# ON REPRESENTATIONS AS A SUM OF CONSECUTIVE INTEGERS 

W. J. LEVEQUE

1. Introduction. It is the object of this paper to investigate the function $\gamma(m)$, the number of representations of $m$ in the form

$$
\begin{equation*}
(r+1)+(r+2)+\ldots+s \tag{1}
\end{equation*}
$$

where $s>r \geqslant 0$. It is shown that $\gamma(m)$ is always equal to the number of odd divisors of $m$, so that for example $\gamma\left(2^{k}\right)=1$, this representation being the number $2^{k}$ itself. From this relationship the average order of $\gamma(m)$ is deduced; this result is given in Theorem 2. By a method due to Kac [2], it is shown in $\S 3$ that the number of positive integers $m \leqslant n$ for which $\gamma(m)$ does not exceed a rather complicated function of $n$ and $\omega$, a real parameter, is asymptotically $n D(\omega)$, where $D(\dot{\omega})$ is the probability integral

$$
(2 \pi)^{-\frac{1}{2}} \int_{-\infty}^{\omega} e^{-\frac{1}{2} x^{2}} d x
$$

In §4, these theorems are extended to $\gamma(m, s)$, the number of representations of $m$ as the sum of positive consecutive terms in any of the $s$ arithmetic progressions having constant difference $s$.
2. The average order of $\gamma(m)$. First we prove

Theorem 1. $\gamma(m)=\tau(\bar{m})$ where $\tau(u)$ is the number of divisors of $u$ and $m=2^{a-1} \bar{m}, \bar{m}$ odd.

For by (1) we have

$$
m=\frac{s^{2}+s}{2}-\frac{r^{2}+r}{2}, \quad 2 m=(s-r)(s+r+1)
$$

Putting $s-r=n$, this gives

$$
2 m=n(n+2 r+1)
$$

Since $n$ and $n+2 r+1$ have opposite parity, and since $n<(2 m)^{\frac{1}{2}}, \gamma(m)$ is" the number of ways of writing $2 m$ as the product of an even and an odd number. That is,

$$
\gamma(m)=\sum_{\substack{n \left\lvert\, \bar{m} \\ n<(2 m)^{\frac{1}{2}}\right.}} 1+\sum_{\substack{2 m|n| \bar{m} \\ 2 m / n>(2 m)^{\frac{1}{2}}}} 1=\sum_{d \mid \bar{m}} 1=\tau\left({ }^{m}\right) .
$$

Theorem 2. The average order of $\gamma(m)$ is $\frac{1}{2} \log m$; more precisely,

$$
\frac{1}{n} \sum_{m=1}^{n} \gamma(m)=\frac{1}{2} \log n+\frac{2 C+\log 2-1}{2}+O\left(n^{-\frac{1}{2}}\right),
$$

where C is Euler's constant.
Received April 1, 1949.

For let $l$ be the unique integer such that $2^{l} \leqslant n<2^{l+1}$. Then by Theorem 1,

$$
\begin{aligned}
\sum_{m=1}^{n} \gamma(m)= & \sum_{m=1}^{n} \tau(\bar{m}) \\
= & \sum_{\substack{1 \leqslant m \leqslant n \\
m=1(\bmod 2)}} \tau(m)+\sum_{\substack{1 \leq m \leqslant n \\
m=2 \\
(\bmod 4)}} \tau(m / 2)+\sum_{\substack{1 \leqslant m \leqslant n \\
m=4(\bmod 8)}} \tau(m / 4)+\ldots \\
& \quad+\sum_{\substack{1 \leqslant m \leqslant n \\
m \equiv 2^{l}\left(\bmod 2^{l+1}\right)}} \tau\left(m / 2^{l}\right) \\
= & \sum_{r=0}^{(n-1) / 2} \tau(2 r+1)+\sum_{r=0}^{(n-2) / 4} \tau(2 r+1)+\ldots \\
& \quad+\sum_{r=0}^{\left(n-2^{l}\right) / 2^{l+1}} \tau(2 r+1)
\end{aligned}
$$

and since $l=\left[\frac{\log n}{\log 2}\right]$ this is

$$
\begin{equation*}
\sum_{m=1}^{n} \gamma(m)=\sum_{t=0}^{(\log n) / \log 2} \sum_{r=0}^{2^{-t_{n}-1}} \tau(2 r+1) \tag{2}
\end{equation*}
$$

We estimate the sum

$$
\sum_{r=0}^{(w-1) / 2} \tau(2 r+1)
$$

by counting the "odd" lattice points $(x, y)$, i.e., those with both coordinates odd, for which $0<x y \leqslant w$. (For a full account of this kind of reasoning, see Hardy and Wright, [1], p. 263). We put

$$
u=2\left[\frac{1}{2} w^{\frac{1}{2}}\right]+1
$$

and obtain

$$
\begin{aligned}
\sum_{r=0}^{(w-1) / 2} \tau(2 r+1) & =2 \sum_{z=0}^{(u-1) / 2}\left[\frac{1}{2}\left(\frac{w}{2 z+1}\right)\right]-\frac{(u-1)^{2}}{4}+O(1) \\
& =\frac{1}{4} w \log w+\frac{2 C+2 \log 2-1}{4} w+O\left(w^{\frac{1}{2}}\right) .
\end{aligned}
$$

Putting this estimate in (2), we have

$$
\begin{aligned}
\sum_{m=1}^{n} \gamma(m) & =\sum_{t=0}^{(\log n) / \log 2}\left\{\frac{1}{4} \frac{n \log \left(n / 2^{t}\right)}{2^{t}}+\frac{2 C+2 \log 2-1}{4} \frac{n}{2^{t}}+O\left(2^{-\frac{1}{2} t} n^{\frac{1}{2}}\right)\right\} \\
& =\frac{n \log n}{2}+\frac{2 C+\log 2-1}{2} n+O\left(n^{\frac{1}{2}}\right)
\end{aligned}
$$

and this completes the proof.

## 3. A density theorem concerning $\gamma(m)$.

Theorem 3. Let $\omega$ be a real number, and let $s_{n}(\omega)$ be the number of positive integers $m \leqslant n$ for which

$$
\gamma(m) \leqslant 2^{\log \log n+\omega(\log \log n)^{\frac{1}{2}}-1}=f(n, \omega) .
$$

Then

$$
s_{n}(\omega) \sim n D(\omega)
$$

The proof of this is quite similar to that given by Kac [2] in proving that the number of $m \leqslant n$ for which $\tau(m) \leqslant 2 f(n, \omega)$ is asymptotic to $n D(\omega)$.
4. Representations in arithmetic progressions. We now turn our attention to $\gamma_{1}(m, s)$, the number of representations of $m$ of the form

$$
\begin{equation*}
m=r+(r+s)+\ldots+\{r+(k-1) s\} \tag{3}
\end{equation*}
$$

Although it was natural in the case $s=1$ to restrict attention to positive representations (i.e., with $r>0$ ), it turns out in the general case that this condition introduces complications. For this reason we shall consider separately the quantity $\gamma_{1}(m, s)$ and the quantity $\gamma(m, s)$, the number of positive representations of $m$ in the form (3). In either case it is required that

$$
\begin{equation*}
2 m=k\{2 r+(k-1) s\} . \tag{4}
\end{equation*}
$$

Theorem 4. $\quad \gamma_{1}(m, s)=\tau(m)$ if $s \equiv 0(\bmod 2)$, and $\gamma_{1}(m, s)=2 \tau(\bar{m})$ if $s \equiv 1(\bmod 2)$.

For if $s$ is even, say $s=2 s_{1}$, then $\gamma_{1}(m, s)$ is the number of solutions $k$, $r(k>0)$ of

$$
m=k\left(r+(k-1) s_{1}\right)
$$

and $k$ can clearly be any divisor of $m$. If $s$ is odd, then $k$ and $2 r+(k-1) s$ are of opposite parity, so that

$$
\gamma_{1}(m, s)=\sum_{k \mid \bar{m}} 1+\sum_{2 m / k \mid \bar{m}} 1=2 \tau(\bar{m})
$$

For example,

$$
\begin{aligned}
\gamma_{1}(6,1)=4: \quad 6=1+2+3 & =(-5)+(-4)+\ldots+4+5+6 \\
& =0+1+2+3
\end{aligned}
$$

and
$\gamma_{1}(6,2)=4: \quad 6=2+4=0+2+4=(-4)+(-2)+0+2+4+6$.
As an immediate consequence of Theorems 2 and 4 , and the fact that the average order of $\tau(m)$ is $\log m+2 C-1+O\left(m^{-\frac{1}{2}}\right)$ ([1], loc. cit.), we have

Theorem 5.

$$
\frac{1}{n} \sum_{m=1}^{n} \gamma_{1}(m, s)= \begin{cases}\log n+(2 C-1)+O\left(n^{-\frac{1}{2}}\right) & \text { if } s \equiv 0(\bmod 2) \\ \log n+\frac{1}{2}(2 C-1+\log 2)+O\left(n^{-\frac{1}{2}}\right) & \text { if } s \equiv 1(\bmod 2)\end{cases}
$$

We now put on the restriction $r>0$. Then by (4), $k$ must be chosen so that

$$
k(k-1) s<2 m
$$

or

$$
k<\frac{1+(1+8 m / s)^{\frac{1}{2}}}{2}
$$

But

$$
\left(\frac{2 m}{s}\right)^{\frac{1}{2}}<\frac{1+(1+8 m / s)^{\frac{1}{2}}}{2}<\left(\frac{2 m}{s}\right)^{\frac{1}{2}}+1
$$

so that we will make an error of not more than 1 if, in computing $\gamma(m, s)$, we count the number of suitable $k$ 's which do not exceed $(2 m / s)^{\frac{1}{2}}$. Thus by the argument used in proving Theorem 4, we find that if $s=2 s_{1}$ is even,

$$
\gamma(m, s)=\sum_{\substack{k \left\lvert\, \bar{m} \\ k \leqslant(2 m / s)^{\frac{1}{2}}\right.}} 1+\epsilon(m, s)=\tau\left(m,(2 m / s)^{\frac{1}{2}}\right)+\epsilon(m, s),
$$

where $\tau(m, x)$ is the number of divisors of $m$ which do not exceed $x$, and $\epsilon(m, s)$ is either 0 or 1 . We put

$$
A(n, x)=\sum_{m=1}^{n} \gamma(m, s)
$$

Then all those lattice points on the hyperbola $x y=m$ for which $x \leqslant(2 m / s)^{\frac{1}{2}}$ are counted in the sum $\sum_{1}^{n} \tau\left(m,(2 m / s)^{\frac{1}{2}}\right)$, and by considering all positive $m$ not exceeding $n$, we see that this sum is exactly the number of lattice points in the region $0<x y \leqslant n, y \geqslant \frac{1}{2} s x$. Counting along vertical lines, we have

$$
\begin{aligned}
\sum_{m=1}^{n} \tau(m, & \left.(2 m / s)^{\frac{1}{2}}\right) \\
& =\sum_{x=1}^{(2 n / s)^{\frac{1}{2}}}\left\{\left[\frac{n}{x}\right]-\frac{s x}{2}+1\right\}=n \sum_{x=1}^{(2 n / s)^{\frac{1}{2}}} \frac{1}{x}+O\left(n^{\frac{1}{2}}\right)-\frac{s}{2} \sum_{x=1}^{(2 n / s)^{\frac{1}{2}}} x+\left[\left(\frac{2 n}{s}\right)^{\frac{1}{2}}\right] \\
& =n\left\{\log \left(\frac{2 n}{s}\right)^{\frac{1}{2}}+C+O\left(n^{-\frac{1}{2}}\right)\right\}-\frac{s}{4}\left\{\left[\left(\frac{2 n}{s}\right)^{\frac{1}{2}}\right]^{2}+\left[\left(\frac{2 n}{s}\right)^{\frac{1}{2}}\right]\right\}+O\left(n^{\frac{1}{2}}\right) \\
& =\frac{n}{2} \log n+n\left(C-\frac{1}{2} \log \frac{s}{2}-\frac{1}{2}\right)+O\left(n^{\frac{1}{2}}\right) .
\end{aligned}
$$

As for the sum $\sum_{1}^{n} \epsilon(m, s)$, it does not exceed the number of lattice points on the curves $x y=m \leqslant n$ for which

$$
(2 m / s)^{\frac{1}{2}}<x \leqslant(2 m / s)^{\frac{1}{2}}+1
$$

i.e., the number of lattice points in the bounded region enclosed by the hyperbolas $x y=n,(x-1)^{2} s=2 x y$ and the line $l_{1}: y=\frac{1}{2} s x$. But the second of these hyperbolas is asymptotic to the line $l_{2}: y=\frac{1}{2} s(x-1)$. Let the inter-
sections of $l_{1}$ and $l_{2}$ with $x y=n$ be ( $x_{1}, y_{1}$ ) and ( $x_{2}, y_{2}$ ) respectively, and let the chord joining these points be $l_{3}$. Then the sum in question is less than the number of lattice points in the triangle with vertices at $(0,0),\left(x_{1}, y_{1}\right)$ and ( $x_{2}$, $y_{2}$ ), plus the number of lattice points in the triangle with vertices at $(0,0)$, ( $x_{2} y_{2}$ ) and the intersection of $l_{2}$ with the $x$-axis. This follows since $l_{3}$ is always above the curve $x y=n$. But it is easy to see that the number of lattice points in a triangle does not exceed one more than the sum of its area and perimeter. Hence

$$
\begin{aligned}
\sum_{m=1}^{n} \epsilon(m, s)<\frac{1}{2} & \left.\left|\begin{array}{ccc}
x_{1} & y_{1} & 1 \\
0 & 0 & 1 \\
x_{2} & y_{2} & 1
\end{array}\right|+\frac{1}{2}\left|\begin{array}{ccc}
1 & 0 & 0 \\
1 & 0 & 2 c_{0} / s \\
1 & x_{2} & y_{2}
\end{array}\right|+\left(x_{1}{ }^{2}+y_{1}\right)^{2}\right)^{\frac{1}{2}} \\
& +2\left(x_{2}{ }^{2}+y_{2}{ }^{2}\right)^{\frac{1}{2}}+\left\{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}\right\}^{\frac{1}{2}}+2 c_{0} / s \\
& +\left\{\left(x_{2}-2 c_{0} / s\right)^{2}+y_{2}{ }^{2}\right\}^{\frac{1}{2}}
\end{aligned}
$$

Substituting the values $x_{1}=(2 n / s)^{\frac{1}{2}}, y_{1}=(s n / 2)^{\frac{1}{2}}, x_{2}=\frac{1}{2}\left\{(8 n / s+1)^{\frac{1}{2}}+1\right\}$ $y_{2}=n / x_{2}$, it is easily verified that this upper bound is $O\left(n^{\frac{1}{2}}\right)$.

We have thus shown that in case $s$ is even,

$$
\begin{equation*}
A(n, s)=\frac{n}{2} \log n+\frac{n}{2}\left(2 C-\log \frac{s}{2}-1\right)+O\left(n^{\frac{1}{2}}\right) \tag{5}
\end{equation*}
$$

On the other hand, if $s \equiv 1(\bmod 2)$, then in (4) either $k$ is even, in which case it contains the highest power $2^{a}$ of 2 which divides $2 m$ and is such that $r$ is positive, or $k$ is odd, with $r$ again positive. Hence

$$
\begin{aligned}
\gamma(m, s) & =\sum_{\substack{k \left\lvert\, \bar{m} \\
k \leqslant(2 m / s)^{\frac{1}{2}}\right.}} 1+\sum_{2^{a} k_{1} \leqslant(2 m / s)^{\frac{1}{2}}} 1+\epsilon(m, s) \\
& =\tau\left(\bar{m},\left(2^{a} \bar{m} / s\right)^{\frac{1}{2}}\right)+\tau\left(\bar{m},\left(2^{-\varepsilon} \bar{m} / s\right)^{\frac{1}{2}}\right)+\epsilon(m, s),
\end{aligned}
$$

where $\epsilon(m, s)$, as before, is the error made in assuming that for $r$ to be positive $k$ must not exceed $(2 m / s)^{\frac{1}{2}}$, rather than the actual upper bound. Since the bound for $\sum_{1}^{n} \epsilon(m, s)$ which we just computed did not depend on the parity of $s$, it holds also for odd $s$ :

$$
\begin{equation*}
\sum_{m=1}^{n} \epsilon(m, s)=O\left(n^{\frac{1}{2}}\right) \tag{6}
\end{equation*}
$$

We have

$$
\begin{aligned}
A(n, s) & =\sum_{m=1}^{n} \tau\left(\bar{m},\left(2^{a} \bar{m} / s\right)^{\frac{1}{2}}\right)+\sum_{m=1}^{n} \tau\left(\bar{m},\left(2^{-a} \dot{\bar{m}} / s\right)^{\frac{1}{2}}\right)+\sum_{m=1}^{n} \epsilon(m, s) \\
& =A_{1}+A_{2}+A_{3}
\end{aligned}
$$

say. Summing over $m$ 's containing the same power of 2 , we get

$$
A_{1}=\sum_{\lambda=1}^{(\log n) / \log 2} \sum_{r=1}^{2^{-\lambda_{n}}-\frac{1}{2}} \tau\left(2 r+1,\left\{2^{\lambda}(2 r+1) / s\right\}^{\frac{1}{2}}\right)
$$

The sum

$$
\sum_{r=0}^{(z-1) / 2} \tau\left(2 r+1, c^{\frac{1}{2}}(2 r+1)^{\frac{1}{2}}\right)
$$

is the number of lattice points on the hyperbolas

$$
x y=2 r+1, \quad r=0,1, \ldots, \frac{1}{2}(z-1)
$$

for which $x \leqslant c^{\frac{1}{2}}(2 r+1)^{\frac{1}{2}}$, i.e., for which $x \leqslant c y$. This is the number of odd lattice points in this region, which is

$$
\sum_{x=0}^{t}\left\{\left[\frac{1}{2}\left(\frac{z}{2 x+1}+1\right)\right]-\left[\frac{1}{2}\left(\frac{2 x+1}{c}+1\right)\right]+\delta(x)\right\}
$$

where $\delta(x)$ is 0 or 1 and

$$
t=\left[\frac{1}{2}\left\{c^{\frac{1}{2}}\left(2\left[\frac{z-1}{2}\right]+1\right)^{\frac{1}{2}}-1\right\}\right] \sim \frac{(c z)^{\frac{1}{2}}}{2}
$$

But this sum is equal to

$$
\begin{aligned}
& \frac{z}{2} \sum_{x=0}^{t} \frac{1}{2 x+1}+O(t)-\frac{1}{2 c} \sum_{x=0}^{t}(2 x+1)+O(t) \\
& \quad=\frac{z}{4} \log \left\{c\left(2\left[\frac{z-1}{2}\right]+1\right)\right\}^{\frac{1}{2}}+\frac{z}{4}(C+\log 2)+O\left(z^{\frac{1}{2}}\right)-\frac{t^{2}}{2 c}+O(t)
\end{aligned}
$$

so that

$$
\begin{align*}
\sum_{r=0}^{(z-1) / 2} \tau\left(2 r+1, c^{\frac{1}{2}}(2 r+1)^{\frac{1}{2}}\right)=\frac{z \log z}{8} & +\frac{z}{4}\left(C+\log 2+\log c^{\frac{1}{2}}\right)  \tag{7}\\
& -\frac{z}{8}+O\left(z^{\frac{1}{2}}\right)
\end{align*}
$$

Hence

$$
\begin{aligned}
& A_{1}= \sum_{\lambda=1}^{(\log n) / \log 2}\left\{\frac{n}{2^{\lambda-1}} \frac{1}{8} \log \frac{n}{2^{\lambda-1}}+\frac{n}{2^{\lambda}} \frac{1}{4}\left(C+\log 2+\log \frac{2^{\frac{1}{2} \lambda}}{s^{\frac{1}{2}}}\right)\right. \\
&\left.\quad-\frac{n}{8.2^{\lambda-1}}+O\left(\frac{n^{\frac{1}{2}}}{2^{\frac{1}{2}(\lambda-1)}}\right)\right\} \\
&= \frac{n \log n}{8} \sum_{\lambda=1}^{\log n} \frac{1}{2^{\lambda-1}}-\frac{n}{8} \log 2 \sum_{\lambda=1}^{\log n} \frac{\lambda-1}{2^{\lambda-1}}+\frac{n}{4}(C+\log 2) \sum_{\lambda=1}^{\log n} \frac{1}{2^{\lambda-1}} \\
& \quad+\frac{n \log 2}{8} \sum_{\lambda=1}^{\log n} \frac{\lambda}{2^{\lambda-1}}-\frac{n \log s}{8} \sum_{\lambda=1}^{\log n} \frac{1}{2^{\lambda-1}}-\frac{n}{8} \sum_{\lambda=1}^{\log n} \frac{1}{2^{\lambda-1}}+O\left(n^{\frac{1}{2}}\right) \\
&= \frac{n \log n}{4}+n\left(\frac{C}{2}+\frac{\log 2}{2}-\frac{\log s}{4}\right)-\frac{n}{4}-\frac{n \log 2}{4} \\
& \quad+\frac{n \log 2}{4}+O\left(n^{\frac{1}{2}}\right),
\end{aligned}
$$

and finally

$$
\begin{equation*}
A_{1}=\frac{n \log n}{4}+n\left(\frac{C+\log 2}{2}-\frac{1}{4}-\frac{\log s}{4}\right)+O\left(n^{\frac{1}{2}}\right) \tag{8}
\end{equation*}
$$

Turning now to $A_{3}$, we have

$$
A_{3}=\sum_{\lambda=1}^{(\log n) / \log 2} \sum_{r=0}^{2^{-\lambda_{n}}-\frac{1}{2}} \tau\left(2 r+1,\left(\frac{2 r+1}{2^{\lambda} s}\right)^{\frac{1}{2}}\right),
$$

and using (7) with $z=n / 2^{\lambda-1}, c=s / 2^{\lambda}$, we have

$$
\begin{aligned}
A_{2}= & \sum_{\lambda=1}^{(\log n) / \log 2}\left\{\frac{n}{8.2^{\lambda-1}} \log \frac{n}{2^{\lambda-1}}+\frac{n}{4.2^{\lambda-1}}\left(C+\log 2+\log \left(2^{\lambda} s\right)^{-\frac{1}{2}}\right)\right. \\
& \left.-\frac{n}{4.2^{\lambda-1}}+O\left(\frac{n^{\frac{1}{2}}}{2^{\frac{1}{2}(\lambda-1)}}\right)\right\} \\
= & \frac{n \log n}{4}+n\left(\frac{C}{2}-\frac{1}{4}-\frac{\log s}{4}\right)+O\left(n^{\frac{1}{2}}\right) .
\end{aligned}
$$

Combining this with (5), (6) and (8), we have
Theorem 6. For every $s$,

$$
\frac{1}{n} \sum_{m=1}^{n} \gamma(m, s)=\frac{1}{2} \log n+\left(C-\frac{1}{2} \log \frac{s}{2}-\frac{1}{2}\right)+O\left(n^{-\frac{1}{2}}\right)
$$

Theorem 2 is, of course, the special case of Theorem 6 with $s=1$.

## References

[1] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers (Oxford, 1945).
[2] M. Kac, Note on the distribution of values of the arithmetic function $d(m)$, Bulletin Amer. Math. Soc., vol. 47 (1941), 815-817.

## University of Michigan

