\[
\sum_{i=1}^{5} i^2 F_i = 25F_7 - 9F_8 + 2F_9 - 8 = 25 \times 13 - 9 \times 21 + 2 \times 34 - 8 = 196.
\]

Using identity (4), a formula for \(\sum_{i=1}^{n} (2i - 1)^2 F_{2i - 1} \) can be developed:

\[
\sum_{i=1}^{n} (2i - 1)^2 F_{2i - 1} = (4n^2 - 4n + 9)F_{2n} - 8nF_{2n-1}. \tag{10}
\]

Using the identity \(\sum_{i=1}^{n} F_{2i} = F_{2n+1} - 1 \) [2, 3], it is a good exercise to verify that

\[
\sum_{i=1}^{n} i^2 F_{2i} = n^2 F_{2n+1} - (2n - 1)F_{2n} + 2F_{2n-1} - 2. \tag{11}
\]

Formulas 9-11 have analogous results to Lucas numbers:

\[
\sum_{i=1}^{n} i^2 L_i = n^2 L_{n+2} - (2n - 1)L_{n+3} + 2L_{n+4} - 18 \tag{12}
\]

\[
\sum_{i=1}^{n} (2i - 1)^2 L_{2i - 1} = (2n - 1)^2 L_{2n} - 8(n - 1)L_{2n-1} + 8L_{2n-2} - 18 \tag{13}
\]

\[
\sum_{i=1}^{n} i^2 L_{2i} = n^2 L_{2n+1} - (2n - 1)L_{2n} + 2L_{2n-1} \tag{14}
\]

References
3. V. E. Hoggatt, Jr., Fibonacci and Lucas numbers, The Fibonacci Association, University of Santa Clara, Santa Clara, CA 95053.

THOMAS KOSHY
Framingham State College, Framingham, MA 01701-9101, USA
e-mail: tkoshy@frc.mass.edu

85.10 The Secret Santa problem revisited

Introduction
In [1] the authors ask and answer the question ‘Among those permutations of \(n \) different objects having no 1-cycles (no invariant elements), what fraction have no 2-cycles?’ Here is a different, more general way to come to their conclusion.

If \(T_n \) is the number of permutations having no 1 or 2-cycles, then \(T_0 = 1 \) and \(T_1 = T_2 = 0 \) (by inspection), and, for \(n > 2 \),
\(T_n = (n - 1)T_{n-1} + (n - 1)(n - 2)T_{n-3} \).

To see this, note that, if the \(n \) distinct objects are the integers 1 through \(n \), then any admissible permutation can be found in exactly one of two distinct ways:

1. Take any of the admissible permutations of the integers \(\{1,2,\ldots,n-1\} \) and, in its representation as a product of cycles, insert \(n \) immediately after any of the \(n - 1 \) integers.
2. Take any admissible permutation of the \(n - 3 \) integers obtained by removing two numbers from the set \(\{1,2,\ldots,n-1\} \) (giving \(\binom{n-1}{2} \) \(T_{n-3} \) possibilities) and attach a 3-cycle consisting of the last two deleted numbers and \(n \) (which can be chosen in two ways).

If \(A_n = T_n/n! \), then \(nA_n = (n - 1)A_{n-1} + A_{n-3} \) as the authors in [1] remark. Letting \(A(x) = \sum_{n\geq 3} A_n x^n \) you find \((1 - x)A'(x) = x^2(1 + A(x))\). Solving the differential equation,

\[
A(x) = -1 + \exp\left[-(x + \frac{1}{2}x^2)\right].
\]

Now \(A(z) \), conceived as a function of a complex variable \(z \), has a pole at \(z = 1 \) with a residue of \(-e^{-3/2} \). Thus \(A(z) + e^{-3/2}/(z - 1) \) has no poles in the finite plane (is an entire function) and hence the coefficients in its power series about the origin (which are \(A_n - e^{-3/2} \)) tend to zero as \(n \) tends to infinity (for the series converges in \(|z| < R \) for arbitrary \(R \)). Therefore \(A_n \rightarrow e^{-3/2} \) as \(n \rightarrow \infty \). But \(D_n \), the number of permutations with no 1-cycles, is asymptotic to \(e^{-1}n! \). From which it follows that \(T_n/D_n \rightarrow e^{-1/2} \) as noted in [1].

References

R. PINKHAM
Alexander House, Steven Inst. of Tech., Castle Point on Hudson, Hoboken, NJ07030, USA

85.11 An old limit revisited

Every calculus student knows the limit \(e = \lim_{h \to 0} (1 + h)^{1/h} \) or that, \(e = (1 + h)^{1/h} \) ‘when \(h \) is small’. A natural question is then ‘how small does \(h \) have to be?’ If \(h \) has to be very small then that is a problem: a calculator (even a computer) finds it hard to distinguish between \(h \) and 0.

We start by finding a series expansion of \((1 + h)^{1/h}\). Taking the natural logarithm of \((1 + h)^{1/h}\), we have

\[
\log(1 + h)^{1/h} = \frac{1}{h} \log(1 + h) = 1 - \frac{h}{2} + \frac{h^2}{3} - \ldots \quad (1)
\]