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SELECTIVE SWEEP AND THE SIZE
OF THE HITCHHIKING SET

STEPHANIE LEOCARD,∗ Université de Provence

Abstract

Just after the fixation of an advantageous allele in the population (this spread is called
a selective sweep), the neutral genes close to the site under selection tend to have the
same ancestor as the gene under selection. However, some recombinations may occur
during the selective sweep and break the link, which reduces the number of hitchhiking
alleles. We consider a large selection coefficient α and extend the results of Etheridge,
Pfaffelhuber and Wakolbinger (2006) and the work of Pfaffelhuber and Studeny (2007)
about genetic hitchhiking, where the recombination rate scales with α/ logα. We first
describe the genealogy at an arbitrary number of partially linked neutral loci, with an
order of accuracy of O(1/(logα)2) in total variation. Then, we use this framework to
obtain an approximate distribution for the size of the hitchhiking set at the end of the
selective sweep, with the same accuracy.
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1. Introduction

We study the allelic diversity of neutral genes close to a site under selection, immediately
after a selective sweep, when an advantageous allele quickly spreads in the population until its
fixation. Selection tends to reduce the diversity of these genes. Indeed, if no recombination
event occurred in the region separating these genes from the selected gene during the selective
sweep, all the individuals in the population would carry the same alleles as the ancestral
individual (the original carrier of the beneficial mutation) at the end of the selective sweep.
However, because of recombinations, the loss of diversity is less and less radical as the distance
from the selected locus increases. This concept of genetic hitchhiking has been highlighted by
Maynard-Smith and Haigh [10] and is the topic of a number of studies [2], [16], [17], [11].
In particular, the complexity of this phenomenon induces a need for approximations that yield
quantitative information [2], [14], [16].

These considerations motivate us to introduce the concept of a hitchhiking set. We define the
hitchhiking set as the set of contiguous alleles located close to the selected site that share the same
ancestor as the site under selection (a more precise definition will be given in Section 3.2). The
knowledge of the joint genealogy of the neutral genes allows us to reconstruct the hitchhiking
set of individuals at the end of the selective sweep. The measure of the size of the hitchhiking
set is a very interesting tool for phylogenetic studies: since the fixation of the advantageous
allele is very quick, few recombinations happen during the selective sweep and, consequently,
the hitchhiking set is bigger than under neutrality. Thus, under the hypothesis of constant
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recombination probabilities along the chromosome (for example, the considered region does
not contain a recombination hotspot, which is a small portion with highly elevated recombination
rate [11]), detecting large hitchhiking sets can be a way to detect positive selection. With similar
arguments, Sabeti et al. [15] used the evolution of extended haplotype homozygosity along the
genome to deduce that two genes involved in resistance to malaria are under selection. Depaulis
and Veuille [1], Hanchard et al. [6], Hudson et al. [7], and Wang et al. [18] also based their
statistical tests of detection on haplotypes.

We consider a model with a single selected site and we ignore the effects of mutation (at
the selected site or elsewhere) during the selective sweep. In case of strong selection and
when the recombination rate scales with α/(logα), where α is the rescaled selective advantage,
Etheridge et al. [2] recently obtained an approximate formula for the genealogy at a single
partially linked neutral locus, with an order of accuracy of O(1/(logα)2) compared to the
Wright–Fisher model. Pfaffelhuber and Studeny [13] used some of the results of that work to
describe the genealogy at two partially linked neutral loci, with the same order of accuracy.

The present work begins with an extension of the results established by Pfaffelhuber and
Studeny. With the same accuracy of O(1/(logα)2), we obtain the full description of the joint
genealogy of a number, 2m, of partially linked neutral loci (m ≥ 1), m located at one side
and m at the other side of the site under strong selection. In this part, our analysis is based on
the methodology of [13]. However, not only do we correct some imprecisions, but we need
novel observations and calculations necessary to cover the case of several neutral genes in the
proof of Proposition 13 as well. We then use these results as well as some results established
in [2] to calculate an approximate distribution for the size of the hitchhiking set, with the
same accuracy. We made simulations under the exact model of evolution to see how well our
approximations perform. The results are presented in Section 3.3. We can see that the error
due to approximations is very small when the size of the sample is small.

The paper is organized as follows. In Section 2 we present the evolutionary model, describing
the evolution at the selected site and the modeling of coalescence and recombination events. In
Section 3 we present the two main results of this work and some numerical comparisons.
In Section 4 we construct the approximate model obtained by successive approximations,
neglecting events whose probability is O(1/(logα)2), and we give the proof of Theorem 1.
Section 5 is dedicated to the proof of Theorem 2. Section 6 contains the technical proof of a
proposition needed in Section 4.

2. Model of evolution

2.1. Notation and hypotheses

The population is assumed to be haploid and of constant size 2N .
We consider the genome (or its subregion) as a single chromosome with a succession of

genes. We make the hypothesis that one of these genes, denoted by R0, is under a selective
sweep (see Section 2.2 for precisions) and that its location is known. We use it to initialize the
location of all the genes, denoting by 0 the locus of this gene. Let m be the number of genes
to the right and to the left of R0. We denote by R1, . . . , Rm the genes to the right of R0 and by
R−m, . . . , R−1 those genes to its left, as shown in Figure 1.

Recombinations may arise along the genome. The rate of recombination between Ra−1 and
Ra, −m + 1 < a < m, is denoted by ρa , and is assumed to be constant in time. These rates
depend on a because they depend on the length of the DNA between Ra−1 and Ra . Indeed, the
larger this gap, the more recombinations may happen within this gap.
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–m + 1

R–m + 1 Rm – 1Ra – 1 Ra + 1R –m R mRa

ρ ρ ρρa a + 1 m

Figure 1: Model for the genome. The gene under selection is R0. There are m neutral genes to the right
and to the left ofR0. The recombination rate between loci a−1 and a is denoted by ρa ,−m+1 ≤ a ≤ m.

Remark 1. The results can be easily extended to a continuous chromosome on [−1, 1] with a
continuum of loci. In this case, recombinations occur during the evolution process according
to a Poisson process on R+ × [−1, 1] with intensity ρ dt × dx.

2.2. Evolution at the selected site

First of all, let us describe precisely the evolution at locus 0. We assume that reproduction
in the population follows the Wright–Fisher model. At the beginning, all the individuals have
the wild-type allele b of the gene R0. At t = 0, a new allele B appears in one individual.
Compared to b, this allele has a selective advantage denoted by s. We make two assumptions:
no other mutation occurs at this locus and B is fixed in the population after a finite time T , so
that nobody carries allele b after time T <∞. This process is called a selective sweep and T
is its duration.

Let Xt be the proportion of B in the whole population at time t ≥ 0. With this notation,
T = inf{t ≥ 0;Xt = 1}.

To model the evolution of Xt , we make the approximation that the size of the population is
infinite and we assume that limN→∞ 2sN = α, where α ∈ (0,+∞). Rescaling time so that
2N generations become one unit of time and conditioned upon fixation of the allele B, (Xt )t≥0
is the solution of the following stochastic differential equation:

dXt = αXt(1−Xt) coth

(
α

2
Xt

)
dt +√

2Xt(1−Xt) dWt, X0 = 0, (1)

where W is a realization of the standard Brownian motion (see [5]).
We are interested in the case where 1� α.

2.3. The different ways of recombination and coalescence

We consider a sample of n individuals taken at the end of the selective sweep (i.e. at t = T ).
We consider 2m+ 1 loci from each of them.

We denote by ra,p the allele of gene Ra of individual p, −m ≤ a ≤ m, 1 ≤ p ≤ n. For
simplicity, we identify ra,p with the integer an+ p, so that an+ 1, . . . , an+ n correspond to
the alleles of the sample for gene Ra (see Figure 2).

Going back in time from t = T to t = 0, coalescence and recombination events occur. Note
that until the end, we will always look back in time, so that if two events A1 and A2 happen at
time t1 and t2, respectively, and if t1 > t2, we will say that A1 happens before A2.

First, we describe the coalescence events. Because of the hypothesis that no mutation
happens for the gene under selective sweep after the one which created the advantageous allele
at t = 0, we think in terms of structured coalescence [8], where individuals carrying allele b
cannot coalesce with those carrying allele B. Thus, coalescence events are only allowed for
two individuals carrying the same allele at locus 0.

Recall that Xt is the proportion of B in the population at time t .
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Figure 2: For −m ≤ a ≤ m and 1 ≤ p ≤ n, the allele ra,p of gene Ra of individual p is identified with
the integer an+ p.

B b

Ra + 1 Rm – 1Ra Ra – 1R0

B

R0

R aR0

ra – 1, p

Ra + 1

ra – 1, p

ra, p

R a

ra, p

Figure 3: The event (B � b, a) for a > 0. Genes Ra, . . . , Rm originate from an individual carrying b,
whereas R−m, . . . , Ra−1 originate from an individual carrying B.

Two individuals carrying B coalesce at rate 2/Xt (this event will be called coalB), and two
individuals carrying b coalesce at rate 2/(1−Xt) (this event will be called coalb) [2].

We now focus on the recombination events, which are independent of the coalescence events.
For any ancestral individual, we care about the alleles present at locus 0 and the genetic material
that is present in the sample at the end of the selective sweep. Several kinds of recombination
may occur, according to the place of the recombination and the allele which is present at locus 0.
For −m+ 1 ≤ a ≤ m, we define the events (B � b, a) and (B � B, a) if the individual carries
B, and (b � B, a) and (b � b, a) if the individual carries b, as follows.

Consider the event (b1 � b2, a), where b1 and b2 can be either B or b. For an individual
carrying b1 at locus 0, a recombination happens between the loci a−1 and a, and the ancestor for
gene Ra carries b2 at locus 0. In other words, if a > 0 or a < 0, genes Rc for−m ≤ c ≤ a− 1
have to originate from an individual carrying b1 or, respectively, b2 and genesRc for a ≤ c ≤ m
come from an individual carrying b2 or, respectively, b1. An example is given in Figure 3.

For any individual carrying B or b, the rate of the events of type (B � b, a) or, respectively,
(b � b, a) is ρa(1 − Xt) at time t . Indeed, the recombination occurs between the loci a − 1
and a at rate ρa , and the ancestor for gene Ra is chosen from the population carrying b, whose
proportion is (1 − Xt) at time t . Similarly, the rate of event (B � B, a) or, respectively,
(b � B, a) is ρaXt at time t .
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We have to pay attention to the number of recombination events occurring during the selective
sweep. If the number of events is negligible, we expect to find (almost) no variation in the data.
If the number of events is excessive, we expect a neutral pattern. Since the duration of the
selective sweep is of order O(logα/α) (see [2, Lemma 3.1]), we choose the rates ρa to be of
the order α/ logα. Then the number of recombinations during the selective sweep is not trivial.
We let ρa depend upon α as follows: for each −m + 1 ≤ a ≤ m, let γa be a fixed positive
number and let ρa = γaα/ logα.

Given all these events, we construct the genealogy of the sample at time t . The genealogy
π(t) of the alleles at time t is a marked partition (an asterisk is added to denote marked blocks)
of {−mn+ 1, . . . , (m+ 1)n}. In previous work [2], it was said that two alleles are in the same
block if they have the same ancestral allele. Here we consider the evolution of several genes, so
we say instead that two alleles are in the same block at time t if their ancestral alleles are carried
by the same individual at time t . We mark the blocks corresponding to ancestors carrying B at
locus 0 at time t . In this way, we finally obtain the ancestral marked partition π(0).

Since the rates of the various recombination and coalescence events depend on (Xt )0≤t≤T ,
to obtain the distribution of the ancestral partition, we will first describe the conditional law of
π(0) given (Xt )0≤t≤T , and then average over all the paths X = (Xt )0≤t≤T . We denote this
final distribution by �.

3. Main results

3.1. Approximate model

From now on, for any tree, a branch denotes an edge connecting two consecutive nodes of
this tree.

Consider the following procedure.

1. Start with the partition π = {{−mn + 1,−(m − 1)n + 1, . . . , mn + 1}∗, . . . , {−mn +
n,−(m− 1)n+ n, . . . , mn+ n}∗}.

2. Draw (Ua,p)−m+1≤a≤m, 1≤p≤n independent Bernoulli variables with parameter

1− exp

(
− γa

logα

�α	∑
�=1

1

�

)
.

If Ua,p = 1, realize the event (B � B, a) for the individual p. This produces a new
partition π ′, with |π ′| = |π | +∑

a,p Ua,p.

3. Simulate a Yule tree with rate α until it has �α	 leaves.

4. Extract a subtree Y|π ′| of |π ′| leaves, which are uniformly chosen among the �α	 leaves
of the simulated Yule tree.

5. On each branch of the subtree, independently put a label r representing the recombination
events on the branch according to the following probabilities:

P(r=(r1, . . . , rq)) =
∏

c∈{r1,...,rq }
(1−p�2

�1
((r1, . . . , rq), c))

∏
c/∈{r1,...,rq }

p
�2
�1
((r1, . . . , rq), c)

(2)
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with

p
�2
�1
((r1, . . . , rq), c) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

exp

(
− γc

logα

�2∑
�=�1+1

1

�

)
if ri0 ≤ c ≤ ri0+1;

exp

(
− γc

logα

�2∑
�=1

1

�

)
otherwise,

where i0 ∈ {0, . . . , q} denotes the unique index such that ri0 ≤ 0 ≤ ri0+1 (we set
r0 = −m and rq+1 = m+ 1).

6. Determine π ′′ according to the following equivalence relation. For any j , k ∈ {−mn+1,
. . . , (m+ 1)n}, let π ′j and π ′k be the blocks of π ′ respectively containing j and k.
Let −m ≤ c ≤ d ≤ m be such that j and k are respectively alleles of gene Rc and gene
Rd (even if it means exchanging j and k).

Consider the subtree of Y|π ′| joining π ′j and π ′k to the root of Y|π ′| : j k''π π (in the
following we will use thick lines to denote branches that we will have to pay attention
to).

We have j ∼ k if and only if one of the following conditions holds true.

(i) c = d and there exists an i ∈ {0, . . . , q + 1} such that ri ≤ 0 ≤ ri+1 − 1 and

ri ≤ d ≤ ri+1 − 1 for the labels on j k''π π , i.e. if no recombination brings either
j or k into background b before the coalescence of their lineage on Y|π ′|, owing
to an event (� b, a), 0 < |a| ≤ |d|.

(ii) c < d and there exist i1, i2, i3 ∈ {0, . . . , q + 1} such that

• ri1 ≤ 0 ≤ ri1+1 − 1 and ri1 ≤ c ≤ ri1+1 − 1 for the labels on j k''π π ;

• ri2 ≤ 0 ≤ ri2+1 − 1 and ri2 ≤ d ≤ ri2+1 − 1 for the labels on j k''π π ;

• ri3 ≤ c < d ≤ ri3+1 − 1 for the labels on j k''π π

i.e. if no recombination brings either j or k into background b before the coales-
cence of their lineages on Y|π ′| (owing to an event of type B � b), and if, after
coalescence, no recombination occurs between the two loci (owing to an event of
type (B � b, a), c < a ≤ d , or, if cd > 0, an event (B � b, a), |a| ≤ min(|c|, |d|),
followed by an event (b � b, a), c < a ≤ d).
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7. Let �1 = {{π ′′f }∗, π ′′ \ {π ′′f }}, where π ′′f =
⋃m
a=−m{j allele of Ra : there exists i ∈

{0, . . . , q + 1}, ri ≤ 0 ≤ ri+1 − 1, and ri ≤ a ≤ ri+1 − 1 for the labels on j'π } is the
nonrecombinant block, that is, the marked block.

We write �1 for the distribution of the ancestral partition under this model, defined on the
set of the partitions of {−mn+ 1, . . . , mn+ n}.

Recall that � is the distribution for the ancestral partition under the Wright–Fisher diffusion
model, considered as the exact model.

Theorem 1. We have dTV(�, �1) = O(1/(logα)2), where dTV denotes the total variation
distance.

Section 4 will be devoted to the proof of Theorem 1.

3.2. Approximate distribution for the size of the hitchhiking set

We consider a sample of n individuals taken at the end of the sweep. For each individual,
we define the hitchhiking set.

Definition 1. The hitchhiking set of an individual is the set of loci (the selected site included)
between the last recombination B � b on the left of locus 0 and the first recombination B � b
on the right of locus 0.

We are interested in the size, H , of the hitchhiking set.
We use symbols to specify whether an allele comes from the ancestral individual where B

appeared: an allele is symbolized by a circle if it comes from this individual and by a diamond
otherwise. The size of the hitchhiking set can then be seen as the length of the block of circles
containing R0. For example, in Figure 4 we have H = 6.

Note that the size of the hitchhiking set may be smaller than the total number of ‘circle’
symbols. An example is given in Figure 5, where H = 3, but four alleles are inherited from
the initial carrier of B.

For simplicity, we assume that γa does not depend on a: γa = γ for all −m+ 1 ≤ a ≤ m.
We draw a sample composed of n individuals at the end of the selective sweep. For 1 ≤ p ≤ n,
let Hp be the size of the hitchhiking set for individual p. We study the joint distribution
of H1, . . . , Hn. To write our approximate joint distribution, we have to define N-valued
random variables. For 1 ≤ p ≤ n, let hp ∈ {1, . . . , m + 1}. Let U·,p = Ũ·,p + 1, where
Ũ·,p, 1 ≤ p ≤ n, are independent random variables of binomial distribution with parameters
(hp − 1, 1− exp((−γ / logα)

∑�α	
�=1(1/�))).

BB
B

0
bB bB bB bB

BB BB

Haplotype
length

Figure 4: An example of the size of the hitchhiking set. The circles and diamonds respectively mark
alleles inherited from an ancestor carrying B and an ancestor carrying b at locus 0. Here, H = 6.
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B

0

b

0

B

0

b

0

B
0

B
0

B
0

B B

B B

B B

Figure 5: An example where the size of the hitchhiking set is smaller than the number of alleles inherited
from the original carrier of mutation B. The gene under selection is at locus 0. The studied individual,
located at the bottom of the figure, carries four alleles symbolized by circles, whereas the size of the
hitchhiking set is equal to 3. The filled symbols correspond to the genetic material carried by the studied

individual.

Given U·,p = up, let Y2,p, . . . , Yup,p be N-valued random variables such that

P((Y2,p = y2,p, . . . , Yup,p = yup,p))

=

⎧⎪⎨
⎪⎩

(
hp − 1

up − 1

)−1

if 1 ≤ y2,p < · · · < yup,p ≤ hp − 1;
0 otherwise.

We set y1,p = 0, yup+1,p = hp, and U =∑n
p=1 U·,p.

Let S and F be two N-valued random variables, conditionally independent given U = u,
defined respectively on {0, . . . , u} and {2, . . . , �α	} as follows. For all 0 ≤ s ≤ u,

P(S = s | U = u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1− γ u

log(α)

u−1∑
k=1

1

k
if s = 0;

γ u

log(α)

u−1∑
k=2

1

k
if s = 1;

γ u

log(α)

1

s(s − 1)
if 2 ≤ s ≤ u− 1;

γ u

log(α)

1

u− 1
if s = u.

(3)

For all 2 ≤ f ≤ �α	,
P(F ≤ f | U = u) = (f − (u− 1)) · · · (f − 1)

(f + (u− 1)) · · · (f + 1)
. (4)

Given up, ya,p , 1 ≤ a ≤ up, 1 ≤ p ≤ n, and 1 ≤ k ≤ m, let �k be the cardinality of
{(a, p); ya+1,p ≤ k}.
Theorem 2. We have

P(H1 = h1, . . . , Hn = hn) =
h1∑
k1=1

· · ·
hn∑
kn=1

P(H�
1 = k1, . . . , H

�
n = kn)

× P(Hr
1 = h1 − k1 + 1, . . . , H r

n = hn − kn + 1),
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where (H�
1 , . . . , H

�
n ) and (Hr

1 , . . . , H
r
n ) are two independent, identically distributed vectors.

For any individual p, Hr
p and H�

p stand for the restriction of its hitchhiking set to {0, . . . , m}
and {−m, . . . , 0}, respectively.

The distribution of these random vectors is easily deduced from

P(Hr
1 ≥ h1, . . . , H

r
n ≥ hn) = E

[(
q(U)(
U
S

)
[ m∑
k=1

(
�k

S

)]
+ 1− (max(h1, . . . , hn)− 1)q(U)

)

× pF−1

∑n
p=1

∑U·,p+1
a=2 (Ya,p−1)

]
+O

(
1

(logα)2

)
,

where q(U) = (Uγ/ logα)
∑U−1
�=1 (1/�) and pF−1 = exp(−(γ / logα)

∑�α	
�=F (1/�)).

Remark 2. Note that the selected locus is present in both of the restrictions. This is why
we have to consider P(Hr

p = hp − kp + 1) instead of P(Hr
p = hp − kp) in the convolution

formula.

Section 5 will be devoted to the proof of Theorem 2.

3.3. Numerical results

In this subsection we present some numerical results to confirm that our approximations
perform well.

We consider two examples. In both examples, we chose N = 10 000 and s = 0.1, that is,
α = 2000. In the first example, we set ρ = 42, whereas in the second example we set ρ = 100.
Note that 1/(logα)2 � 0.0173.

We implemented a program which simulates recombination and coalescence events during
the selective sweep as explained in Section 2, without any approximation and using a dis-
cretization of the diffusion (1). We obtained the corresponding size of the hitchhiking set. We
simulated 30 000 genealogies for each value of the set of parameters. The following tables and
figures compare the empirical distribution with our approximation.

In Tables 1 and 2 we compare our approximation of the size of the hitchhiking set restricted
to {0, . . . , m} to the simulations with ρ = 100 and ρ = 42, respectively, when n = 1. For each
length we give the value of P(Hr

1 = h1) according to our approximation and the estimation
obtained from the 30 000 genealogies. The value for the last locus, h1 = 10 for ρ = 100 and

Table 1: ρ = 100, α = 2000, and n = 1

h1 Approximation Simulations �× (logα)2

1 0.336 0.321 0.826
2 0.240 0.220 1.086
3 0.161 0.150 0.635
4 0.104 0.103 0.029
5 0.065 0.067 0.087
6 0.041 0.045 0.277
7 0.025 0.032 0.393
8 0.016 0.022 0.306
9 0.011 0.012 0.075
≥ 10 0.002 0.027 1.467
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Table 2: ρ = 42, α = 2000, and n = 1

h1 Approximation Simulations �× (logα)2

1 0.149 0.149 0.006
2 0.132 0.130 0.081
3 0.115 0.109 0.335
4 0.099 0.096 0.179
5 0.084 0.082 0.150
6 0.071 0.066 0.295
7 0.060 0.059 0.075
8 0.050 0.048 0.150
9 0.042 0.041 0.040

10 0.035 0.034 0.052
11 0.029 0.031 0.110
12 0.024 0.025 0.046
13 0.020 0.020 0.000
14 0.016 0.018 0.104
≥ 15 0.075 0.093 1.046

h1 = 15 for ρ = 42, is P(Hr
1 ≥ h1). We can see that our approximation is very close to the

exact distribution.
In Tables 1 and 2 we also give the ratio of the absolute difference� between the two results

over 1/(logα)2. With this rescaling, we can see that the constants hidden behind the Os remain
small and that our approximation performs well.

Note that the half-length of the 95% confidence interval due to the Monte Carlo method is
bounded by 1.96

√
0.5× 0.5/30 000 = 0.0057 < 1/(logα)2, so the error due to the Monte

Carlo method is not significant.
We have also checked that the order of the approximation is O(1/(logα)2) when n = 1. To

do this, we carried out the same calculations as in Tables 1 and 2 with different values for α
while γ = ρ logα/α remained constant. We fixed γ = 100 × log(2000)/2000 � 0.38, and
we studied the cases α = 10 000, α = 2000, α = 500, and α = 200. For all the sizes between
1 and 9, we obtained � × (logα)2 ≤ 1.5 (results not shown). So the approximation error of
O(1/(logα)2) cannot be improved.

Moreover, we also analysed the quality of our approximation when n = 3 and n = 5.
Because the probabilities of the various n-tuples are generally smaller than 1/(logα)2, we
calculated the probabilities of the events {Hr

1 ≥ h1, . . . , H
r
n ≥ hn} when 1 ≤ h1 ≤ · · · ≤

hn ≤ 9 for ρ ∈ {42, 100}, n ∈ {3, 5}, and m = 8. The results are presented in Tables 3 and 4.
Table 3 shows the repartition of the values of�× (logα)2 for the 50 most probable events,

the others being negligible, when n = 3 and ρ = 100, for the 78 most probable events when
n = 5 and ρ = 100, and for the 162 most probable events when n = 3 and ρ = 42. Again, we
can see that the approximation performs well.

Unfortunately, for the approximate model, as already noted in [14], the approximation does
not perform well as soon as the size of the sample is greater than 5. This remark is also true for
our approximation when n = 5 and ρ = 42, as shown by several examples in Table 4.

Moreover, a star-like approximation is sometimes used for the genealogy at the selected
site [9], [16]. This approximation, whose order of accuracy is only O(1/(logα)), leads to
a simpler formula for the size of the hitchhiking set because recombinations independently
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Table 3: Repartition of the values of�×(logα)2 for the most probable events, when n = 3 and ρ = 100,
n = 5 and ρ = 100, and n = 3 and ρ = 42.

n ρ Minimum Maximum Mean Variance

3 100 0 3.03 0.65 1.32
5 100 0 4.65 1.13 1.70
3 42 0 6.07 1.54 2.76

Table 4: Comparisons between our approximation and simulations when ρ = 42 and n = 5. We present
values of P(Hr

1 ≥ h1, . . . , H
r
5 ≥ h5) for various values of (h1, . . . , h5) and the absolute difference scaled

by (logα)2.

(h1, . . . , h5) Theorem 2 Simulations �× (logα)2

(1,4,4,4,6) 0.2331 0.1669 3.8225
(2,2,3,4,5) 0.3454 0.2437 5.8743
(2,3,3,6,6) 0.2098 0.1458 3.6981
(3,4,4,6,8) 0.0940 0.0765 1.0132
(4,4,4,5,5) 0.1778 0.1298 2.7772
(4,5,6,7,8) 0.0234 0.0446 1.2244
(5,5,5,5,5) 0.1188 0.0941 1.4269

impact the individuals of the sample: under the model presented in [9], the distribution of the
size for each individual is geometric with parameter 1− exp(−γ ), i.e.

P(H1 ≥ h1, . . . , Hn ≥ hn) = exp

(
−γ

n∑
p=1

(hp − 1)

)
.

We compared this formula to our approximation and the simulations for various values of n
and (h1, . . . , hn) (30 000 genealogies have been simulated in each case). We chose α = 2000
and ρ = 100 (γ = 0.38). The results are presented in Table 5. We have to keep in mind
that we do not know the constants in O(1/ logα) and O(1/(logα)2), so we are not sure that
the error for our approximate model is smaller. However, the numerical results show that our

Table 5: Comparisons between our approximation, simulations, and the star-like model when α = 2000
and ρ = 100. We present the value of P(Hr

1 ≥ h1, . . . , H
r
n ≥ hn) for various values of n and (h1, . . . , hn)

in the three cases.

n (h1, . . . , hn) Theorem 2 Simulations Star-like model

3 (2,2,2) 0.4414 0.3963 0.3198
3 (3,3,3) 0.1609 0.1558 0.1023
3 (3,3,4) 0.0964 0.1052 0.0699
3 (2,4,4) 0.0941 0.1011 0.0699
5 (2,2,2,2,2) 0.2735 0.2626 0.1496
5 (2,2,2,2,4) 0.0795 0.1227 0.0699
5 (2,2,2,3,3) 0.0956 0.1349 0.0699
5 (2,2,2,3,4) 0.0222 0.0922 0.0478
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approximation is in general better than the star-like tree approximation. This is due to the fact
that a recombination may impact on an ancestor of several individuals of the sample. This
dependence between individuals is not taken into account with the star-like model.

4. Construction of the approximate model and proof of Theorem 1

4.1. Evolution at the neutral sites

In this section we assume that X = (Xt )0≤t≤T is given. We explain how to model the
transition events with independent Poisson processes.

The rates given in the following paragraph are those for a single lineage. The first idea would
be to consider a single Poisson process per lineage. However, the number of lineages under
consideration at any specific moment depends on the past events. So we will define independent
Poisson processes such that at any given Poisson jump time, we will choose uniformly at random
among the living lineages, the lineage undergoing transition at this moment. This choice is
modeled by independent random variablesW , given below. Since the events of type (B � b, a)
and (b � b, a) have the same rate but occur under two mutually excluding conditions, we use
the same Poisson process←−τ �b,a to account for both types. Note that we could also combine
(B � B, a) and (b � B, a) in a similar Poisson process. However, as we will see in Section 4.2.1,
the probability of events of type b � B is negligible, so these events will not be taken into account
in the approximate models.

Let ←−τ coalB , ←−τ coalb,
←−τ �b,a , ←−τ b�B,a , and ←−τ B�B,a, −m + 1 ≤ a ≤ m, denote Poisson

processes, which are conditionally independent given the random frequency path (Xt )0≤t≤T .
Since recombination and coalescence events are considered back in time, these processes are
defined for the reversed time β = T − t from β = 0 to β = T :

(←−τ coalB(β))0≤β≤T has rate

(
(2m+ 1)n

2

)
2

XT−β
at time β,

(←−τ coalb(β))0≤β≤T has rate

(
(2m+ 1)n

2

)
2

1−XT−β at time β,

(←−τ �b,a(β))0≤β≤T has rate nρa(1−XT−β) at time β, −m+ 1 ≤ a ≤ m,
(←−τ b�B,a(β))0≤β≤T , (←−τ B�B,a(β))0≤β≤T have rate nρaXT−β at time β, −m+ 1 ≤ a ≤ m.

We then denote by τcoalB , τcoalb, τ�b,a , τb�B,a , and τB�B,a the Poisson processes defined for
t ∈ [0, T ] by τcoalB(t) = ←−τ coalB(T − t), τcoalb(t) = ←−τ coalb(T − t), τ�b(t) = ←−τ �b(T − t),
τb�B(t) =←−τ b�B(T − t), and τB�B(t) =←−τ B�B(T − t).

Let

WcoalB = (W(s)
coalB)s∈N∗ , Wcoalb = (W(s)

coalb)s∈N∗ , W�b,a = (W(s)
�b,a)s∈N∗ ,

Wb�B,a = (W(s)
b�B,a)s∈N∗ , and WB�B,a = (W(s)

B�B,a)s∈N∗ ,

for −m + 1 ≤ a ≤ m be sequences of independent discrete variables, specified as follows:
W
(s)
coalB and W(s)

coalb are uniform on the set of pairs of elements of {−mn + 1, . . . , (m + 1)n},
with cardinality (

(2m+ 1)n

2

)
,

while W(s)
�b,a , W(s)

B�b,a , and W(s)
B�B,a are uniform on {an + 1, . . . , an + n}, −m + 1 ≤ a ≤ m.
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We assume that W(s)
coalB , W(s)

coalb, W
(s)
�b,a , W(s)

b�B,a , and W(s)
B�B,a, −m+ 1 ≤ a ≤ m, s ∈ N

∗, are
also independent of (X, τcoalB, τcoalb, τ�b,a, τb�B,a, τB�B,a, −m+ 1 ≤ a ≤ m).

To construct the ancestral genealogy, we consider the successive jumps of the Poisson
processes. More precisely, suppose that a jump occurs at t = t0 (i.e. β = T − t0 for the
reversed time). Let π(t+0 ) be the genealogy just before the jump. Denote by πj the block of
π(t+0 ) containing allele j , which will be identified with the ancestor of j at t = t+0 .

If the jump corresponds to the sth jump of←−τ coalB or←−τ coalb, we choose a pair (j, k) of alleles
according to the realization of W(s)

coalB or, respectively, W(s)
coalb. If j and k are respectively the

smallest elements ofπj andπk , and if bothπj andπk carryB or b, i.e. both or, respectively, none
of them are marked, then the two blocks coalesce and the new block is marked or, respectively,
not marked. Otherwise, nothing happens.

Note that we only consider the case where j and k are the smallest elements in order to avoid
size biasing.

If the jump corresponds to the sth jump of←−τ �b,a , we choose an allele j from the realization
of W(s)

�b,a . If j is the smallest element of πj ∩ {an + 1, . . . , an + n} then πj splits into
πj ∩{−mn+1, . . . , an} and πj ∩{an+1, . . . , (m+1)n}. When πj carries B or b and a > 0,
only the first block or, respectively, none of the blocks will be marked. When πj carries B or
b and a ≤ 0, only the second block or, respectively, none of the blocks will be marked. This
event is of type (B � b, a) or, respectively, (b � b, a).

Finally, if the jump corresponds to the sth jump of ←−τ b�B,a or ←−τ B�B,a , we choose an
allele j from the realization of W(s)

b�B,a or, respectively, W(s)
B�B,a . If j is the smallest element

of πj ∩ {an + 1, . . . , an + n} and if πj carries b or, respectively, B, then πj splits into
πj ∩ {−mn + 1, . . . , an} and πj ∩ {an + 1, . . . , (m + 1)n}. When a > 0, only the second
block will be marked when πj carries b and both of the blocks will be marked when πj carries
B. When a ≤ 0, only the first block will be marked when πj carries b and both of the blocks
will be marked when πj carries B.

In this way, we obtain π(t0) from π(t+0 ) and (WcoalB,Wcoalb,W�b,a,Wb�B,a,WB�B,a). An
example is given in Figure 6.

{–3,–2,–1,1,2,3}*

{–3,–2,1,2,5,6}*

{–3,1,5}* {–2,2,6}*

{–3,–2,1,2,5,6}* {–1,3,7}*

{–1,3,7}*

{–1,3,7}*

{5,6,7}*

{0,4,8}*

{0,4,8}*

{0,4,8}*

{0,4,8}*

{0,4,8}*

{–3,–2,–1,1,2,3,5,6,7}*

End of the 
selective sweep

τ

τ

τ

τ

B b,1(1) b,1 = 5

B,0(1)

coalB(2)
WcoalB = {–3,1}

coalB(1)

b

WB
1

1
b,0 = 4WB

2

WcoalB = {–3,–2}1

Figure 6: An example of evolution. Herem = 1 and n = 4, so that the alleles at loci−1, 0, and 1 of four
individuals are involved. Note that the second event (looking back in time) does not modify the partition

since the impacted block is marked.
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Let E be the set of Poisson processes defined on [0, T ], and let P be the set of partitions of
{−mn+ 1, . . . , (m+ 1)n}. Given (Xt )0≤t≤T , this procedure specifies a map

f : E × E × (E × E × E)2m × (N2)N
∗ × (N2)N

∗ × (NN
∗ × N

N
∗ × N

N
∗
)2m �→ P

such that

f (τcoalB, τcoalb, τ�b,a, τb�B,a, τB�B,a,WcoalB,Wcoalb,W�b,a,Wb�B,a,WB�B,a,
−m+ 1 ≤ a ≤ m) = π(0).

Now we successively construct several simplified models, where in the final model we no
longer need to compute (Xt )0≤t≤T to obtain a sample of ancestral partitions from the distribution
of π(0).

From now on, by background B and background b we mean the subpopulation carrying
allele B and allele b, respectively.

4.2. Suppression of rare events

In this section, a path X is given and PX denotes the conditional probability given X, while
P denotes the unconditional probability.

4.2.1. Events coalb and b � B are negligible. First, we see why it is possible to ignore the
occurrence of events coalb and b � B in the approximate models.

Proposition 1. The probability of events of type coalb and b � B is O(1/(logα)2).

Proof. The following two statements are proved in [2, Proposition 3.4.].

1. The probability that two lineages coalesce in background b is O(1/(logα)2).

2. The probability that, looking in reversed time, a lineage goes from background B to
background b and then goes back to background B is also O(1/(logα)2).

The events of type b � B bring lineages from background b to backgroundB. However, since
the sample was taken at the end of the selective sweep, all the lineages began in background B,
and considering an individual in background b implicitly implies that it has already moved at
least once from background B to background b. Consequently, owing to statement 2, we find
that the probability of an event b � B is O(1/(logα)2).

Remark 3. Our simulations (not shown) indicate that the error induced by the approximation
in Proposition 1 is truly of order O(1/(logα)2), and not of a smaller order; so the accuracy of
our model cannot actually be improved.

Corollary 1. Let � ∈ P . Let f̃ : E × (E × E)2m × (N2)N
∗ × (NN

∗ × N
N
∗
)2m �→ P be the

map defined by

f̃ (τcoalB, τ�b,a, τB�B,a,WcoalB,W�b,a,WB�B,a, −m+ 1 ≤ a ≤ m)
= f (τcoalB, τ∅, τ�b,a, τ∅, τB�B,a,WcoalB, ω1,W�b,a, ω2,WB�B,a, −m+ 1 ≤ a ≤ m),

(5)

where τ∅ denotes a Poisson process without jumps, ω1 ∈ N
N
∗

is such that, for all s ∈ N
∗,

ω1(s) = 0, and ω2 ∈ (N× N)N
∗

is such that, for all s ∈ N
∗, ω2(s) = (0, 1). Then

PX(f̃−1(�)) = PX(f−1(�))+O

(
1

(logα)2

)
.
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The choices of ω1 and ω2 are arbitrary. Indeed, the corresponding Poisson processes have
no jump, so the values of ω1 and ω2 do not influence the realization constructed by (5).

4.2.2. Order of the events. Let us first focus on events of type B � B, and show that we can
assume that they all occur before any of the other events (still looking back in time). To see
this, we define ε = (logα)2/α and Tε = inf{t ≥ 0 : Xt = ε}. Since we consider large values
of α, note that ε is small.

In the same spirit as Equations (5.10), (5.11), and (5.12) of [13], we have the following
proposition.

Proposition 2. The Poisson processes described in Section 4.1 have the following properties:

P(τcoalB ∩ [Tε, T ] �= ∅) = O

(
1

(logα)2

)
, (6)

P

( m⋃
a=−m+1

{τB�B,a ∩ [0, Tε] �= ∅}
)
= O

(
(logα)2

α

)
� O

(
1

(logα)2

)
, (7)

P
(

min−m+1≤a≤m(min τB�B,a) < max−m+1≤a≤mmax(τ�b,a)
)
= O

(
1

(logα)2

)
. (8)

We use the notationH = n∑m
a=−m+1 γa , which is a constant that depends only on n andm.

Proof of Proposition 2. Equation (6) is proved in [2, Lemma 4.3]. To prove (7), we use
Jensen’s inequality to compute

P

( m⋃
a=−m+1

τB�B,a ∩ [0, Tε] = ∅

)
= E

[
exp

(
−n

m∑
a=−m+1

ρa

∫ Tε

0
Xs ds

)]

≥ exp

(
−n

m∑
a=−m+1

ρaε E[Tε]
)

= exp

(
−H (logα)2

α
+O

(
logα

α

))

≥ 1−O

(
(logα)2

α

)
.

For (8), we write

P
(

min−m+1≤a≤m(min τB�B,a) < max−m+1≤a≤m(max τ�b,a)
)

= P

(
min

m⋃
a=−m+1

τB�B,a < max
m⋃

a=−m+1

τ�b,a
)
.

Given X, all the Poisson processes are independent, so
⋃m
a=−m+1 τB�B,a and

⋃m
a=−m+1 τ�b,a

are independent Poisson processes. From now on, | · | denotes the cardinality. We have

P
(

min−m+1≤a≤m(min τB�B,a) < max−m+1≤a≤m(max τ�b,a)
)

= E

[∫ T

0
PX

(∣∣∣∣
m⋃

a=−m+1

τB�B,a ∩ [0, t]
∣∣∣∣ > 0

)
PX

(
max

m⋃
a=−m+1

τ�b,a ∈ dt
)]
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= E

[∫ T

0

(
1− exp

(
−

∫ t

0
H

α

logα
X ds

))

× exp

(
−

∫ T

t

H
α

logα
(1−Xs) ds

)
H

α

logα
(1−Xt) dt

]
(9)

≤ H 2 α2

(logα)2
E

[∫ T

0

(∫ t

0
Xs ds

)
(1−Xt) dt

]
(10)

= O

(
1

(logα)2

)
.

Equation (9) follows from the fact that, under P, |⋃m
a=−m+1 τB�B,a ∩ [0, t]| is Poisson with

parameter ∫ t

0
n

m∑
a=−m+1

ρaXs ds =
∫ t

0
H

α

logα
Xs ds

and |⋃m
a=−m+1 τ�b,a ∩ [t, T ]| is Poisson with parameter

∫ T
t
H(α/ logα)(1−Xs) ds.

The expectation in (10) is estimated in [2] (see Equation (4.5) therein and the following
estimates) and the result follows.

Proposition 2 immediately implies the following result.

Corollary 2. With probability 1−O(1/(logα)2), all the events of type B � B occur before all
the other events.

Remark 4. The presence ofH 2 in (10) shows that the sample size and the number of loci enter,
at least quadratically, the global error term O(1/(logα)2).

4.2.3. Interchangeability of the events of type � b or B � B. The following proposition is
similar to Equation (5.9) of [13], but extended to events of type B � B.

Proposition 3. Let τ = τcoalB
⋃m
a=−m+1(τ�b,a ∪ τB�B,a). This union is called the superpo-

sition of Poisson processes. Let s and t be two consecutive points of τ such that s ∈ τ�b,c
and t ∈ τ�b,d , with c < d (we do not impose s < t). Let τ ′�b,c = (τ�b,c \ {s}) ∪ {t},
τ ′�b,d = (τ�b,d \ {t}) ∪ {s}, and τ ′�b,a = τ�b,a for all a /∈ {c, d}. Then

f̃ (τcoalB, τ�b,a, τB�B,a,WcoalB,W�b,a,WB�B,a, −m+ 1 ≤ a ≤ m)
= f̃ (τcoalB, τ

′
�b,a, τB�B,a,WcoalB,W�b,a,WB�B,a, −m+ 1 ≤ a ≤ m).

The same result can also be shown for two consecutive events of type B � B.

Proof. Assume that s is the xth point of τ�b,c and that t is the yth point of τ�b,d . Write
j = W(x)

�b,c and k = W(y)

�b,d . Let πj and πk be the blocks respectively containing j and k at time
(s ∨ t)+.

Consider πj �= πk . Even if the two recombinations are realized, the first one splits one of
the blocks—for example, πj—into two blocks that are still different from πk . Consequently, it
has no effect on the realization of the second recombination.

Consider πj = πk . If j > min(πj ∩ {cn+ 1, . . . , cn+ n}) and if k > min(πk ∩ {dn+ 1,
. . . , dn+ n}), no recombination is realized.

Now suppose that j = min(πj ∩ {cn + 1, . . . , cn + n}) and k > min(πk ∩ {dn + 1, . . . ,
dn+n}). If we begin with the recombination τ�b,c, πj splits into πj ∩ {−mn+ 1, . . . , cn} and
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πj ∩ {cn+ 1, . . . , (m+ 1)n}. We have c < d, so k ∈ πj ∩ {cn+ 1, . . . , (m+ 1)n} and we still
have

k > min(πj∩{cn+1, . . . , (m+1)n}∩{dn+1, . . . , dn+n}) = min(πj∩{dn+1, . . . , dn+n}).
The recombination at locus d is not realized. When we change the order or the two recombi-
nations, the first one at locus d is not realized since k > min(πk ∩ {dn+ 1, . . . , dn+ n}) and
the one at locus c is realized. So, the result is the same.

The arguments are the same when j > min(πj ∩ {cn+ 1, . . . , cn+ n}) and k = min(πk ∩
{dn + 1, . . . , dn + n}), and when j = min(πj ∩ {cn + 1, . . . , cn + n}) and k = min(πk ∩
{dn+ 1, . . . , dn+ n}).

By (6)–(8), with probability 1 − O(1/(logα)2), events of types � b and B � B restricted
to [Tε, T ] are consecutive. Applying Proposition 3, we find that the order of events � b and
B � B is not important during [Tε; T ], that is, all the information is given by |τ�b,a ∩ [Tε; T ]|
and |τB�B,a ∩ [Tε; T ]|, −m+ 1 ≤ a ≤ m.

Recall that E is the set of Poisson processes defined on [0, T ]. We denote by Eε the set of
Poisson processes restricted to [0, Tε].

Let τ1 ∈ Eε. Let τ 0
coalB ∈ E such that τ 0

coalB ∩ [0; Tε] = τ1 and |τ 0
coalB ∩ [Tε, T ]| = 0.

For −m + 1 ≤ a ≤ m, let τ2,a ∈ Eε, ca ∈ N, and da ∈ N. Let τ 0
�b,a ∈ E such

that τ 0
�b,a ∩ [0; Tε] = τ2,a and |τ 0

�b,a ∩ [Tε, T ]| = ca . Let τ 0
B�B,a ∈ E such that |τ 0

B�B,a ∩[0; Tε]| = 0 and |τ 0
B�B ∩ [Tε, T ]| = da .

We define the map g : Eε × (Eε × N× N)2m × (N2)N
∗ × (NN

∗ × N
N
∗
)2m �→ P such that

g(τ1, τ2,a, ca, da,WcoalB,W�b,a,WB�B,a, −m+ 1 ≤ a ≤ m)
= f̃ (τ 0

coalB, τ
0
�b,a, τ

0
B�B,a,WcoalB,W�b,a,WB�B,a, −m+ 1 ≤ a ≤ m).

Corollary 3. For all � ∈ P ,

PX(g−1(�)) = PX(f̃−1(�))+O

(
1

(logα)2

)
.

4.2.4. Approximate independence. In this section we explain why the events of type (B � B, a)
can be approximated by the realizations (before any other event) of independent Bernoulli ran-
dom variables with parameter 1−exp(E[−ρa

∫ T
0 Xs ds]), where here E denotes the integration

over all the paths (Xt )0≤t≤T .
We first show that the number of B � B events is approximately independent of the number

of events of type � b (events of type � b are the other possible events occurring during the time
interval [Tε; T ]). We do not condition uponX anymore. More precisely, we have the following
result.

Proposition 4. For any ua, va ∈ N, −m+ 1 ≤ a ≤ m, we have

P(|τ�b,a ∩ [Tε; T ]| = ua, |τB�B,a ∩ [Tε; T ]| = va;−m+ 1 ≤ a ≤ m)

=
m∏

a=−m+1

(P(|τ�b,a ∩ [Tε; T ]| = ua)P(|τB�B,a ∩ [Tε; T ]| = va))

+ µ(ua, va;−m+ 1 ≤ a ≤ m)O
(

1

(logα)2

)
,

where
∑∞
u−m+1,...,um,v−m+1,...,vm=0 µ(ua, va, −m+ 1 ≤ a ≤ m) <∞.
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The proof of this proposition, which is quite technical, is given in Section 6. We already
know that recombination and coalescence events are independent. Thus, the events B � B can
be realized independently of all the other events.

Combined with the strong Markov property, Proposition 4 leads to the following result.

Corollary 4. For any � ∈ P ,

P((τcoalB ∩ [0; Tε], τ�b,a ∩ [0; Tε], |τ�b,a ∩ [Tε; T ]|, |τB�B,a ∩ [Tε; T ]|,
WcoalB,W�b,a,WB�B,a, −m+ 1 ≤ a ≤ m) ∈ g−1(�))

=
∑(

P(τcoalB ∩ [0; Tε] = ηcoalB, τ�b,a ∩ [0; Tε] = η�b,a, −m+ 1 ≤ a ≤ m)

×
m∏

a=−m+1

P(|τ�b,a ∩ [Tε; T ]| = ua)P(|τB�B,a ∩ [Tε; T ]| = va)

× P(WcoalB = wcoalB, W�b,a = w�b, WB�B,a = wB�B, −m+ 1 ≤ a ≤ m)
)

+O

(
1

(log(α))2

)
,

where the sum is over {(ηcoalB, η�b,a, ua, va, wcoalB,w�b, wB�B, −m + 1 ≤ a ≤ m) ∈
g−1(�)}.

We now prove that, for fixed a, the cardinality of τB�B,a approximately follows a Poisson
distribution with parameter E[nρa

∫ T
0 Xs ds], denoted by PE[nρa

∫ T
0 Xs ds]. More precisely, we

have the following result.

Proposition 5. For all −m + 1 ≤ a ≤ m, the total variation distance between the laws of
|τB�B,a| and PE[nρa

∫ T
0 Xs ds] is O(1/(logα)2):

1

2

∑
k∈N

∣∣∣∣ P(|τB�B,a| = k)− e−E[p] E[(p)k]
k!

∣∣∣∣ = O

(
1

(logα)2

)
,

where p = nρa
∫ T

0 Xs ds.

Proof. Fix k ∈ N. From the Taylor expansion of order 2 between p and E[p], there exists
a p̃ such that |p̃ − E[p]| ≤ |p − E[p]| and

P(|τB�B,a| = k) = E

[
e−ppk

k!
]

= E

[
e−E[p] E(p)k

k! + (p − E[p]) ∂
∂p

e−ppk

k!
∣∣∣∣
p=E[p]

+ 1

2
(p − E[p])2 ∂

2

∂p2

e−ppk

k!
∣∣∣∣
p=p̃

]

= e−E[p] E[(p)k]
k!

+ 1

2
E

[
(p − E[p])2e−p̃

(
p̃k−2

(k − 2)!1{k≥2} − 2
p̃k−1

(k − 1)!1{k≥1} + p̃
k

k!
)]
,
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∑
k∈N

∣∣∣∣ P(|τB�B,a| = k)− e−E[p] E[(p)k]
k!

∣∣∣∣

≤ 1

2
E

[
(p − E[p])2e−p̃

(∑
k≥2

p̃k−2

(k − 2)! + 2
∑
k≥1

p̃k−1

(k − 1)! +
∑
k≥0

p̃k

k!
)]

≤ 2 E[(p − E[p])2]
= 2 var(p).

Moreover, using a proof similar to that of [13, Equation (5.22)], we obtain

var(p) = var

(
nρa

∫ T

0
Xs ds

)
≤ 2n2ρ2

a var(T ) = O

(
1

(logα)2

)
.

Furthermore, since the events of type B � B occur before all the other events, they only
take place for the individuals of the sample. For each event, the implied individual is chosen
uniformly in the sample and the corresponding split is done. Consequently, PE[nρa

∫ T
0 Xs ds] can

be seen as the superposition of n independent Poisson variables whose rate is

E

[
ρa

∫ T

0
Xs ds

]
,

one for each individual of the sample.

Corollary 5. Events of typeB � B can be approximated by realizations ofUa,p, −m+1 ≤ a ≤
m, 1 ≤ p ≤ n, independent Bernoulli variables with parameter 1− exp(E[−ρa

∫ T
0 Xs ds]).

Proof. The impact of the Poisson process←−τ B�B,a on the evolution of the genealogy is the
same as long as at least one of its event points happens, because once the split has occurred,
another event will not change anything: one event or several events of type B � B for the same
(a, p) produce the same result. This is why we can use (Ua,p, −m+ 1 ≤ a ≤ m, 1 ≤ p ≤ n)
independent Bernoulli variables, Ua,1, . . . , Ua,n, with parameter

1− P(PE[ρa
∫ T

0 Xs ds] = 0) = 1− exp

(
−E

[
ρa

∫ T

0
Xs ds

])
.

If Ua,p = 1, the event described in event (B � B, a) is realized for individual p. If Ua,p = 0,
nothing happens. For a given individual, the order of the realizations is not important because
the partition becomes finer and finer.

Finally, we obtain the following model.

1. Start with the partition π = {{−mn + 1,−(m − 1)n + 1, . . . , mn + 1}∗, . . . , {−mn +
n,−(m− 1)n+ n, . . . , mn+ n}∗}.

2. Draw a path (Xt )0≤t≤T as in (1).

3. Draw (Ua,p)−m+1≤a≤m, 1≤p≤n independent Bernoulli variables with parameter

1− E

[
ρa

∫ T

0
Xs ds

]
.

If Ua,p = 1, realize the event (B � B, a) for individual p.
A new partition π̃ ′ is obtained. Note that |π̃ ′| = |π | +∑

a,p Ua,p.
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4. Use this new partition from t = T to construct the genealogy until t = 0, via Poisson
processes←−τ coalB,a and←−τ �b,a, −m+ 1 ≤ a ≤ m.

5. This gives us a random approximate ancestral partition π̃(0), which depends on the path
(Xt )0≤t≤T .

6. The distribution of the approximate ancestral partition, obtained by integrating the law
of π̃(0) over all the paths X = (Xt )0≤t≤T , is denoted by �̃: for any set A of partitions
of {−mn+ 1, . . . , (m+ 1)n}, P(�̃ ∈ A) = E[PX(π̃(0) ∈ A)].

Theorem 3. We have dTV(�, �̃) = O(1/(logα)2).

Proof. Since the number of partitions of {−mn+ 1, . . . , (m+ 1)n} is finite, it is enough to
prove that, for a fixed partition �, we have |P(� = �)− P(�̃ = �)| = O(1/(logα)2).

In the following equation, E corresponds to the integration over the random paths X.
Recall that π(0) and f are defined conditionally to a given path X. The sum is still over
{(ηcoalB, η�b,a, ua, va, wcoalB,w�b, wB�B, −m+ 1 ≤ a ≤ m) ∈ g−1(�)}. We have

P(� = �)
= E[PX(π(0) = �)]
= E[PX((τcoalB, τcoalb, τ�b,a, τb�B,a, τB�B,a,

WcoalB,Wcoalb,W�b,a,Wb�B,a,WB�B,a) ∈ f−1(�))]
=

∑[
P(τcoalB ∩ [0; Tε] = ηcoalB, τ�b,a ∩ [0; Tε] = η�b,a, |τ�b,a ∩ [Tε; T ]| = ua,
WcoalB = wcoalB,W�b,a = w�b,a, −m+ 1 ≤ a ≤ m)

×
∏
a,p

P
(
Ua,p = 1

p∈{w(s)
B�B,a,1≤s≤va}

)]
+O

(
1

(logα)2

)
,

by application of Corollaries 1, 3, 4, and 5 and Proposition 5.

4.3. Modeling evolution at the selected locus with a Yule tree

4.3.1. Time rescaling and theYule tree. We argued in Section 4.2.1 that it is sufficient to consider
events of types coalB, � b, and B � B. The events B � B happen before all the others and give
a new partition π̃ ′ at t = T . So, the remaining events are those of types coalB (at rate 2/Xt )
and (� b, a) (at rate ρa(1−Xt)).

First, note that, by rescaling time with dτ = (1−Xt) dt , the proportion ofB in the population
is now the solution on [0, inf{τ > 0 : Zτ = 1}] of the supercritical branching process:

dZτ = αZτ coth

(
α

2
Zτ

)
dτ +√

2Zτ dWτ , Z0 = 0,

where W is still a standard Brownian motion (see [3, Chapter 6]).
With this time rescaling, the rates of recombination of events (� b, a) become constant,

equal to ρa . The coalescence rate becomes 2/Zτ (1 − Zτ ). However, when the coalescence
rates are 2/Zτ (1 − Zτ ) and 2/Zτ , the genealogies coincide with probability 1 − O(logα/α)
(see [2, Proposition 4.2]). Moreover, the pair coalescence rate of the individuals with an infinite
line of descent is 2/Zτ (see [2, Lemma 4.5]), so lines taken at random from the supercritical
branching process coalesce as infinite lines of descent with probability 1−O(logα/α).
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O’Connell [12] showed that the genealogy of individuals with an infinite line of descent is
a Yule tree with birth rate α, and that the number of lineages, D, at the end of the selective
sweep is Poisson with parameter α (from [4] and the Markov property). Consequently, we can
extract a subtree from a Yule tree Y with birth rate α stopped at Poisson(α) leaves to simulate
the genealogy of the sample at the selected locus. Of course, in order for this procedure to make
sense, the number of leaves of the stopped Yule tree must be bigger than |π̃ ′|. Let us explain
why this is the case.

In fact, with probability 1−O(1/(logα)2), the number of lineages,D, of the Yule tree Y at
the end of the selective sweep is �α	. Indeed, by the Chebyshev inequality,

P(|D − α| > α3/4) ≤ var(D)

(α3/4)2
= 1√

α
≤ O

(
1

(logα)2

)
,

so we can make the approximation �α − α3/4� ≤ D ≤ �α + α3/4	. Moreover, as will be
explained in Section 4.3.2, the probability that a recombination event occurs (for example, at
locus a) between the instants when theYule tree has �α−α3/4	 and �α+α3/4� lines is bounded
by

1− exp

(
− γa

logα

�α+α3/4	∑
�=�α−α3/4�+1

1

�

)
+O

(
1

(logα)2

)

≤ γa

logα

�α+α3/4	∑
�=�α−α3/4�+1

1

�
+O

(
1

(logα)2

)

≤ γa

logα

2α3/4

α − α3/4 +O

(
1

(logα)2

)

= O

(
1

(logα)2

)
.

The probability that such a recombination event happens is negligible. Consequently, since
�α− α3/4� ≤ �α	 ≤ �α+ α3/4	 for large α, we can approximateD by �α	 and use a Yule tree
with �α	 leaves.

By hypothesis, 1� α, so |π̃ ′| < �α	 and the above sampling procedure is possible.
Now, randomly choose |π̃ ′| of the �α	 leaves of the tree. The corresponding subtree, denoted

by Y|π̃ ′|, is the genealogy at locus 0 for the sample after events B � B. Hence, the Yule subtree
can be used to replace the draw of successive events coalB with a probability error of order
O(1/(logα)2).

4.3.2. Use of labels for recombination events. The leaves of the Yule tree are the blocks of π̃ ′
(all these blocks are marked). Since we are interested in the genealogy of the neutral genes, we
have to place events of type � b along this tree.

Recall that events � b correspond to recombinations B � b and b � b. These recombinations
split the blocks. Each time a nonmarked block is produced, it escapes the tree (because the
tree describes the descendants of the individual where B appeared at t = 0) and then splits in
background b according to recombinations b � b until t = 0. Consequently, at each node of
the tree, only one marked block is present.

To place events (� b, a), we use Poisson processes with rate ρa on the branches of Y|π̃ ′|
(a branch denotes an edge of the tree connecting two consecutive nodes). The branches where
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jumps happen are labeled. Each label accounts for all the events on the corresponding branch,
so that there is at most one label per branch.

A label is written as r = (r1, . . . , rq), 1 ≤ q ≤ 2m, where −m < r1 < r2 < · · · < rq ≤ m
are the locations of the recombination splits. Its meaning is that q recombinations occurred
and, for 1 ≤ i ≤ q, the ith recombination occurred between loci ri − 1 and ri . It must have
happened either on that branch, and it is then a B � b recombination, or after the allele at locus
ri has escaped Y|π̃ ′| (owing to a prior � b recombination), and it is then a b � b recombination.

We write r0 = −m and rq+1 = m + 1. Let i0 ∈ {0, . . . , q} denote the unique index such
that ri0 ≤ 0 < ri0+1. Let ζ be the block present at the node determining the beginning (looking
back in time) of the branch. This block is marked.

The above label r implies that, at the time corresponding to the end of the branch, ζ is
replaced by ζ ∩ (R−m, . . . , Rr1−1), ζ ∩ (Rr1 , . . . , Rr2−1), . . . , ζ ∩ (Rrq , . . . , Rm) in the new
partition, and among these new blocks, only ζ ∩ (Rri0 , . . . , Rri0+1−1) is marked and is present
at the node determining the end of the branch.

Consider a branch of the extracted tree. At the beginning of this branch, the full Yule tree
has �2 lineages, and at the end of this branch, it has only �1 < �2 lineages (there is at least the
coalescence of the studied branch).

When the Yule tree has � lineages, the time between two consecutive coalescence events is
exponential with rate �α. Consider a Poisson process with rateρ on a lineage simulating instants
of recombination. Coalescence and recombination events on this lineage are independent.
Thus, the probability that there is no recombination on the chunk of the branch corresponding
to having � lineages on the fullYule tree is the probability that a coalescence event occurs before
a recombination event, that is �α/(�α+ρ), and the probability of having no label on the whole
branch is therefore

∏�2
�=�1+1 �α/(�α + ρ).

Proposition 6. With

q
y
x (γc) =

y∏
�=x+1

�α

�α + ρc ,

the probability of the label r = (r1, . . . , rq) is

[ri0+1−1∏
c=ri0+1

q
�2
�1
(γc)

]
(1− q�2

�1
(γri0

))(1− q�2
�1
(γri0+1))

×
∏

i �=i0, i0+1

(1− q�2
0 (γri ))

[ ∏
(c>ri0+1 or c<ri0 ), c/∈r

q
�2
0 (γc)

]
.

Proof. The label r = (r1, . . . , rq) is the intersection of the following events.

e1: No recombination between loci ri0 and ri0+1 − 1 along the branch (that is, when the full
Yule tree goes from �2 to �1 lineages).

e2: At least one recombination between loci ri0 − 1 and ri0 along the branch.

e3: At least one recombination between loci ri0+1 − 1 and ri0+1 along the branch.

e4: Recombinations at loci ri, i /∈ {i0, i0 + 1}.
e5: No recombination elsewhere (even after the lineage has escaped Y|π̃ ′|).
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We have

P(e1∩e2∩e3∩e4∩e5) = P(e1)P(e2 | e1)P(e3 | e1, e2)P(e4 | e1, e2, e3)P(e5 | e1, e2, e3, e4),

which explains the five terms of the product.
It is important to observe that in the last two terms, we have 1− q�2

0 and not 1− q�2
�1

because
involved recombination events can happen either before the recombinations, between loci ri0−1
and ri0 and between loci ri0+1 − 1 and ri0+1 (still looking in reversed time)—which explains
the �2 superscript—or later, but the lineage has then escaped Y|π̃ ′| and the event can happen
until t = 0.

Proposition 7. With an error of O(1/(logα)2), the probability of the label r = (r1, . . . , rq) is
given by (2).

Proof. By Taylor’s expansion,

�2∏
�=�1+1

�α

�α + ρc = exp

( �2∑
�=�1+1

log

(
1− ρc

�α + ρc
))

= exp

(
− γc

logα

�2∑
�=�1+1

1

�

)
exp

(
O

(
1

(logα)2

))

= p�2
�1
(r, c)+O

(
1

(logα)2

)
.

It is possible to construct the successive partitions after each event of coalescence or recom-
bination, until t = 0. Nevertheless, we can also define an equivalence relation that will allow
us to decide (directly) if, given the labels on the subtree, two alleles are in the same block of
π(0). This equivalence relation and the attainment of the marked partition are presented in
Section 3.1.

4.3.3. The final approximation of the process. We want to establish a final model where we no
longer need to simulate a pathX in order to construct the ancestral genealogy. For the moment,
the parameters of the Bernoulli variables still depend on X.

Proposition 8. With an error of O(1/(logα)2), Ua,p follows a Bernoulli distribution with
parameter

1− p�α	0 (r, a) = 1− exp

(
− γa

logα

�α	∑
�=1

1

�

)
.

Remark 5. Note that p�α	0 (r, a) depends only on a and α.

Proof of Proposition 8. By the time reversibility of (Xt )0≤t≤T , the parameter of Ua,p is

1− exp

(
−E

[
ρa

∫ T

0
Xs ds

])
= 1− exp

(
−E

[
ρa

∫ T

0
(1−Xs) ds

])
.

Let (Nt )t≤0 be a Poisson process with intensity E[ρa(1−Xt) 1{t≤T }] for t ≥ 0. Then

exp

(
−E

[
ρa

∫ T

0
(1−Xs) ds

])
= P(NT = 0).
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With dτ = (1 − Xt) dt , P(NT = 0) = P(N ′�α	 = 0), where N ′ is a Poisson process with
intensity ρa along a whole line of theYule tree, that is, while the tree goes from �α	 to 0 leaves.
The probability of a whole line without any label is the product of the probabilities for each
branch constituting the line. Therefore, P(N ′�α	 = 0) = p�α	0 (r, a)+O(1/(logα)2).

Finally, we obtain the approximate model presented in Section 3.1.

Theorem 4. We have dTV(�1, �̃) = O(1/(logα)2).

Proof. Let � ∈ P .

P(�1 = �)− P(�̃ = �) =
∑
µ

(P(�1 = � | π ′ = µ)− P(�̃ = � | π̃ ′ = µ))P(π ′ = µ)

+
∑
µ

P(�̃ = � | π̃ ′ = µ)(P(π ′ = µ)− P(π̃ ′ = µ)),

where we sum over all the partitions µ ∈ P . Their number is finite, so it is enough to
estimate each term of the sum. We have P(π ′ = µ) − P(π̃ ′ = µ) = O(1/(logα)2) and
P(�1 = � | π ′ = µ) − P(�̃ = � | π̃ ′ = µ) = O(1/(logα)2). These two estimates follow
from a combination of the following facts.

• Proposition 3.6 of [2].

• The equivalence relation with the labels gives the same partition as the events of type � b
in �1.

• There is a finite number of labels (independent of α) and the probability of each event
differs by O(1/(logα)2) according to Proposition 7.

• Proposition 8.

Finally, combining Theorems 3 and 4 yields Theorem 1.

5. Approximate distribution of the size of the hitchhiking set

In this section we assume that the recombination rate is the same for all the loci: γa = γ for
all −m+ 1 ≤ a ≤ m.

We are interested in the joint distribution of the sizes of the hitchhiking sets of n individuals
taken at the end of the selective sweep (n ≥ 1). Let Hp be the size of the hitchhiking set of
individual p.

In this Yule-approximation, the evolution to the left of the selected locus is independent of
the evolution to the right because events happening to the right do not influence the genealogy
to the left, and vice versa. We note that this point does not hold for the ‘exact’model, where, for
example, recombined lines from both sides of the selected locus may coalesce in the wild-type
background, which would make their genealogy dependent.

If we denote by H�
p and Hr

p the sizes of the hitchhiking set restricted to {−m, . . . , 0} and
{0, . . . , m}, respectively, then Hr

p and H�
p are independent and identically distributed, so that

P(H1 = h1, . . . , Hn = hn)

=
h1∑
k1=1

· · ·
hn∑
kn=1

P(H�
1 = k1, . . . , H

�
n = kn)P(Hr

1 = h1 − k1 + 1, . . . , H r
n = hn − kn + 1).
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Early label

Late labelt

S = 3

Figure 7: An example of early and late labels. Late labels (filled diamonds) occur before the first
coalescence event (dotted line), and early labels (open diamonds) occur after the first coalescence event.
Here S is the number of leaves of the subtree under the early label. It is the number of individuals in the

sample that is impacted by this early label.

We consider the evolution to the right of locus 0. In particular, the labels are r = (r1, . . . , rq)
with 0 < r1 < · · · < rq ≤ m. For simplicity, we write

p�1 ≡ p�α	�1
(r, c) = exp

(
− γ

log(α)

�α	∑
�=�1+1

1

�

)
,

since it does not depend on r and c anymore. We wish to determine an approximate formula
for P(Hr

1 ≥ h1, . . . , H
r
n ≥ hn).

5.1. Concepts established in [2]

In this subsection we recall the definitions and main results obtained by Etheridge et al. [2]
that will be necessary in the next subsection. Note that these results were established for a
single neutral gene, so we generalize them.

Definition 2. A late label is a label attached to recombinations occurring between the end of
the selective sweep and the first coalescence event in the sample.

An early label is a label attached to recombinations occurring between the first coalescence
event in the sample and the beginning of the selective sweep.

Remark 6. The term ‘first coalescence event’ corresponds to reversed time, as for transition
events in most of this paper. On the other hand, the terms ‘early’ and ‘late’ introduced in [2]
should be understood in nonreversed time. However, to use the same terminology as [2], we
keep these two adjectives (see Figure 7).

Theorem 5. We consider m neutral genes located to the right of the site under selection.

1. With probability 1−O(1/(logα)2), there is at most one early label.

2. Considering the subtree with U = |π ′| leaves associated to the sample, let S be the
number of leaves under the early label (S = 0 if no early label). Up to a total variation
distance of O(1/(logα)2), given that U = u, the distribution of S is given by (3).

3. Let F be the number of living lineages in the full Yule tree Y at the time of the first
coalescence event in the sample. Up to a total variation distance of O(1/(logα)2), given
U = u, the cumulative distribution of F is given by (4).
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4. Up to a total variation distance of O(1/(logα)2), given that F = f , the probability that
a late recombination occurs between R0 and Ra on a fixed branch of Y|π ′| is

1− (pf−1)
a = 1− exp

(
− aγ

log(α)

�α	∑
�=f

1

�

)
.

An illustration is given in Figure 7.

5.2. Approximate distribution of the size of the hitchhiking set

Let hp ∈ {1, . . . , m+ 1}, 1 ≤ p ≤ n.
We wish to obtain an approximate formula for P(Hr

1 ≥ h1, . . . , H
r
n ≥ hn). We always

have Hr
p ≥ 1 because of the site under selection. Looking at individual p, the history at loci

between hp−1 andm have no interest for this computation. Consequently, we focus on alleles
0, 1, . . . , hp − 1 for individual p, 1 ≤ p ≤ n, and set m = max(h1, . . . , hn)− 1.

To simplify the notation, we write U·,p = 1+∑hp−1
a=1 Ua,p for all 1 ≤ p ≤ n and then

U = ∑n
p=1 U·,p = |π ′|. Consider individual p (1 ≤ p ≤ n). Given that U·,p = up, let

Y2,p, . . . , Yup,p be the ordered locations of the (up − 1) recombinations of type B � B. We set
y1,p = 0 and yup+1,p = hp.

After all the B � B recombinations, the genetic material of individual p is carried by
Up ancestors, with the ith ancestor, called Ai,p, carrying the alleles from locus yi,p to locus
yi+1,p−1. Using Proposition 8, we have, for all up ≥ 1 and 1 ≤ y2,p < · · · < yup,p ≤ hp−1,

P(U·,p = up, Y2,p = y2,p, . . . , Yup,p = yup,p)
= (1− p0)

up−1p
(hp−1)−(up−1)
0 +O

(
1

(logα)2

)
.

Moreover, B � B recombinations independently affect the n individuals of the sample, so

P(U·,p = up, Ya,p = ya,p, 2 ≤ a ≤ up, 1 ≤ p ≤ n)

=
n∏
p=1

P(U·,p = up, Ya,p = ya,p, 2 ≤ a ≤ up).

Let Lp(hp) be the event that none of the neutral alleles at loci 1, . . . , hp − 1 for individual p
escaped the selective sweep because of a late label. Let Ep(hp) be the event that none of the
neutral alleles at loci 1, . . . , hp − 1 for individual p escaped the selective sweep because of an
early label. Then

P(Hr
1 ≥ h1, . . . , H

r
n ≥ hn)

= E[P(Hr
1 ≥ h1, . . . , H

r
n ≥ hn | U·,p, Y1,p, . . . , YU·,p,p, 1 ≤ p ≤ n)]

= E

[
P

( n⋂
p=1

Ep(hp) ∩Lp(hp)

∣∣∣∣ U·,p, Y1,p, . . . , YU·,p,p, 1 ≤ p ≤ n
)]

= E

[
P

( n⋂
p=1

Ep(hp)

∣∣∣∣
n⋂
p=1

Lp(hp), U·,p, Y1,p, . . . , YU·,p,p, 1 ≤ p ≤ n
)

× P

( n⋂
p=1

Lp(hp)

∣∣∣∣ U·,p, Y1,p, . . . , YU·,p,p, 1 ≤ p ≤ n
)]
. (11)

https://doi.org/10.1239/aap/1253281062 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1253281062


Selective sweep and the size of the hitchhiking set 757

For 1 ≤ i ≤ U·,p and 1 ≤ p ≤ n, the alleles between loci Yi,p and Yi+1,p − 1 do not escape
the selective sweep because of a late label if and only if no late recombination occurs between
R0 and RYi+1,p−1 for the ancestor Ai,p. Since the late recombinations occur independently on
the U ancestors, we obtain

P

(( n⋂
p=1

Lp(hp)

∣∣∣∣ U·,p, Y1,p, . . . , YU·,p,p, 1 ≤ p ≤ n
))

= E
[
pF−1

∑n
p=1

∑U·,p+1
a=2 (Ya,p−1)

]
+O

(
1

(logα)2

)
. (12)

If r = (r1, . . . , rq) is the early label (if there is no early label, r = ∅), define E(a) =
|r ∩ {1, . . . , a}| for all 1 ≤ a ≤ m. Then P(E(a) ≥ 1) is the probability that at least one early
recombination took place between R0 and Ra . We set E(0) = 0. Since, by Theorem 5,

P(S > 0 | U = u) = uγ

log(α)

u−1∑
k=1

1

k
+O

(
1

(logα)2

)

is the probability that there is at least one early recombination at a given locus, we have

P(E(a) ≥ 1 | U = u) = uaγ

log(α)

u−1∑
k=1

1

k
+O

(
1

(logα)2

)
, (13)

and, in particular, for any k ∈ {1, . . . , m},

P(E(k) ≥ 1 | E(k − 1) = 0, U = u) = uγ

log(α)

u−1∑
�=1

1

�
+O

(
1

(logα)2

)
. (14)

The total probability formula leads to

P

( n⋂
p=1

Ep(hp)

∣∣∣∣
n⋂
p=1

Lp(hp), U·,p, Y1,p, . . . , YU·,p,p, 1 ≤ p ≤ n
)

=
m∑
k=1

P

( n⋂
p=1

Ep(hp)

∣∣∣∣
n⋂
p=1

Lp(hp), U·,p, Y1,p, . . . , YU·,p,p, 1 ≤ p ≤ n,

E(k − 1) = 0, E(k) ≥ 1

)

× P

(
E(k − 1) = 0, E(k) ≥ 1

∣∣∣∣
n⋂
p=1

Lp(hp), U·,p, Y1,p, . . . , YU·,p,p, 1 ≤ p ≤ n
)

+ P

( n⋂
p=1

Ep(hp)

∣∣∣∣
n⋂
p=1

Lp(hp), U·,p, Y1,p, . . . , YU·,p,p, 1 ≤ p ≤ n, E(m) = 0

)

× P

(
E(m) = 0

∣∣∣∣
n⋂
p=1

Lp(hp), U·,p, Y1,p, . . . , YU·,p,p, 1 ≤ p ≤ n
)
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=
m∑
k=1

P(individuals Ai,p such that yi+1,p − 1 ≥ k are not impacted by the early label)

× P(E(k) ≥ 1 | E(k − 1) = 0, U·,p, Y1,p, . . . , YU·,p,p, 1 ≤ p ≤ n)
× P(E(k − 1) = 0 | U·,p, Y1,p, . . . , YU·,p,p, 1 ≤ p ≤ n)+ P(E(m) = 0).

We remark that the above individuals are not impacted by the early label if and only if the S
picked individuals are among the ancestors Ai,p which are such that Yi+1,p − 1 < k. Let �k
be the number of such individuals, and let u =∑n

p=1 up. Let q(u) = (uγ / logα)
∑u−1
�=1 (1/�).

Using (13), (14), and the convention
(
n
p

) = 0 if n < p, we obtain

P

( n⋂
p=1

Ep(hp)

∣∣∣∣
n⋂
p=1

Lp(hp), U·,p = up, Y1,p = y1,p, . . . , YU·,p,p = yup,p, 1 ≤ p ≤ n
)

=
m∑
k=1

E

[(
�k

S

)(
u

S

)−1]
uγ

logα

(u−1∑
�=1

1

�

)(
1− u(k − 1)γ

logα

u−1∑
�=1

1

�

)

+ 1−mq(u)+O

(
1

(logα)2

)

= q(u)E

[(
u

S

)−1 m∑
k=1

(
�k

S

)]
+ 1−mq(u)+O

(
1

(logα)2

)
. (15)

Theorem 2 follows from (11), (12), and (15).

6. Proof of Proposition 4

We are going to use the following notation. To any random variable ξ we associate the
random variable Pξ , whose conditional law given that ξ = λ is Poisson with parameter λ. We
have

P(|τ�b,a ∩ [Tε; T ]| = ua) = E[PX(Pψa(δ) = ua)],
P(|τB�B,a ∩ [Tε; T ]| = va) = E[PX(Pθa(δ) = va)],

where ψa(δ) = nρa
∫ T
Tε
(1−Xs) ds, θa(δ) = nρa

∫ T
Tε
Xs ds, and δ = 1/(logα)2.

We highlight the dependence on δ due to the presence of ρa . It has already been shown in
the proof of Proposition 5 that var(θa(δ)) = O((logα)−2) = O(δ). Similarly, we can check,
by the time reversibility of (Xt )0≤t≤T , that

var(ψa(δ)) ≤ var

(
nρa

∫ T

0
(1−Xs) ds

)
= var

(
nρa

∫ T

0
Xs ds

)
= O

(
1

(logα)2

)
.

If the variance was null, we would have independence of the Poisson processes. In our case, we
have in fact a mixture of Poisson processes for which the variance of the parameters is small.

The key observation is that, for all a,

ψa(δ) = ρa

ρ1
ψ(δ) = γa

γ1
ψ(δ) = caψ(δ),

where ca is independent of δ and ψ = ψ1. Similarly, θa(δ) = caθ(δ) for all a.
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Consequently, P(|τ�b,a∩[Tε, T ]| = ua) = E[PX(Pcaψ(δ) = ua)] and P(|τB�B,a∩[Tε, T ]| =
va) = E[PX(Pcaθ(δ) = va)]. Define Za = PX(Pcaψ(δ) = ua) and Yd = PX(Pcdθ(δ) = vd) for
−m + 1 ≤ a ≤ m and −m + 1 ≤ d ≤ m. Since the Poisson processes are conditionally
independent given X, we have to prove that

E

[ m∏
a=−m+1

Za

m∏
d=−m+1

Yd

]
−

m∏
a=−m+1

E[Za]
m∏

d=−m+1

E[Yd ]

= µ(u−m+1, . . . , um, v−m+1, . . . , vm)O(δ).

First step. The idea in the following calculations is to use the properties of the variances of
Za and Yd . To do this, we rewrite the above difference as a sum of differences, adding terms
just after removing them. Covariance terms then appear:

E

[ m∏
a=−m+1

Za

m∏
d=−m+1

Yd

]
−

m∏
a=−m+1

E[Za]
m∏

d=−m+1

E[Yd ]

= E

[ m∏
a=−m+1

Za

m∏
d=−m+1

Yd

]
− E

[ m∏
a=−m+1

Za

]
E

[ m∏
d=−m+1

Yd

]

+ E

[ m∏
a=−m+1

Za

]
E

[ m∏
d=−m+1

Yd

]
− E

[ m∏
a=−m+1

Za

]
E[Y−m+1]E

[ m∏
d=−m+2

Yd

]

+
m−2∑

K=−m+1

(
E

[ m∏
a=−m+1

Za

] K∏
d=−m+1

E[Yd ]E
[ m∏
d=K+1

Yd

]

− E

[ m∏
a=−m+1

Za

] K+1∏
d=−m+1

E[Yd ]E
[ m∏
d=K+2

Yd

])

+ E

[ m∏
a=−m+1

Za

] m∏
d=−m+1

E[Yd ] − E[Z−m+1]E
[ m∏
a=−m+2

Za

] m∏
d=−m+1

E[Yd ]

+
m−2∑

K=−m+1

( K∏
a=−m+1

E[Za]E
[ m∏
a=K+1

Za

] m∏
d=−m+1

E[Yd ]

−
K+1∏

a=−m+1

E[Za]E
[ m∏
a=K+2

Za

] m∏
d=−m+1

E[Yd ]
)

= cov

( m∏
a=−m+1

Za,

m∏
d=−m+1

Yd

)
+ E

[ m∏
a=−m+1

Za

]
cov

(
Y−m+1,

m∏
d=−m+2

Yd

)

+
m−2∑

K=−m+1

(
E

[ m∏
a=−m+1

Za

] K∏
d=−m+1

E[Yd ] cov

(
YK+1,

m∏
d=K+2

Yd

))

+ cov

(
Z−m+1,

m∏
a=−m+2

Za

) m∏
d=−m+1

E[Yd ]

+
m−2∑

K=−m+1

(
cov

(
ZK+1,

m∏
a=K+2

Za

) K∏
a=−m+1

E[Za]
m∏

d=−m+1

E[Yd ]
)
.
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Since, for all −m+ 1 ≤ a ≤ m and −m+ 1 ≤ d ≤ m, we have 0 ≤ Za ≤ 1 and 0 ≤ Yd ≤ 1,

∣∣∣∣ E

[ m∏
a=−m+1

Za

m∏
d=−m+1

Yd

]
−

m∏
a=−m+1

E[Za]
m∏

d=−m+1

E[Yd ]
∣∣∣∣

≤
√√√√var

( m∏
a=−m+1

Za

)
var

( m∏
d=−m+1

Yd

)
+

√√√√var(Y−m+1) var

( m∏
d=−m+2

Yd

)

+
m−2∑

K=−m+1

√√√√var(YK+1) var

( m∏
j=K+2

Yj

)
+

√√√√var(Z−m+1) var

( m∏
i=−m+2

Zi

)

+
m−2∑

K=−m+1

√√√√var(ZK+1) var

( m∏
i=K+2

Zi

)
.

Since, for alla, b ≥ 0,
√
ab ≤ max(a, b), we have to prove that, for all−m+1 ≤ K0 ≤ K ≤ m,

var(
∏K
a=K0

Za) = µ(uK0 , . . . , uK)O(δ) and var(
∏K
d=K0

Yd) = µ(vK0 , . . . , vK)O(δ) with∑∞
uK0 ,...,uK=0 µ(uK0 , . . . , uK) <∞ and

∑∞
vK0 ,...,vK=0 µ(vK0 , . . . , vK) <∞.

(To simplify, the function is still denoted by µ even though the number of parameters is
different.)

Second step. Let −m + 1 ≤ K0 ≤ K ≤ m. We are going to show that var(
∏K
a=K0

Za) =
µ(uK0 , . . . , uK)O(δ)with

∑∞
uK0 ,...,uK=0 µ(uK0 , . . . , uK) <∞. The proof is exactly the same

for
∏K
d=K0

Yd .
With Za = exp(−caψ)(caψ)ua /ua ! for all a, we obtain

var

( K∏
a=K0

Za

)
= E

[ K∏
a=K0

Z2
a

]
−

(
E

[ K∏
a=K0

Za

])2

= E

[
exp(−2(

∑K
a=K0

ca)ψ)ψ
2

∑K
a=K0

ua
∏K
a=K0

c
2ua
a∏K

a=K0
(ua !)2

]

−
(

E

[
exp(−(∑K

a=K0
ca)ψ)ψ

∑K
a=K0

ua
∏K
a=K0

c
ua
a∏K

a=K0
ua !

])2

=: A− B.

Third step. In this step we show that

B = exp(−2(
∑K
a=K0

ca)E[ψ])E(ψ)2
∑K
a=K0

ua
∏K
a=K0

c
2ua
a∏K

a=K0
(ua !)2

+ µB(uK0 , . . . , uK)O(δ).

Using an order 1 Taylor expansion between the values ψ and E[ψ] of the function

f : ψ �→ f (ψ) = exp(−(∑K
a=K0

ca)ψ)ψ
∑
ua

∏K
a=K0

c
ua
a∏K

a=K0
ua !

,
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and taking the expectation and the square of the result, there exists a ψ̃ such that |ψ̃ −E[ψ]| ≤
|ψ − E[ψ]| and

B =
(
f (E[ψ])+ E

[
(ψ − E[ψ])exp(−(∑K

a=K0
ca)ψ̃)(

∏K
a=K0

c
ua
a )∏K

a=K0
ua !

×
((
−

K∑
a=K0

ca

)
ψ̃

∑K
a=K0

ua +
( K∑
a=K0

ua

)
ψ̃

∑K
a=K0

ua−1
)])2

.

Expanding this equation and applying Schwarz’s inequality, we obtain

|B − f (E[ψ])2|

≤ 2f (E[ψ])
∣∣∣∣ E

[
(ψ − E[ψ])exp(−(∑K

a=K0
ca)ψ̃)(

∏K
a=K0

c
ua
a )∏K

a=K0
ua !

×
((
−

K∑
a=K0

ca

)
ψ̃

∑K
a=K0

ua +
( K∑
a=K0

ua

)
ψ̃

∑K
a=K0

ua−1
)]∣∣∣∣

+ E[|ψ − E[ψ]|2]E
[(

exp(−(∑K
a=K0

ca)ψ̃)(
∏K
a=K0

c
ua
a )∏K

a=K0
ua !

×
((
−

K∑
a=K0

ca

)
ψ̃

∑K
a=K0

ua +
( K∑
a=K0

ua

)
ψ̃

∑K
a=K0

ua−1
))2]

.

(16)

We can rewrite the term whose expectation of the square is the last factor above as

K∏
a=K0

(
e−caψ̃ (caψ̃)ua

ua !
)(
−

K∑
a=K0

ca

)
+

K∑
r=K0
ur>0

∏
a �=r

(
e−caψ̃ (caψ̃)ua

ua !
)

e−cr ψ̃ (cr ψ̃)ur−1

(ur − 1)! cr .

So, [
exp(−(∑K

a=K0
ca)ψ̃)(

∏K
a=K0

c
ua
a )∏K

a=K0
ua !

((
−

K∑
a=K0

ca

)
ψ̃

∑K
a=K0

ua

+
( K∑
a=K0

ua

)
ψ̃

∑K
a=K0

ua−1
)]2

≤
( K∑
a=K0

ca

)2( K∏
a=K0

βa(ua)+
K∑

r=K0
ur>0

(∏
a �=r

βa(ua)

)
βr(ur − 1)

)2

= µB,1(uK0 , . . . , uK),

where βa(u) = e−caψ̃ (caψ̃)u/u! and
∑∞
uK0 ,...,uK=0 µB,1(uK0 , . . . , uK) <∞ owing to

∞∑
u=0

βa(u) = 1.
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For the other term on the right-hand side of (16), we again use a Taylor expansion of order 1,
between ψ̃ and E[ψ] to find ψ̂ such that |ψ̂ − E[ψ]| ≤ |ψ̃ − E[ψ]| ≤ |ψ − E[ψ]| and

exp

(
−

( K∑
a=K0

ca

)
ψ̃

)( K∏
a=K0

cuaa

)
((−∑K

a=K0
ca)ψ̃

∑K
a=K0

ua + (∑K
a=K0

ua)ψ̃
∑K
a=K0

ua−1
)∏K

a=K0
ua !

= exp

(
−

( K∑
a=K0

ca

)
E[ψ]

)( K∏
a=K0

cuaa

)

× ((−
∑K
a=K0

ca)E[(ψ)
∑K
a=K0

ua ] + (∑K
a=K0

ua)E[(ψ)
∑K
a=K0

ua−1])∏K
a=K0

ua !

+ (ψ̃ − E[ψ])exp(−∑K
a=K0

caψ̂)∏K
a=K0

ua !
K∏

a=K0

cuaa

×
(( K∑

a=K0

ca

)2

ψ̂

∑K
a=K0

ua − 2

( K∑
a=K0

ca

)( K∑
a=K0

ua

)
ψ̂

∑K
a=K0

ua−1

+
( K∑
a=K0

ua

)( K∑
a=K0

ua − 1

)
ψ̂

∑K
a=K0

ua−2
)

= B1 + (ψ̃ − E[ψ])× B2.

The first term, B1, is deterministic, so its contribution to the right-hand side of (16) is
zero. Moreover, some easy but technical calculations (not shown), based on the inequality
exp(−x)xu/u! ≤ 1 for all x ≥ 0, u ∈ N, show that B2 is bounded by (

∑K
a=K0

ca)
2 +

2(
∑K
a=K0

ca)
2 + (∑K

a=K0
ca)

2 = C, with C independent of ua . Therefore, using Schwarz’s
inequality,

|B − f (E[ψ])2|
≤ 2f (E[ψ])× C × E[|ψ − E[ψ]||ψ̃ − E[ψ]|] + µB,1(uK0 , . . . , uK)×O(δ)

≤ 2f (E[ψ])× C × E[|ψ − E[ψ]|2] + µB,1(uK0 , . . . , uK)O(δ)

≤ µB(uK0 , . . . , uK)O(δ)

with
∑∞
uK0 ,...,uK=0 µB(uK0 , . . . , uK) <∞, because

f (E[ψ]) =
K∏

a=K0

β̄a(ua),

where β̄a(ua) = exp(−ci E[ψ])(ca E[ψ])ua /ua !.
Fourth step. In this step we show that

A = exp(−2(
∑K
a=K0

ca)E[ψ])E(ψ)2
∑K
a=K0

ua
∏K
a=K0

c
2ua
a∏K

a=K0
(ua !)2

+ µA(uK0 , . . . , uK)×O(δ),

where
∑∞
uK0 ,...,uK=0 µA(uK0 , . . . , uK) <∞.
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As above, we use a Taylor expansion, but now at order 2, and we compute the expectation:
there exists a ψ̃ such that |ψ̃ − E[ψ]| ≤ |ψ − E[ψ]| and

A = exp(−2(
∑K
a=K0

ca)E[ψ])E(ψ)2
∑K
a=K0

ua
∏K
a=K0

c
2ua
a∏K

a=K0
(ua !)2

+ 1

2
E

[
|ψ − E[ψ]|2 ∂2

∂ψ2

(
exp(−2(

∑K
a=K0

ca)ψ)ψ
2

∑K
a=K0

ua
∏K
a=K0

c
2ua
a∏K

a=K0
(ua !)2

)∣∣∣∣
ψ=ψ̃

]
.

We expand the last term:

∂2

∂ψ2

(
exp(−2(

∑K
a=K0

ca)ψ)ψ
2

∑K
a=K0

ua
∏K
a=K0

c
2ua
a∏K

a=K0
(ua !)2

)∣∣∣∣
ψ=ψ̃

= exp

(
−2

( K∑
a=K0

ca

)
ψ̃

)

×
(

4(
∑K
a=K0

ca)
2ψ̃

2
∑K
a=K0

ua
∏K
a=K0

c
2ua
a∏K

a=K0
(ua !)2

− 8(
∑K
a=K0

ca)(
∑K
a=K0

ua)ψ̃
2

∑K
a=K0

ua−1 ∏K
a=K0

c
2ua
a∏K

a=K0
(ua !)2

+ (2
∑K
a=K0

ua)(2(
∑K
a=K0

ua)− 1)ψ̃2
∑K
a=K0

ua−2 ∏K
a=K0

c
2ua
a∏K

a=K0
(ua !)2

)

=: A1 + A2 + A3.

If, for all a, ua = 0, then

∂2

∂ψ2

(
exp

(
−2

( K∑
a=K0

ca

)
ψ

))∣∣∣∣
ψ=ψ̃
= 4

( K∑
a=K0

ca

)2

exp

(
−2

( K∑
a=K0

ca

)
ψ̃

)
.

Again, after easy but technical calculations, we find that if there exists an a0 such that ua0 ≥ 1
then, writing βa(u) = exp(−caψ̃)(caψ̃)u/u!,
• A1 is bounded by 4(

∑K
a=K0

ca)
2 ∏K

a=K0
βa(ua),

• A2 is bounded by 8(
∑K
a=K0

ca)
2 ∏K

a=K0
βa(ua),

• A3 is bounded by

4

( K∑
a=K0

ca

)[ K∑
b=K0
ub>0

(∏
a �=b

βa(ua)

)
βb(ub − 1)cb

]
+ 2

K∑
r=K0
ur>0

(∏
a �=r

βa(ua)

)
βr(ur − 1)crca0 .

Finally,

1

2

∂2

∂ψ2

(
exp(−2(

∑K
a=K0

ca)ψ)ψ
2

∑K
a=K0

ua
∏K
a=K0

c
2ua
a∏K

a=K0
(ua !)2

)∣∣∣∣
ψ=ψ̃
≤ µA(uK0 , . . . , uK)
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with
∑∞
uK0 ,...,uK=0 µA(uK0 , . . . , uK) <∞ and

∣∣∣∣A− exp(−2(
∑K
a=K0

ca)E[ψ])E(ψ)2
∑K
a=K0

ua
∏K
a=K0

c
2ua
a∏K

a=K0
(ua !)2

∣∣∣∣
≤ µA(uK0 , . . . , uK)E[|ψ − E[ψ]|2]
= µA(uK0 , . . . , uK)×O(δ).

Combining the third and fourth steps gives the result announced in the second step, which
completes the proof.
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