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1. Introduction. It is the object of this paper to investigate the function 
7(m), the number of representations of m in the form 

(1) (r + 1) + (f + 2) + . . . + 5, 

where s > r ^ 0. It is shown that y(m) is always equal to the number of odd 
divisors of m, so that for example 7(2*) = 1, this representation being the 
number 2k itself. From this relationship the average order of y(m) is deduced ; 
this result is given in Theorem 2. By a method due to Kac [2], it is shown in 
§3 that the number of positive integers m^n for which y(m) does not exceed 
a rather complicated function of n and co, a real parameter, is asymptotically 
nD(œ), where D(u>) is the probability integral 

(2»)-* J!» «-*** àx. 
In §4, these theorems are extended to y{m, s)> the number of representations 
of m as the sum of positive consecutive terms in any of the 5 arithmetic pro
gressions having constant difference s. 

2. The average order of y(m). First we prove 

THEOREM 1. y(m) = r(m) where T(U) is the number of divisors of u and 
m = 2a-1m, m odd. 

For by (1) we have 

m = ^ - S - r—^- , 2m = (s - r) (s + r + 1). 
2 2 

Putting s — r = n, this gives 

2m = n(n + 2r + 1). 

Since n and n + 2r + 1 have opposite parity, and since n < (2m)5, 7(m) is the 
number of ways of writing 2m as the product of an even and an odd number. 
That is, 

7(») = E 1 + £ _ 1 = Z 1 = r (W ) . 
n\m 2m/n\m d\m 

w<(2w) i 2m/«>(2w)* 

THEOREM 2. 77ze average order of y{m) is J log m; more precisely, 

- E T W = -log» + ^- V 0 (n 2), 
w w=i 2 2 

w&ere C is Enter's constant. 
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For let I be the unique integer such that 2l ^n< 2l+1. Then by Theorem 1, 

]T y(m) = E r W 
m = 1 m = 1 

E r(m) + E T ( « / 2 ) + E r(w/4) + . 
l < m < « l < m < w l < m < r c 

w = 1 (mod 2) w =2 (mod 4) m =4 (mod 8) 

+ E T ( « / 2 1 ) 

w=2 /(mod 2Z+X) 

( n - l ) / 2 (n-2) /4 

= E r(2r + l ) + L T ( 2 r + 1 ) + . . . 

(w—2^)/2^+1 

+ E r(2r + 1 ) , 
r = 0 

= flog wl 
Llog 2 J 

and since I = | | this is 
-log ~ 

n (log n)/log 2 2"~'« - 1 

(2) l 7 W = E E r(2r + l ) . 

We estimate the sum 

(or-D/2 
E r(2r + 1) 

by counting the "odd" lattice points (#, y), i.e., those with both coordinates 
odd, for which 0 < xy ^ ze/. (For a full account of this kind of reasoning, see 
Hardy and Wright, [1], p. 263). We put 

u = 2{\ISP] + 1 

and obtain 

E r(2r + 1) = 2 E ^ - ^ — ^ + 0(1) 
r=o z=o L2\22; + 1/J 4 

1 2C + 2 1og2 - 1 i 
= - w; log w H w + 0(w^). 

4 4 
Putting this estimate in (2), we have 

Ê T(») = ( 1 ° 8 F 2 i1-wlog(w/2<) + 2C + 2 1 o g 2 ~ 1 2-+0(2-*S,»)} 
n- i / to (4 2* 4 2l ) 

n log w , 2C + log 2 — 1 , ^ / IN 2_ -\ 2 w + 0(w2), 

and this completes the proof. 
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3. A density theorem concerning y(m). 

THEOREM 3. Let œ be a real number, and let sn{u) be the number of positive 
integers m ^ n for which 

y(m) ^ 2log log M+ '-0 (log log n)h~ 1 = f(n, «). 

Then 

Sn(u) ~ nD(<a). 

The proof of this is quite similar to that given by Kac [2] in proving that the 
number of m ^ n for which r{m) ^ 2f(n, œ) is asymptotic to nD((a). 

4. Representations in arithmetic progressions. We now turn our attention 
to yi(m> s), the number of representations of m of the form 

(3) m = r + (r + 5) + . . . + {r + (k - 1) 5}. 

Although it was natural in the case 5 = 1 to restrict attention to positive 
representations (i.e., with r > 0), it turns out in the general case that this con
dition introduces complications. For this reason we shall consider separately 
the quantity 7i(w, s) and the quantity y(m, s), the number of positive represen
tations of m in the form (3). In either case it is required that 

(4) 2m =k{2r + (k -l)s). 

THEOREM 4. yi(m, s) = r{m) if s s 0(mod 2), and y\(m, s) = 2 r{m) if 
5 = 1 (mod 2). 

For if s is even, say 5 = 2si, then yi{my s) is the number of solutions k, 
r(k>0) of 

m = k(r + (k — l)si), 

and k can clearly be any divisor of m. If 5 is odd, then k and 2r + (k — l)s 
are of opposite parity, so that 

7i(w, 5) = £ 1 + E _ 1 = 2r(m). 

For example, 

7i(6,l) = 4 : 6 = 1 + 2 + 3 = ( - 5 ) + ( - 4 ) + . . . + 4 + 5 + 6 
= 0 + 1 + 2 + 3 ; 

and 

Tl(6,2) = 4 : 6 = 2 + 4 = 0 + 2 + 4 = ( - 4 ) + ( - 2 ) + 0 + 2 + 4 + 6 . 

As an immediate consequence of Theorems 2 and 4, and the fact that the 
average order of r(m) is log m + 2C — 1 + 0(m~%) ([1], toe. a/.), we have 

THEOREM 5. 

1 ^ _ / l °S n + (2C - *) + ° 0 ~ è ) if 5 s 0 (mod 2) 
- jLx 7ilm, 5) - | l o g w + i ( 2 C _ 1 + l o g 2 ) + 0 ( n - * ) if 5 s j ( m o d 2 )> 
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We now put on the restriction r > 0. Then by (4), k must be chosen so 
that 

k(k - 1) 5 < 2m, 

1 + (1 + $m/s)K 
or 

But 

k < 

' 2mV < 1 + (1 + 8rn/s)* /2m\* + i 

so that we will make an error of not more than 1 if, in computing y(m, s), we 
count the number of suitable k's which do not exceed (2m/s)*. Thus by the 
argument used in proving Theorem 4, we find that if 5 = 2si is even, 

y(m, s) = £ 1 + €(^> s) = r(m, (2m/S)^) + e(m, s), 
k\m 

K(2m/ i )^ 

where r(m, x) is the number of divisors of m which do not exceed x, and e(m} s) 
is either 0 or 1. We put 

n 

A(n, x) = X) T(W, 5). 
m = 1 

Then all those lattice points on the hyperbola xy = m for which x ^ (2tn/s)* 
are counted in the sum £ 1 r(m, (2^/$)*), and by considering all positive m not 
exceeding n, we see that this sum is exactly the number of lattice points in 
the region 0 < xy ^ n, y^ J sx. Counting along vertical lines, we have 

Z r(m, (2i»A)*) 
m = 1 

=„{,og(^+c+0(B-.,}-i{[(^j+[(iy]}+o(„.) 
= I log» + » ( c - i l o g | - i ) + 0(»*). 

As for the sum £ i e(ra, 5), it does not exceed the number of lattice points on 
the curves x y = m ^ w for which 

(2m/sf <x^ (2m/sf + 1, 

i.e., the number of lattice points in the bounded region enclosed by the hyper
bolas xy = n, (x — l)2s = 2xy and the line h:y = \sx. But the second of 
these hyperbolas is asymptotic to the line h:y = %s(x — 1). Let the inter-
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sections of h and h with xy = n be (xi, yi) and (x2, 3̂ 2) respectively, and let the 
chord joining these points be Z3. Then the sum in question is less than the 
number of lattice points in the triangle with vertices at (0, 0), (xi, yi) and (x2, 
3>2), plus the number of lattice points in the triangle with vertices at (0, 0), 
(#2 3̂ 2) and the intersection of h with the x-axis. This follows since h is always 
above the curve xy = n. But it is easy to see that the number of lattice points 
in a triangle does not exceed one more than the sum of its area and perimeter. 
Hence 

L e(m, s) < \ 
m=l 

+ 2(x2
2 + yêf + {(x2 - *i)2 + (y2 - 3'i)2}1 + 2c0/s 

+ {(x2-2coA)2 + :y22}*. 

Substituting the values x\ =(2w/s)*, y\ = (sn/2)%, x2 = |{(8w/s + 1)* + l} 
y2 — n/x2, it is easily verified that this upper bound is 0(rfi). 

We have thus shown that in case 5 is even, 

xi yi l 
0 0 1 + *. 
Xi J2 1 

1 0 0 
1 0 2c0/s + (*i2 + yrf 
1 Xi y2 

(5) A(n, s) = I log n + jj (ïC - log | - l ) + 0(»*). 

On the other hand, if 5 = 1 (mod 2), then in (4) either k is even, in which 
case it contains the highest power 2a of 2 which divides 2m and is such that r 
is positive, or k is odd, with r again positive. Hence 

T O , S) = E" i + L i + «(m, s) 
k\m ki\m 

K ( 2 m / 5 ) 2 2 a £i<(2m/s )* 

= T(W, (2Bm/s)*) + T(W, (2"cmA)^) + e(m, s), 

where e(m, 5), as before, is the error made in assuming that for r to be positive 
k must not exceed {2m/s)*, rather than the actual upper bound. Since the 
bound for X i €(w^ s) which we just computed did not depend on the parity of 
5, it holds also for odd s: 

(6) 

We have 

D e(m, s) = 0(w*). 

A(n,s) = 2 T(», (2"«/S)*) + Z r(«, (2~«»A)*) + E «(»,*) 
m = 1 *» = 1 m = 1 

= Ax + A2 + A 9, 

say. Summing over ra's containing the same power of 2, we get 

(log n) /log 2 2 " x « - i 

i l l £ r(2r + 1, {2x(2r + l)/s}*). 
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The sum 
( s - l ) / 2 

£ T ( 2 r + l , c * ( 2 r + l ) * ) 

is the number of lattice points on the hyperbolas 

xy = 2r + 1, r = 0 , l , . . . , i ( * - 1) 

for which x ^ c^ (2r + 1)*, i.e., for which x ^ cy. This is the number of odd 
lattice points in this region, which is 

where d(x) is 0 or 1 and 

But this sum is equal to 

ik2r+i + 0{t)-ècàoi2x + l) + oit) 

= | log | c ( 2 [ ^ ] + l ) } * + | (C + log 2) + 0(«») - ^ + 0(0, 

so that 
(s-D/2 

(7) *E r(2r + 1, C*(2r + 1)*) = ? - ^ + J (C + log 2 + log c») 
r = 0 5 4: 

- g + 0(2*). 

Hence 
(log w)/log 2 

i i i -
-1 (.2X-X 8 2X~! 2X 4 \ s* / 

«logW
l ofM 1 n , 9

l o f K X - l , n , r , , '°*M 1 

8 x =i 2X~! 8 x =i 2X"! 8 x =i 2X~1 

n log w . / C , log 2 log A n n log 2 
+ n I — + — • — — 4 \ 2 2 4 / 4 

, n log 2 . ~ , %., 

4 
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and finally 

(8) Al = !LMl + n(C±]ss2_l__\ogA + 0{ni)i 
4 \ 2 4 4 / 

Turning now to A 3, we have 

(log n) /log 2 2T*»-* / / o f i i \ i \ 

and using (7) with s = w/2x_1, c = s / 2 \ we have 
(log w)/log 2 / 

4.2X_1 \2* (x_ ] 

wlogw / C 1 log A . xw iv 
4 \2 4 4 / 

Combining this with (5), (6) and (8), we have 

THEOREM 6. For every s, 

- L T K 5) = ^ log n + f C - g log | - 2 ] + 0 (»~*). 

Theorem 2 is, of course, the special case of Theorem 6 with 5 = 1. 
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