\left(F_{i+1}\right)$ and $d \alpha \in \mathbf{F}_{k+1}\left(F_{i}\right)$, then there exists $\beta \in \mathbf{F}_{k}\left(F_{i+1}\right)$ with $\alpha-\beta \in \mathbf{F}_{k+1}\left(F_{i}\right)$ and $d \beta=0$.

Suppose now that κ_{i+1} is surjective. Let $\alpha \in F_{i+1}$ with $d \alpha$ in $\mathbf{F}_{k}\left(F_{i}\right)$. If $\alpha \in \mathbf{F}_{k}\left(F_{i+1}\right)$ we are done; if not, choose $j<k$ such that $\alpha \in \mathbf{F}_{j}\left(F_{i+1}\right)$. Then

$$
d \alpha \in \mathbf{F}_{k}\left(F_{i}\right) \subseteq \mathbf{F}_{j+1}\left(F_{i}\right)
$$

so by the surjectivity of κ_{i+1}, there is a β in $\mathbf{F}_{j}\left(F_{i+1}\right)$ with

$$
d \beta=0 \quad \text { and } \quad \alpha-\beta \in \mathbf{F}_{j+1}\left(F_{i+1}\right) .
$$

Then $d(\alpha-\beta)=d \alpha-d \beta=d \alpha$, so we can replace α by $\alpha-\beta \in$ $\mathbf{F}_{j+1}\left(F_{i+1}\right)$. This process can be continued until we find $\gamma \in \mathbf{F}_{k}\left(F_{j+1}\right)$ with $d \gamma=d \alpha$, proving that μ_{i} is surjective.

The next result we wish to prove is that the property of being graded depends only on the quasi-isomorphism class of the complex F_{*}. Since we
are only concerned here with complexes of free modules, this amounts to saying that if we represent a complex F_{*} as a direct sum $F_{*}=G_{*} \oplus M_{*}$, where G_{*} is chain homotopic to zero and M_{*} is minimal, then F_{*} is graded if and only if M_{*} is. If we represent F_{*} as in (2), the associated minimal complex is F_{*}^{3} with boundary maps d_{i}^{3} defined by the matrices P_{i}.

Proposition 2.4. If F_{*} and G_{*} are quasi-isomorphic, then F_{*} is graded if and only if G_{*} is graded.

Proof. As outlined above, it suffices to show that F_{*} with boundary maps given by (2) is graded if and only if F_{*}^{3} is. We use the criterion of Proposition 2.3.

Assume that F_{*}^{3} is graded. Let

$$
\eta=\left(\begin{array}{c}
0 \\
\bar{\alpha} \\
\bar{\beta}
\end{array}\right)
$$

be in the kernel of \bar{d}_{i} with

$$
\begin{aligned}
& \left(\begin{array}{l}
0 \\
\alpha \\
\beta
\end{array}\right) \text { in } \mathbf{F}_{k}\left(F_{i}\right) \text { and } \\
& d\left(\begin{array}{l}
0 \\
\alpha \\
\beta
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
-P M \alpha+P \beta
\end{array}\right) \quad \text { in } \mathbf{F}_{k+1}\left(F_{i-1}\right) .
\end{aligned}
$$

We then have

$$
-M \alpha+\beta \in \mathbf{F}_{k}\left(F_{i}^{3}\right) \text { and } P(-M \alpha+\beta) \in \mathbf{F}_{k+1}\left(F_{i-1}^{3}\right),
$$ so, since F_{*}^{3} is graded, there exists a $\gamma \in \mathbf{F}_{k}\left(F_{i}^{3}\right)$ with $P \gamma=0$ and

$$
(-M \alpha+\beta)-\gamma \in \mathbf{F}_{k+1}\left(F_{i}^{3}\right)
$$

Then

$$
\begin{aligned}
& \left(\begin{array}{c}
0 \\
\alpha \\
\gamma+M \alpha
\end{array}\right) \in \operatorname{Ker} d_{i} \text { and } \\
& \left(\begin{array}{c}
0 \\
\alpha \\
\beta
\end{array}\right)-\left(\begin{array}{c}
0 \\
\alpha \\
\gamma+M \alpha
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\beta-\gamma-M \alpha
\end{array}\right) \in \mathbf{F}_{k+1}\left(F_{i}\right) .
\end{aligned}
$$

Hence F_{*} is graded.
Conversely, assume that F_{*} is graded, and let $\alpha \in \mathbf{F}_{k}\left(F_{i}\right)$, be such that

$$
P \alpha \in \mathbf{F}_{k+1}\left(F_{i-1}^{3}\right)
$$

Then

$$
\left(\begin{array}{c}
0 \\
0 \\
\alpha
\end{array}\right) \in \mathbf{F}_{k}\left(F_{i}\right)
$$

with

$$
d\left(\begin{array}{l}
0 \\
0 \\
\alpha
\end{array}\right) \in \mathbf{F}_{k+1}\left(F_{i-1}\right)
$$

so there exists

$$
\left(\begin{array}{l}
0 \\
\beta \\
\gamma
\end{array}\right) \in \mathbf{F}_{k}\left(F_{i}\right)
$$

with

$$
d_{i}\left(\begin{array}{l}
0 \\
\beta \\
\gamma
\end{array}\right)=0 \quad \text { and }\left(\begin{array}{l}
0 \\
0 \\
\alpha
\end{array}\right)-\left(\begin{array}{l}
0 \\
\beta \\
\gamma
\end{array}\right) \in \mathbf{F}_{k+1}\left(F_{i}\right) .
$$

We claim that the element $\theta=\gamma-M \beta$ in F_{i}^{3} satisfies the condition of Proposition 2.3. Since

$$
d_{i}\left(\begin{array}{l}
0 \\
\beta \\
\gamma
\end{array}\right)=0
$$

we have $P \theta=P \gamma-P M \beta=0$. Furthermore, since $\beta \in \mathbf{F}_{k+1}\left(F_{i}^{2}\right)$, we have $M \beta \in \mathbf{F}_{k+1}\left(F_{i}^{3}\right)$, so

$$
\alpha-\theta=\alpha+M \beta-\gamma=(\alpha-\gamma)+M \beta \in \mathbf{F}_{k+1}\left(F_{i}\right) .
$$

Thus $d_{i}^{3}(\theta)=0$ and $\alpha-\theta \in \mathbf{F}_{k+1}\left(F_{i}^{3}\right)$, so F_{*}^{3} is graded.
As a final result in this section, we wish to show that the (\mathbf{X})-graded complexes defined above are graded. Let

$$
A=k\left[\left[X_{1}, \ldots, X_{n}\right]\right] \quad \text { and } \quad m=\left(X_{1}, \ldots, X_{n}\right)
$$

Proposition 2.5. An (\mathbf{X})-graded complex is graded.
Proof. The proof is by induction on n. If $n=0, A$ is a field and there is nothing to prove.

Assume the result for $n-1$, and let F_{*} be an (\mathbf{X})-graded complex. By Proposition 1.3, we can assume that

$$
F_{*}=\operatorname{tot}\left(K_{*} \otimes k[[\mathbf{X}]] \xrightarrow{X_{n} \phi} P_{*} \otimes k[[\mathbf{X}]]\right),
$$

where

$$
0 \rightarrow L_{*} \rightarrow K_{*} \xrightarrow{\phi} P_{*} \rightarrow 0
$$

is exact, K_{*} and P_{*} are $\left(X_{1}, \ldots, X_{n-1}\right)$ graded complexes, and L_{*} is a complex of free A-modules with zero differentials.

If the complex P_{*} is not minimal, we can remove a trivial summand from P_{*} and K_{*} to make P_{*} minimal while replacing all complexes involved by quasi-isomorphic ones. It is not always possible to make K_{*} minimal, but by a proper choice of splitting

$$
K_{i} \cong P_{i} \oplus L_{i}^{1} \oplus L_{i}^{2}
$$

the boundary maps of K_{*} can be put in the form

$$
\left(\begin{array}{ccc}
G_{i} & 0 & 0 \\
J_{i} & 0 & 0 \\
M_{i} & 0 & 0
\end{array}\right)
$$

where J_{i} is of the form ($I 0$) for an identity matrix I and G_{i} and M_{i} have coefficients in m. The boundary map in the total complex to $X_{n} \phi$ will now have the form

$$
\left(\begin{array}{cccc}
G_{i+1} & (-1)^{i} X_{n} & 0 & 0 \\
0 & G_{i} & 0 & 0 \\
0 & J_{i} & 0 & 0 \\
0 & M_{i} & 0 & 0
\end{array}\right)
$$

This is now in the proper form, and we can use the criterion of Proposition 2.3 to show that this total complex is graded, using the inductive hypothesis on K_{*} and P_{*}.

Let

$$
\begin{aligned}
& \left(\begin{array}{c}
\alpha \\
\beta \\
\gamma \\
\delta
\end{array}\right) \text { be in } \mathbf{F}_{k}\left(F_{i}\right) \text { with } \\
& d\left(\begin{array}{c}
\alpha \\
\beta \\
\gamma \\
\delta
\end{array}\right)=\left(\begin{array}{c}
G_{i+1} \alpha+(-1)^{i} X_{n} \beta \\
G_{i} \beta \\
J_{i} \beta \\
M_{i} \beta
\end{array}\right)
\end{aligned}
$$

in $\mathbf{F}_{k+1}\left(F_{i-1}\right)$. It is clear that the choices of γ and δ are arbitrary and they can be taken to be zero. We must thus find

$$
\left(\begin{array}{c}
\widetilde{\alpha} \\
\widetilde{\beta} \\
0 \\
0
\end{array}\right) \equiv\left(\begin{array}{c}
\alpha \\
\beta \\
0 \\
0
\end{array}\right) \bmod F_{k+1}\left(F_{i}\right) \quad \text { with } \quad d\left(\begin{array}{c}
\widetilde{\alpha} \\
\widetilde{\beta} \\
0 \\
0
\end{array}\right)=0 .
$$

Let

$$
\alpha=\sum \alpha_{j} X_{n}^{j} \quad \text { and } \quad \beta=\sum \beta_{j} X_{n}^{j}
$$

with α_{j} and β_{j} in $k\left[\left[X_{1}, \ldots, X_{n-1}\right]\right]$. Since G and M have coefficients in $k\left[\left[X_{1}, \ldots, X_{n-1}\right]\right]$, the condition

$$
G_{i+1} \alpha+(-1)^{i} X_{n} \beta \in \mathbf{F}_{k+1}\left(F_{i-1}\right)
$$

becomes:

$$
\begin{aligned}
& G_{i+1}\left(\alpha_{0}\right) \in \mathbf{F}_{k+1}\left(P_{i-1}\right) \\
& G_{i+1}\left(\alpha_{j}\right)+(-1)^{i} \beta_{j-1}=\theta_{j-1} \in \mathbf{F}_{k+1-j}\left(P_{i-1}\right) \quad \text { for } j>0
\end{aligned}
$$

Since P_{*} is graded, we can find $\widetilde{\alpha}_{0}$ with $\widetilde{\alpha}_{0}-\alpha_{0} \in \mathbf{F}_{k+1}\left(P_{i}\right)$ and $d \widetilde{\boldsymbol{\alpha}}_{n}=0$. Let

$$
\widetilde{\boldsymbol{\alpha}}=\widetilde{\boldsymbol{\alpha}}_{0}+\alpha_{1} X_{n}+\alpha_{2} X_{n}^{2}+\ldots
$$

and let

$$
\widetilde{\beta}=\sum\left(\beta_{j}-(-1)^{i} \theta_{j}\right) X_{n}^{j} .
$$

It is then clear from the equations above that $\widetilde{\alpha}$ and $\widetilde{\beta}$ will satisfy

$$
G_{i+1}(\widetilde{\alpha})+(-1)^{i} X_{n} \widetilde{\beta}=0
$$

and that

$$
\left(\begin{array}{c}
\alpha \\
\beta \\
0 \\
0
\end{array}\right) \equiv\left(\begin{array}{c}
\widetilde{\alpha} \\
\widetilde{\beta} \\
0 \\
0
\end{array}\right) \bmod \mathbf{F}_{k+1}\left(F_{i}\right) .
$$

The fact that

$$
X_{n} \widetilde{\beta}=G_{i+1}\left((-1)^{i} \widetilde{\boldsymbol{\alpha}}\right)
$$

now implies that

$$
X_{n} G_{i}(\widetilde{\beta})=0, X_{n} J_{i}(\widetilde{\beta})=0, \quad \text { and } \quad X_{n} M_{i}(\widetilde{\beta})=0
$$

so

$$
\begin{aligned}
& G_{i}(\widetilde{\beta})=J_{i}(\widetilde{\beta})=M_{i}(\widetilde{\beta})=0 \quad \text { and } \\
& d\left(\begin{array}{c}
\widetilde{\widetilde{\alpha}} \\
\widetilde{\beta} \\
0 \\
0
\end{array}\right)=0 .
\end{aligned}
$$

Thus F_{*} is graded.
3. General complexes over power series rings. Let $A=k\left[\left[Y_{1}, \ldots\right.\right.$, Y_{n}]] be a power series ring, and let F_{*} be a bounded complex of finitely generated A-modules. We wish to show that there is a sub-power series ring $k[[\mathbf{X}]] \subseteq k[[\mathbf{Y}]]$ such that $k[[\mathbf{Y}]]$ is a finite $k[[\mathbf{X}]]$-module and such that F_{*} is an (\mathbf{X})-graded complex. The proof is by induction; as usual, there is nothing to prove if $n=0$. If $n>0$, we reduce to dimension $n-1$ by taking the dual of a Cartan-Eilenberg resolution of F_{*} and showing that it is quasi-isomorphic in positive degrees to a double complex of modules of dimension less than or equal to $n-1$. One can then recover F_{*} up to a projective summand using a method of [1] and show that for proper choice of $k[[\mathbf{X}]], F_{*}$ is (\mathbf{X})-graded. For the homological results in this section which are not well-known, we refer to [2].
Let

$$
0 \rightarrow C_{k^{*}} \rightarrow C_{k-1, *} \rightarrow \ldots C_{1^{*}} \rightarrow C_{0^{*}} \rightarrow F_{*} \rightarrow 0
$$

be a finite Cartan-Eilenberg resolution of F_{*}.
Let $P^{* *}=\operatorname{Hom}_{A}\left(C_{* *}, A\right)$. For each i, j we have boundary maps:

$$
d_{P}^{i j}: P^{i j} \rightarrow P^{i+1, j}
$$

$$
\delta_{P}^{i j}: P^{i j} \rightarrow P^{i, j+1} .
$$

Lemma 3.1. For each $i>0$ and for each j, we have:
a. $\quad \operatorname{dim}\left(H^{i}\left(P^{* j}\right)\right) \leqq n-1$
b. $\quad \operatorname{dim}\left(H^{i}\left(\operatorname{Ker} \delta^{* j}\right)\right) \leqq n-1$.

Proof. These homology groups are

$$
\operatorname{Ext}^{i}\left(F_{j}, A\right) \text { and } \operatorname{Ext}^{i}\left(F_{j} / d_{j}\left(F_{j+1}\right), A\right)
$$

respectively; since A is an integral domain of dimension n, they have dimension $\leqq n-1$ for $i>0\left(\right.$ in fact, $\left.\operatorname{Ext}^{i}\left(F_{j}, A\right)=0\right)$.

Lemma 3.2. There exists a sub-double complex $K^{* *} \subseteq P^{* *}$ such that:
a. $\operatorname{dim} P^{i j} / K^{i j} \leqq n-1$ for all i and j.
b. $P^{* j} \rightarrow P^{* j} / K^{* j}$ induces isomorphisms in homology in degrees >0 for all j.
c. Ker $\delta_{p}^{* j} \rightarrow$ Ker $\delta_{P / K}^{* j}$ induces isomorphisms in homology in degrees >0 for all j.

Proof. We proceed step by step, dividing at each stage by a subcomplex of the form

where K is a submodule of $P^{k, l}$ such that $\operatorname{dim} P^{k, l} / K \leqq n-1$ and the projection from $P^{* *}$ onto the quotient modulo this subcomplex satisfies conditions b and c of the lemma. Thus we assume that this has been done for $i<k$ and for $i=k$ and $j<l$, so that $\operatorname{dim} P^{i, j} \leqq n-1$ for these indices, and show that it can then be done for $P^{k, l}$. Since there are only a finite number of non-zero modules in $P^{* *}$, this will prove the lemma.

Fix k, l as above. The procedure is now as follows: we give several conditions on a submodule K of $P^{k, l}$ so that if K satisfies all of them, it will satisfy conditions b and c of the lemma. We show that there is a submodule K satisfying each condition with

$$
\operatorname{dim} P^{k, l} / K \leqq n-1
$$

Finally, each condition has the property that if K satisfies it so does any submodule of K. Then the intersection of submodules satisfying each of them will satisfy all of them and $P^{k, l} / K$ will still have the correct dimension.

Condition 1. $K \xrightarrow{d} d K$ is an isomorphism if $k>0$ and surjective if $k=0$.

Surjectivity is of course obvious. For injectivity, assume $k>0$ and consider the sequence

$$
P^{k-1, l} \rightarrow P^{k, l} \xrightarrow{d^{k, l}} P^{k+1, l} .
$$

Since $P^{k-1, l}$ and $H^{*}\left(P^{k, l}\right)$ have dimension $\leqq n-1, \operatorname{Ker} d^{k, l}$ must also. Thus we can choose a K with

$$
K \cap \operatorname{Ker} d^{k, l}=0 \quad \text { and } \quad \operatorname{dim} P^{k, l} / K \leqq n-1 .
$$

Condition 2. $\delta K \xrightarrow{d} d \delta K$ is an isomorphism if $k>0$ and surjective if $k=0$.

As for Condition 1, we can find a submodule L of $P^{k, l+1}$ with $\operatorname{dim} P^{k, l+1} / L \leqq n-1 \quad$ and $L \cap \operatorname{Ker} d=0$.
We then let $K=\delta^{-1}(L)$.
We assume henceforth that the module K under consideration satisfies Conditions 1 and 2.

Condition 3. For $k>0$, and for all j,

$$
\operatorname{Ker} \delta_{K}^{k, j} \xrightarrow{d} \operatorname{Ker} \boldsymbol{\delta}_{K}^{k+1, j}
$$

is an isomorphism. For $k=0$, for all j we have

$$
K \cap d^{-1}\left(\operatorname{Ker} \delta_{P}^{k+1, l}\right) \subseteq \operatorname{Ker} \delta_{P}^{k, l}+\operatorname{Ker} d_{P}^{k, l}
$$

This condition is trivial if $j \neq l$ or $l+1$ and is Condition 2 if $j=l+1$. Hence we assume $j=l$.

If $k>0$, Condition 3 follows from Conditions 1 and 2 and the diagram

Let $k=0$. Both Ker $\delta_{P}^{k, l}$ and Ker $d_{P}^{k, l}$ are mapped by d into Ker $\delta_{P}^{k+1, l}$, and we have an injective map

$$
0 \rightarrow d^{-1}\left(\operatorname{Ker} \delta_{P}^{k+1, l}\right) /\left(\operatorname{Ker} \delta_{P}^{k, l}+\operatorname{Ker} d_{P}^{k, l}\right) \rightarrow H^{1}\left(\operatorname{Ker} \delta^{*, l}\right)
$$

Since $\operatorname{dim} H^{1}\left(\right.$ Ker $\left.\delta_{P}^{*, l}\right) \leqq n-1$, we can then find a submodule K with

$$
\operatorname{dim} P^{k, l} / K \leqq n-1
$$

and satisfying

$$
K \cap d^{-1}\left(\operatorname{Ker} \delta_{P}^{k+1, l}\right) \subseteq \operatorname{Ker} \delta_{P}^{k, l}+\operatorname{Ker} d_{P}^{k, l}
$$

Condition 4. For all $k>0$, and for all j, the sequence

$$
0 \rightarrow \operatorname{Ker} \delta_{K}^{*, j} \rightarrow \operatorname{Ker} \delta_{P}^{*, j} \rightarrow \operatorname{Ker} \delta_{P / K}^{*, j} \rightarrow 0
$$

is exact.
With no assumptions on K, we have an exact sequence

$$
0 \rightarrow \operatorname{Ker} \delta_{P}^{*, j} \rightarrow \operatorname{Ker} \delta_{P}^{*, j} \rightarrow \operatorname{Ker} \delta_{P, K}^{*, j} \rightarrow \text { Coker } \delta_{K}^{*, j} .
$$

Thus we must make the map from Ker $\delta_{P / K}^{*, /}$ to Coker $\delta_{K}^{*, j}$ zero. Since Coker $\delta_{K}^{* j}=0$ unless $j=l-1$, we assume $j=l-1$. In this case, the map looks like:

We must now choose K so that both vertical caps are zero.
To make $\delta^{k, i-1}=0$ in this diagram, it suffices to make

$$
K \cap \delta\left(P^{k, l-1}\right)=0
$$

Now $\operatorname{dim} P^{k, l-1} \leqq n-1$ by hypothesis, so

$$
\operatorname{dim} \delta\left(P^{k, l-1}\right) \leqq n-1
$$

and we can do this.
To make $\delta^{k+1, l-1}$ zero, we need

$$
\delta P^{k+1, l-1} \cap d K=0
$$

First, the short exact sequence of complexes:

$$
0 \rightarrow \operatorname{Ker} \delta^{*, l-1} \rightarrow P^{*, l-1} \rightarrow \operatorname{Im} \delta^{*, l-1} \rightarrow 0
$$

together with Lemma 3.1 imply that $\operatorname{Im} \delta^{*, l-1}$ has homology of dimension $\leqq n-1$ in degrees $\geqq 1$. Since $d\left(\operatorname{Im} \delta^{k, l-1}\right)$ has dimension $\leqq n-1$, we deduce that

$$
\operatorname{Im} \delta^{k+1, l-1} \cap \operatorname{Ker} d^{k+1, l}
$$

has dimension $\leqq n-1$. Hence we can find a submodule L of $P^{k+1, l}$ with

$$
\operatorname{dim} P^{k+1} / L \leqq n-1
$$

and such that

$$
L \cap \operatorname{Im} \delta^{k+1, l-1} \cap \operatorname{Ker} d^{k+1, l}=0
$$

It then suffices to take $K=d^{-1}(L)$.
We now show that if Conditions 1-4 are satisfied, the map $P^{* *} \rightarrow$ $P^{* *} / K^{* *}$ satisfies Conditions b and c of the lemma.

Condition b. Conditions 1 and 2 imply that for each j, and each $i>0$, we have $H^{i}\left(K^{*, j}\right)=0$. Thus the long exact sequence associated to

$$
0 \rightarrow K^{*, j} \rightarrow P^{*, j} \rightarrow(P / K)^{*, j} \rightarrow 0
$$

implies Condition b.
Condition c. We divide this into two cases.
First assume $k>0$. Then Condition 3 says that

$$
H^{i}\left(\operatorname{Ker} \delta_{K}^{*, j}\right)=0 \text { for all } i
$$

and Condition 4 says that

$$
0 \rightarrow \operatorname{Ker} \delta_{K}^{*, j} \rightarrow \operatorname{Ker} \delta_{P}^{*, j} \rightarrow \operatorname{Ker} \delta_{P / K}^{*, j} \rightarrow 0
$$

is exact. Hence the long exact sequence implies Condition c.
Now assume $k=0$. We must check that

$$
H^{1}\left(\operatorname{Ker} \delta_{P}^{*, j}\right) \rightarrow H^{1}\left(\operatorname{Ker} \delta_{P}^{*, j}\right)
$$

is an isomorphism.
Surjectivity follows from Condition 4 as in the case when $k>0$. We now show that Condition 3 is enough to imply that this map is injective. This is non-trivial only if $j=l$.

Let $\eta \in H^{1}\left(\operatorname{Ker} \delta_{P / K}^{*, l}\right)$ be such that its image in $H^{1}\left(\operatorname{Ker} \delta_{P / K}^{*, l}\right)$ is zero. Represent η by x in $P^{k \not f 1, l}$ with $\delta x=d x=0$. Then, since the image of η is zero in $H^{l}\left(\operatorname{Ker} \delta_{P / K}^{*, l}\right)$, there exists \bar{y} in $P^{k, l} / K$ with $\overline{\delta y}=0$ in $P^{k, l+1} / \delta K$ and $\overline{d y}=\bar{x}$ in $P^{*, l} / d K$. In other words, there exists $y \in P^{k, l}$ and k, k^{\prime} in K with

$$
\begin{aligned}
& \delta y=\delta k^{\prime} \\
& d y=x+d k .
\end{aligned}
$$

Replacing y by $y-k^{\prime}$ and k by $k-k^{\prime}$, we can replace the first equation by

$$
\delta y=0 .
$$

We have

$$
\delta(d k)=\delta(d y-x)=d \delta y-\delta x=0,
$$

so

$$
d k \in \operatorname{Ker} \delta_{P}^{k+1, l} .
$$

Thus, by Condition 3 we can write $k=s+t$, with

$$
s \in \operatorname{Ker} \delta_{p}^{k, l} \text { and } t \in \operatorname{Ker} d_{p}^{k, l} .
$$

Now let $y^{\prime}=y-s$. Then:

$$
\begin{aligned}
& \delta y^{\prime}=\delta y-\delta s=0 \\
& d y^{\prime}=d y-d s=x+d k-d k=x .
\end{aligned}
$$

Thus $x \in d\left(\operatorname{Ker} \delta^{k, l}\right), \eta=0$ in $H^{1}\left(\operatorname{Ker} \delta_{p}^{*, l}\right)$. This completes the proof of the lemma.

We now return to the inductive proof that there is a power series subring R of A such that F_{*} is an (\mathbf{X})-graded complex of R-modules. Let $K^{* *}$ be as in Lemma 3.5, and let $M^{* *}=P^{* *} / K^{* *}$. Then the dimension of $M^{i j}$ is less than n for all i and j, so there is a non-zero element $X_{n} \in A$ such that $X_{n} M^{i j}=0$ for all i, j. Choose $\widetilde{X}_{1}, \ldots, \widetilde{X}_{n-1}$ in A so that $A / X_{n} A$ is a finitely generated $k\left[\left[\widetilde{X}_{1}, \ldots, \widetilde{X}_{n-1}\right]\right]$-module. We note that A is then a finitely generated $k\left[\left[\widetilde{X}_{1}, \ldots, \widehat{X}_{n-1}, X_{n}\right]\right]$-module.

The procedure is now to reconstruct F_{*} from $M^{* *}$. Let $Q^{* *} \rightarrow M^{* *}$ be a Cartan-Eilenberg resolution of the complex of complexes of $k\left[\left[\widetilde{X}_{1}, \ldots, \widetilde{X}_{n-1}\right]\right]$-modules:

$$
0 \rightarrow M^{0 *} \rightarrow M^{1 *} \rightarrow \ldots \rightarrow M^{k} \rightarrow 0
$$

Let $S^{* *}$ be the total complex (or mapping cone) of the map of complexes of complexes of $k\left[\left[\widetilde{X}_{1}, \ldots, \widetilde{X}_{n-1}, X_{n}\right]\right]$ modules given by

$$
\widetilde{Q}^{* *} \xrightarrow{X_{n}} \widetilde{Q}^{* *},
$$

where

$$
\widetilde{Q}^{* *}=Q^{* *} \bigotimes_{k\left[\left[\tilde{X}_{1}, \ldots, \widetilde{X}_{n-1}\right]\right]} k\left[\left[\widetilde{X}_{1}, \ldots, \widetilde{X}_{n-1}, X_{n}\right]\right] .
$$

Thus for each i, we have

$$
S^{i *}=\widetilde{Q}^{i *} \oplus \widetilde{Q}^{i+1, *}
$$

with differentials induced by those of $\widetilde{Q}^{* *}$ and by X_{n}.
Then $S^{* *}$ is a resolution of $M^{* *}$ over $k\left[\left[\widetilde{X}_{1}, \ldots, \widetilde{X}_{n-1}, X_{n}\right]\right]$. Since $P^{* *}$ is a resolution of $M^{* *}$ in degrees $\geqq 1$ (by the construction in Lemma 3.2), $S^{* *}$ and $P^{* *}$ agree in degrees $\geqq 1$ up to trivial direct summands and in degree zero up to a projective direct summand. Let $T^{* *}$ denote $S^{* *}$ truncated by omitting everything in degrees <0. The complex $T^{* *}$ is constructed from $\widetilde{Q}^{* *}$ as follows: let $\widetilde{Q}_{\geqq 0}^{* *}$ denote $\widetilde{Q}^{* *}$ truncated by omitting $\widetilde{Q}^{i *}$ for $i<0$ (i.e., replacing these $\widetilde{Q}^{i *}$ with zeros), and let $\widetilde{Q}_{\geqq}^{* *}$ by $\widetilde{Q}^{* *}$ truncated by omitting $\widetilde{Q}^{i *}$ for $i<1$; similarly define $Q_{\geqq}^{* *}$ and $Q \geqq 0$. Then if

$$
\widetilde{Q}_{\geqq 1} \xrightarrow{\psi} \widetilde{Q}_{\geqq 0}^{* *}
$$

is the inclusion, we have

$$
T^{* *}=\operatorname{tot}\left(\widetilde{Q} \xrightarrow[\geqq]{* *} \xrightarrow{X_{n} \psi} \widetilde{Q} \xrightarrow[\geqq]{* *}\right) .
$$

We now dualize to get back to $C_{* *}$. Let

$$
R=k\left[\left[\widetilde{X}_{1}, \ldots, \widetilde{X}_{n-1}, X_{n}\right]\right]
$$

We have:

$$
C_{* *} \cong \operatorname{Hom}_{A}\left(P^{* *}, A\right)
$$

We also know that

$$
\operatorname{Hom}_{R}\left(T^{* *}, R\right) \cong \operatorname{Hom}_{R}\left(P^{* *}, R\right)
$$

up to trivial summands in positive degrees and a projective summand in degree zero. We wish to show that the total complexes of all these complexes are isomorphic as complexes of R-modules up to a projective direct summand, and to do this it will suffice to show that

$$
\operatorname{Hom}_{A}\left(P^{* *}, A\right) \cong \operatorname{Hom}_{R}\left(P^{* *}, R\right)
$$

as complexes of R-modules.
To see this last isomorphism, we note that since $P^{* *}$ is a complex of free modules, we can decompose it into summands isomorphic to A and maps given by multiplication by elements of A. Hence it suffices to find an isomorphism

$$
\alpha: \operatorname{Hom}_{A}(A, A) \xrightarrow{\leftrightarrows} \operatorname{Hom}_{R}(A, R)
$$

such that for each $a \in A$, the diagram

commutes. But this is the same as an isomorphism of A-modules:

$$
\operatorname{Hom}_{R}(A, R) \xrightarrow{\leftrightarrows} A,
$$

and this exists whenever A is a Gorenstein ring.
Putting these isomorphisms together, we deduce that

$$
F_{*} \cong \operatorname{tot}\left(\operatorname{Hom}_{R}\left(T^{* *}, R\right)\right)
$$

up to a projective direct summand. Let

$$
R^{\prime}=k\left[\left[\widetilde{X}_{1}, \ldots, \widetilde{X}_{n-1}\right]\right] .
$$

By changing the order in which we tensor with R and take total complexes, we have that $\operatorname{tot}\left(\operatorname{Hom}_{R}\left(T^{* *}, R\right)\right)$ is isomorphic to

$$
\begin{aligned}
& \operatorname{tot}\left[\operatorname{Hom}\left(\operatorname{tot} Q_{i \geqq 0}^{* *}, R^{\prime}\right)\right. \\
& \left.\otimes_{R^{\prime}} R \xrightarrow{X_{n}^{\prime} \operatorname{Hom}\left(\operatorname{tot} \psi, R^{\prime}\right) \otimes R} \operatorname{Hom}\left(\operatorname{tot} Q_{i \geqq 1}^{* *}, R^{\prime}\right) \otimes_{R^{\prime}} R\right] .
\end{aligned}
$$

By the induction hypothesis, we can find a subring

$$
k\left[\left[X_{1}, \ldots, X_{n-1}\right]\right] \subseteq k\left[\left[\widetilde{X}_{1}, \ldots, \widetilde{X}_{n-1}\right]\right]
$$

such that the complexes $\operatorname{Hom}\left(\operatorname{tot} Q_{i \geqq 0}^{* *}, R^{\prime}\right)$ and $\operatorname{Hom}\left(\operatorname{tot} Q_{i \geqq 1}^{* *}, R^{\prime}\right)$ are $\left(X_{1}, \ldots, X_{n-1}\right)$-graded and such that $k\left[\left[\widetilde{X}_{1}, \ldots, \widetilde{X}_{n-1}\right]\right]$ is a finitely generated $k\left[\left[X_{1}, \ldots, X_{n-1}\right]\right]$-module. It then follows that A is a finitely generated $k\left[\left[X_{1}, \ldots, X_{n}\right]\right]$-module and $\operatorname{Hom}\left(T^{* *}, R\right)$, so also F_{*}, is an $\left(X_{1}, \ldots, X_{n}\right)$-graded $k\left[\left[X_{1}, \ldots, X_{n}\right]\right]$-module, as was to be shown.
4. (\mathbf{X})-graded complexes in low dimension. If the dimension R is one or two, it is possible to write down a list of all indecomposable (\mathbf{X})-graded complexes. If the dimension is three, this does not appear to be possible; however, it is still possible to list all modules whose free resolutions are of this type.

In dimension one, R is a discrete valuation ring, so there is a structure theorem for aii complexes; every complex is a direct sum of free moduies and compiexes of the form

$$
\ldots \rightarrow 0 \rightarrow R \xrightarrow{V^{n}} R \rightarrow 0 \rightarrow \ldots
$$

We remark that the complex is (\mathbf{X})-graded if and only if $n=1$ in every direct summand of this form; we will use this in the next example.
Assume now that the dimension of R is 2 . Here there are numerous infinite families of indecomposable modules, but we will show that there are exactly five distinct indecomposable (\mathbf{X})-graded complexes. For convenience, we will write $R=k[[X, Y]]$, and we assume that we have a map $\phi: K_{*} \rightarrow P_{*}$ of (\mathbf{X})-graded complexes over $k[[X]]$ which fits into a short exact sequence
$\left.{ }^{*}\right) \quad 0 \rightarrow L_{*} \rightarrow K_{*} \rightarrow P_{*} \rightarrow 0$
where L_{*} is a complex of free modules with zero differentials. We now wish to describe the complex

$$
\operatorname{tot}\left(K_{*} \otimes k[[X, Y]] \xrightarrow{Y \phi} P_{*} \otimes k[[X, Y]]\right) .
$$

We will do this by modifying the complex (${ }^{*}$) by row and column operations on its matrices to split off direct summands of various types. Let $S=k[[X]]$. Let n be the highest degree for which L_{n}, K_{n}, or P_{n} is not zero. We can then throw out L_{n} and the highest two degrees of the sequence will look like:

where M and N are matrices with coefficients in S.
If we have a column of zeros in the matrix $\left(\frac{M}{N}\right)$, we can split off a summand of the form

$$
S \xrightarrow{1} S
$$

from the first row, which gives the complex
(1) $R \xrightarrow{Y} R$.

If we have a row of zeros, we can split off a summand from the second row and deal with it when considering the map from degree $n-1$ to degree $n-2$.

We now wish to reduce the matrix $\left(\frac{M}{N}\right)$. Note that we are not allowed
to add a row of M to N or interchange rows when one is in M and the other in N, as this will not preserve the subcomplex L_{*}. Other row and column operations are allowed.

We first reduce N to obtain the form

$$
\left(\begin{array}{lll}
0 & M^{\prime} \\
0 & & \\
\hline I & 0 & 0 \\
0 & X & 0 \\
0 & 0 & 0
\end{array}\right)
$$

where we use X to denote X times an identity matrix of the appropriate size. This gives summands of the form

which give rise to trivial complexes.
Now reduce the part of M^{\prime} lying above zeros:

$$
\left(\begin{array}{cccc}
0 & I & 0 & 0 \\
M^{\prime \prime} & 0 & X & 0 \\
& 0 & 0 & 0 \\
\hline X & 0 & 0 & 0
\end{array}\right)
$$

The I gives direct summands of the form

which produce the complex
(2)

$$
R \xrightarrow{\binom{Y}{1}} R^{2}=R
$$

We now have:

$$
\left(\begin{array}{cc}
M^{\prime \prime} & X \\
& 0 \\
X & 0
\end{array}\right)
$$

We note that a column operation on $M^{\prime \prime}$ can be undone in X by an appropriate row operation, and that any multiple of X in $M^{\prime \prime}$ can be removed by subtracting a multiple of a row below the dotted line, so that we can reduce the part of $M^{\prime \prime}$ to the left of zero and obtain:

$$
\left(\begin{array}{ccc}
0 & M^{\prime \prime \prime} & X \\
I & 0 & 0 \\
0 & 0 & 0 \\
\hline X & 0 & 0 \\
0 & X & 0
\end{array}\right)
$$

This produces summands of the form

which give
(3) $R \xrightarrow{\left(\begin{array}{c}-Y \\ 1 \\ X\end{array}\right)} R^{3} \xrightarrow{\left(\begin{array}{lll}X & 0 & Y\end{array}\right)} R=R^{2} \xrightarrow{(X Y)} R$.

We can now rēduce $M^{\prime \prime \prime}$ to get

$$
\left(\begin{array}{cccc}
I & 0 & X & 0 \\
0 & 0 & 0 & X \\
\hline X & 0 & 0 & 0 \\
0 & X & 0 & 0
\end{array}\right)
$$

This gives three types of direct summand. The first is:

$$
\left(\begin{array}{ll}
1 & X \\
X & 0
\end{array}\right)
$$

however, in diagonal form this becomes

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & X^{2}
\end{array}\right)
$$

which cannot occur since K_{*} is (\mathbf{X})-graded. The others are:

which produces
(4) $\xrightarrow{\binom{X}{Y}} R^{2}$
and

which gives rise to the Koszul complex

$$
\begin{equation*}
R \xrightarrow{\binom{-Y}{X}} R^{2} \xrightarrow{(X Y)} R . \tag{5}
\end{equation*}
$$

Thus there are five (\mathbf{X})-graded complexes over $k[[X, Y]]$; it is clear that these are distinct (up to quasi-isomorphism).

If $R=k[[X, Y, Z]]$, there does not appear to be a simple classification of (\mathbf{X})-graded complexes of this sort. However, if F_{*} is the resolution of a module, we can take its dual (as in Section 3); this will give an (X)-graded complex over $k[[X, Y]$], and, using the above classification, one can see that there are eight modules which arise in this way. Adding a free module of rank one, this gives nine (\mathbf{X})-graded modules in dimension three.

References

1. G. Horrocks, Vector bundles on the punctured spectrum of a local ring, Proc. London Math. Soc 14 (1964), 689-713.
2. C. Peskine and L. Szpiro, Syzygies et multiplicités, C. R. Acad. Sci. 278 (1974), 1421-1424.
3. P. Roberts, Some remarks on the homological algebra of multiple complexes (to appear).

The University of Utah,
Salt Lake City, Utah

[^0]: Received September 4, 1984. This research was supported in part by a grant from the National Science Foundation.

