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A NOTE ON RADICAL EXTENSIONS OF RINGS

BY
M. CHACRON, J. LAWRENCE, AND D. MADISON

All rings are associative. A ring T is said to be radical over a subring R if for
every ¢ € T, there exists a natural number n(z) such that " e R.

In [1] Faith showed that if T is radical over R and T is primitive, then R is
primitive. We might then ask if the same is true if prime is substituted for primitive.
This is not in general true if T does not have a unity element or if char T5£0. How-
ever, we do have

THEOREM 1. Suppose T is radical over R, T and R have a unity element, char T=0,
and T is prime. Then R is prime.

The above theorem follows easily from the following

THEOREM 2. Suppose that the ring T is radical over a subring R, R and T have a
common unity element, and T is torsion-free as a Z-module. Then T, +=Ry»,
where Rz~ is the localization of R at the nonzero integers.

In proving theorem 2, we use the following

THEOREM 3. (Kaplansky [2]) Suppose that a field K is radical over a proper
subfield F. Then K has prime characteristic, and is either purely inseparable over F,
or algebraic over its prime subfield.

Proof of theorem 2. We prove the theorem by assuming that T and R are Q-
algebras, and showing that R=T.

We first show that every nilpotent element of T lies in R. Suppose x € T\R is
nilpotent. From the sequence x, x%, x3, . .., choose k maximal such that x* ¢ R.
Since T is radical over R, 3 n such that (14+x*)" € R. Then 14+nx*+---+x*"€R,
from which we deduce that x* € R, a contradiction.

Now suppose that T is a commutative Artinian Q-algebra and that R is also
Artinian. Since the Jacobson radical of an Artinian ring is nilpotent, we have
J(I)=J(R)=J. T|J is a finite direct product of fields, and is radical over R/J.
By Kaplansky’s theorem T/J=R/J, hence T=R.

Now let T be arbitrary. Suppose x € T. Then Q[x]=4 is radical over Q[x] N
R=B. If A is finite dimensional, then A=B, by the above result. If x is trans-
cendental over Q, localize 4 at B*, the nonzero elements of B. Since A4 is radical
over B, Ag+ is a field, radical over the field Bg+. Hence, once again, Ap*=Bp*.
Take r € B, r#0, such that rx € B, and let s=r", where x" € B. We now have
sSA<B. Let I=(s), and note 4/ is radical over B[I. However, A/ is Artinian, and
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so the problem is reduced to the previous case, thus 4//=B/I. Since /=B, A=B,
and therefore R=T. This completes the proof.

Although we have T,*=R,*, we do not necessarily have R=T. Let T=Z[x]
and let R be the subring generated by {1, 2x, x2, x3,...}. Then #2 € R for every
teT, but R#T.

We conclude this paper with an example of a prime ring 7', without unity,
radical over a subring R which is not prime, where char. T=0. Let F be the free
Z-algebra on countably many noncommuting variables, x;, x,, ... . We assume
that Z is not embedded in F. Since F is countable, we can order the elements,
fi,fes ... . Let S be the set of monomials occurring as terms in the set
{f ',ﬁ:k=l, 2, ...}, and let S’ be the multiplicative closure of S. Let E be the subring
of F generated by S, and let I be the two-sided ideal generated by {x,sx,:s5 € S'}.
Set T=F/I and R=E|E N I. That T is radical over R, and that R is not semiprime
follows easily from our construction. Let m; and m, be nonzero monomials in
T, and let & be an integer such that x; does not occur in any generator g of 7 with
(degree g)=(degree m;+degree m,+1). Then mx,m, ¢ I, hence m,x,m,%0. It
quickly follows that T is prime.
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