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Abstract. We report on turbulent dynamo simulations in a spherical wedge with an outer
coronal layer. We apply a two-layer model where the lower layer represents the convection zone
and the upper layer the solar corona. This setup is used to study the coronal influence on
the dynamo action beneath the surface. Increasing the radial coronal extent gradually to three
times the solar radius and changing the magnetic Reynolds number, we find that dynamo action
benefits from the additional coronal extent in terms of higher magnetic energy in the saturated
stage. The flux of magnetic helicity can play an important role in this context.
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1. Introduction
The solar magnetic field is produced by a dynamo operating beneath the solar surface.

In the convection zone, the turbulent motions driven by convection and shear from the
differential rotation are able to amplify and organize the magnetic field. These fields
manifest themselves at the solar surface in form of sunspots, in which the field is so strong
that the heat transported by convection is suppressed, leading to dark spots on the solar
disk. One important feature of these sunspots is their latitudinally dependent occurrence.
Averaging over longitude, one finds the typical behavior of equatorward migration of the
underlying mean magnetic field. This behavior gives clear evidence for the existence of a
dynamo mechanism in the Sun. In dynamo theory the α-effect plays an important role,
because this effect describes the amplification of large-scale magnetic field in the absent
of shear. In the Sun, it is believed that the α-effect produces new poloidal field from
the toroidal field. How strong its contribution for the production of toroidal field is, is
currently under debate (see e.g. Käpylä et al. 2013).

Numerical simulations of turbulent dynamos have shown that the α-effect can be catas-
trophically quenched at high magnetic Reynolds numbers (see Brandenburg & Subrama-
nian 2005, for a detailed discussion). One possible loophole to alleviate the quenching is
to allow for magnetic helicity fluxes (Blackman & Field 2000; Subramanian & Branden-
burg 2006; Brandenburg et al. 2009). In this context, it is very important to choose a
realistic boundary condition for the dynamo, which allows for magnetic helicity fluxes.
Preventing a transport of helicity out of the simulation domain may influence the dynamo
solution and the strength of the amplified magnetic field. Besides the magnetic helicity
fluxes, commonly used boundary conditions for the magnetic field such as vertical field or
perfect conductor restrict the dynamo and the magnetic field to certain solutions. This
led to the development of the so-called “two-layer model”, where we combine the lower
layer, in which the magnetic field is generated by dynamo action, representing the solar
convection zone with a upper, force-free layer, representing the solar corona.
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Our first application of the two-layer model led to the formation of structures rem-
iniscent of plasmoid- and CME-like ejections, driven by a forced turbulent dynamo
(Warnecke & Brandenburg 2010; Warnecke et al. 2011, 2012a) and, subsequently, by
a self-consistently driven convective dynamo (Warnecke et al. 2012b) in the lower layer.
This indicates that the dynamo can be directly responsible for producing coronal ejec-
tions and form structures in the solar corona. But in the recent work of Warnecke et al.
(2013a), the authors find that differential rotation and the migration of the mean mag-
netic field can be also influenced by the presence of a coronal layer. In this paper, we
investigate how the corona influences the dynamo action.

2. Model
We use spherical polar coordinates, (r, θ, φ). The setup is the same as that of Warnecke

et al. (2011), where we use a spherical wedge with 0.7R� � r � RC, π/3 � θ � 2π/3,
corresponding to ±30◦ latitude, and 0 < φ < 0.3, corresponding to a longitudinal extent
of 17◦. R� is the radius of the Sun and RC is the outer radius of the coronal layer. At
r = R the domain is divided at into two parts. The lower layer mimics the convection
zone, where a magnetic field gets generated by turbulent dynamo action. The upper
layer is a nearly force-free part, which mimics the solar corona. We solve the following
equations of compressible magnetohydrodynamics,

∂A

∂t
= U × B + η∇2A, (2.1)

DU

Dt
= −∇h + g +

1
ρ

(J × B + ∇ · 2νρS) + F for , (2.2)

Dh

Dt
= −c2

s∇ · U , (2.3)

where A is the magnetic vector potential and the magnetic field is defined by B = ∇×A,
which makes Equation (2.2) obey ∇ · B = 0 at all times. η and ν are the magnetic
diffusivity and the kinematic viscosity, respectively. D/Dt = ∂/∂t+U ·∇ is the advective
derivative, g = GMr/r3 is the gravitational acceleration, G is Newton’s gravitational
constant, and M is the mass of the Sun. We choose GM/R�c2

s = 3. J ×B is the Lorentz
force and J = ∇ × B/μ0 is the current density, where μ0 is the vacuum permeability.
The traceless rate-of-strain tensor is defined as Sij = 1

2 (Ui;j +Uj ;i)− 1
3 δij∇ ·U , where the

semi-colons denote covariant differentiation, h = c2
s ln ρ is the specific pseudo-enthalpy,

with cs = const is the isothermal sound speed. As in the work of Warnecke et al. (2012a),
the forcing function is only present in the lower layer of the domain. This means that the
forcing function goes smoothly to zero in the upper layer of the domain (r � R�). The
function f consists of random plane helical transverse waves with relative helicity σ = (f ·
∇×f)/kff

2 and wavenumbers that lie in a band around an average forcing wavenumber
of kfR� ≈ 63. The forcing function also has a dependence on the helicity which is here
chosen to be σ = − cos θ such that the kinetic helicity of the turbulence is negative in
the northern hemisphere and positive in the southern. More detailed descriptions can
be found in Warnecke et al. (2011) and Haugen, Brandenburg, and Dobler (2003). The
magnetic field is expressed in units of the equipartition value, Beq = μ0urmsρ, where
ρ = 〈ρ〉r�R�,θ ,φ , urms = 〈u2

r + u2
θ + u2

φ〉
1/2
r�R�,θ ,φ , and 〈·〉r�R�,θ ,φ denotes an average over

θ, φ and r � R�, i.e., over the whole dynamo in region. The fluid and the magnetic
Reynolds numbers are defined as,

Re = urms/νkf , ReM = urms/ηkf . (2.4)
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Figure 1. Dependence of magnetic field energy normalized by the equipartition value B2
rm s/B2

eq
with coronal radial extent RC and magnetic Reynolds number ReM . The solid black line indicates
the dynamo region without corona.

Their ratio is expressed by the magnetic Prandtl number PrM = ReM /Re.
As an initial condition we use Gaussian noise as seed magnetic field in the dynamo

region. Our domain is periodic in the azimuthal direction. For the velocity field we
use a stress-free boundary condition on all other boundaries. For the magnetic field we
apply a perfect conductor conditions in both θ boundaries and the lower radial boundary
(r = 0.7R�). On the outer radial boundary (r = RC), we employ vertical field conditions.
We use the Pencil Code† with sixth-order centered finite differences in space and a
third-order accurate Runge-Kutta scheme in time; see Mitra et al. (2009) for the extension
of the Pencil Code to spherical coordinates.

3. Dynamo action
We perform 27 runs where we change RC and ReM , but keep PrM constant. The letters

for different sets indicate the coronal extents: RC/R� = 1, 1.5, 2, 3, 1.2, 1.1, and 2.5 for
Sets A–F. In the first four sets, we vary ReM from 1.5 to 220, for the last three sets we
use ReM = 6.

For all runs the turbulent motion in the lower layer of the domain drives dynamo
action, which amplifies the magnetic field. After exponential growth, the field saturates
and shows cycles. The field shows an equatorward migration of the all three magnetic field
components, as described in Warnecke et al. (2011). This is caused by an α2 dynamo,
where α changes sign over the equator (Mitra et al. 2010a). In Figure 1, we show for
all the 27 runs the normalized magnetic field energy B2

rms/B2
eq as function of magnetic

Reynolds number ReM . The value for B2
rms/B2

eq is obtained by averaging in space over
the lower layer of the domain r � R� and in time over many hundred turnover times
in the saturated stage. The error bars in Figure 1 reflect the quality of the temporal
averaging. From Figure 1, we can deduct two important results. First, for runs with a
corona the magnetic energy peaks at ReM ≈ 20. This seems to be not the case for runs
without a corona. On the other hand, the magnetic energy declines for larger ReM , as
was also found by Käpylä et al. (2010), which could be related to a change in the onset
conditions for the different cases. Second, the magnetic energies for all runs with a coronal
extent are larger by a factor of ≈ 1.5. It seems that the actual radial size of the coronal

† http://pencil-code.googlecode.com
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extension is not that important as long as there exists a coronal layer. The run of Set F
has just a coronal extent of RC = 1.1R�, but the magnetic energy is closer to runs with
larger coronal extent than to the one without corona.

Magnetic helicity fluxes might be a key to solving this riddle. However, the outer radial
boundary condition in the runs without a corona also allow for magnetic helicity fluxes.
We recall that the simulation with a corona generates large ejections of magnetic helicity
(Warnecke et al. 2011, 2012a). Without possessing a coronal extent the dynamo might
be not able to produce ejection of magnetic helicity and therefore has a much lower
magnetic helicity flux through the boundary. Studies on the nature of helicity fluxes
in these runs are already on the way (Warnecke et al. 2013c, in preparation). However,
magnetic helicity fluxes might be important only much larger magnetic Reynolds numbers
(Del Sordo, et al. 2013).

4. Conclusions
We have shown that a coronal layer on the top of a dynamo region can support dynamo

action. This is visible through an increase in magnetic energy by adding a corona at the
top of the domain and leaving all other parameters the same. However, it will be necessary
to study magnetic helicity fluxes through the surface of the lower layer for these cases
to derive any further conclusions. The two-layer model has been used before to show the
impact of a dynamo on coronal properties and generating CME-like ejections (Warnecke
& Brandenburg 2010; Warnecke et al. 2011, 2012a). With this model is was also possible to
generate spoke-like differential rotation and equatorward migration in global convective
dynamo simulations (Warnecke et al. 2013a), whereas models without a corona have
not been able to reproduce these features in the same parameter regime (Käpylä et al.
2013). Besides dynamo models, this two-layer approach is successful in combination with
stratified turbulence in producing a bipolar magnetic region (Warnecke et al. 2013b) as
a possible mechanism of sunspot formation.
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