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Abstract
Regression models with log-transformed dependent variables are widely used by social scientists to inves-
tigate nonlinear relationships between variables. Unfortunately, this transformation complicates the sub-
stantive interpretation of estimation results and often leads to incomplete and sometimes even misleading
interpretations. We focus on one valuable but underused method, the presentation of quantities of interest
such as expected values or first differences on the original scale of the dependent variable. The procedure
to derive these quantities differs in seemingly minor but critical aspects from the well-known procedure
based on standard linear models. To improve empirical practice, we explain the underlying problem and
develop guidelines that help researchers to derive meaningful interpretations from regression results of
models with log-transformed dependent variables.
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Regression models with log-transformed dependent variables are widely used by social scientists
to investigate nonlinear relationships between variables. Unfortunately, this transformation com-
plicates the substantive interpretation of respective estimation results. In an effort to improve
empirical practice, we clarify one popular strategy for the substantive interpretation of such
regression results—the presentation of quantities of interest such as predicted values, expected
values, or first differences on the original scale of the dependent variable (King et al., 2000).
We show that calculating such quantities together with their associated uncertainty is different
from well-known procedures that work in the case of linear regression models without log-
transformed dependent variables. Ignoring this difference can lead to erroneous communication
of regression results when the dependent variable is log-transformed.

The key point of confusion is this: a regression with a logged dependent variable estimates
E[ln(y|X )]. For a substantive interpretation we want to calculate quantities of interest and their asso-
ciateduncertaintyon the original scale of the dependent variable rather than the logged scale.However,
scholars cannot simply exponentiate expected values, standard errors, or upper and lower bounds of
the estimated confidence intervals on the logged scale in order to transform them to the original scale.
While ln(y|X ) is normally distributed, its transformation y|X back to the original scale is skewed. The
consequence is that eE[ln(y|X)] =; eln(E[y|X]) = E[y|X]. This is well known amongmethodologists (e.g.,
Manning, 1998), but often neglected by substantive scholars. To derive the desired quantities on the
original scale together with the associated uncertainty, scholars need to carefully apply appropriate
transformation formulas and simulate their respective confidence intervals correctly.
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Popular methods textbooks also acknowledge this “retransformation problem” (e.g., Cameron
and Trivedi, 2022: Section 4.2.3; see also Cameron and Trivedi, 2005: Section 20.5.2). In this
research note, we add two important aspects. Cameron and Trivedi (2022) declare that the predic-
tion eE[ln( y|X )] is a “very poor” and incorrect prediction for E[ y|X ]. We show that eE[ln( y|X )] is
indeed not a valid prediction for the mean on the original scale. However, it is still an interesting
quantity as it represents the conditional median of the log-normal distribution of y|X. Furthermore,
the solutions described in Cameron and Trivedi (2022) focus on the point estimate of the condi-
tional mean, but offer little guidance on the uncertainty that comes with those estimates. Here, we
integrate solutions to the retransformation problem of point estimates with the simulation algo-
rithm by King et al. (2000). In doing so, our solution also provides accurate confidence intervals
for E[ y|X ] and other quantities of interest on the original scale of the dependent variable.

Even though the presentation of meaningful quantities of interest became best practice for the
interpretation of a wide range of statistical models, our review of current practice shows that sub-
stantive scholars make little use of this approach when interpreting results from regression mod-
els with logged dependent variables. We base this conclusion on a content analysis of all research
articles published in the American Political Science Review and American Journal of Political
Science between 2015 and 2020. In total, we identify 39 articles in which scholars report at
least one statistical model with a log-transformed dependent variable.

We identify three main styles of interpretation.1 First, an “old school” strategy that uses the
mere direction (positive/negative) and statistical significance of regression coefficients for inter-
pretation (in 6 out of 39 articles). Those articles provide no substantive interpretation of the
respective results and their uncertainty. Second, the most popular practice is the interpretation
of regression coefficients as “percent increase” of the dependent variable (used in 31 out of 39
articles). While this practice is not incorrect, we see an important shortcoming. Any concrete
interpretation of a “percent increase” does not provide us with an adequate sense of the effect’s
absolute magnitude. Furthermore, scholars rarely present the uncertainty associated with a “per-
cent increase.” Finally, there is an interpretation of regression results through the presentation of
quantities of interest such as predicted values, expected values, or first differences (in 13 out of 39
articles). This is the one we recommend if done correctly and effectively. Surprisingly, few authors
provide uncertainty assessments for their quantities of interest (only 3 of 13 quantities are pre-
sented with uncertainty estimates). Because there is no reason why scholars should not be inter-
ested in communicating uncertainty on the original scale of the dependent variable, we interpret
this result as stemming from a lack of guidance in how to correctly derive quantities of interest
together with appropriate confidence intervals on the original scale when the dependent variable
is log-transformed.

In this research note, we provide guidance on how substantive scholars can improve their
interpretation of regression results when the dependent variable is logged. We show how to cal-
culate quantities of interest on the original scale even when the dependent variable is log-
transformed, and how to derive respective confidence intervals using simulations.
Furthermore, we highlight how the nonlinear nature of the log-transformation has important
consequences for the calculation of first differences and how the presentation of first differences
is especially useful for the interpretation of estimation results from models that include inter-
action terms. We illustrate the utility of our approach with a reanalysis of a recent study on execu-
tive appointment processes in the USA.

1. Calculating quantities of interest when the dependent variable is logged
To calculate quantities of interest on the original scale for models with logged dependent vari-
ables, the workflow is to log-transform the dependent variable y, estimate the regression model

1The categories are not mutually exclusive. A list of all articles can be found in the Supporting information (SI.1).
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with ln( y) as dependent variable, and then use estimation results to calculate quantities of inter-
est, such as E[ln( y)], although substantively rarely meaningful. To get substantively meaningful
quantities, one needs to transform those quantities back to the variable’s original scale to get E[ y].
While the transformation in the first step is fairly simple—we take the natural log of each value of
y—the back transformation requires careful thinking.

The back transformation is not straightforward because it maps ln( y) back to y, which is
skewed log-normally distributed conditional on the model. For y = eln (y) = eXb+e one can
show that E[y] = E[eln (y)] = eE[ ln (y)] · E[ee] = eE[ ln (y)]+(1/2)ŝ2

. eE[ ln (y)] (e.g., Manning, 1998).
Therefore, we cannot simply exponentiate E[ln( y)] to obtain E[ y]. Table 1 provides an overview
of the correct transformation formulas: if we are interested in E[ y], we need to transform the esti-
mates on the log-scale with E[y] = eE[ ln (y)]+(1/2)ŝ2

. But eE[ln( y)] is an interesting quantity as well,
as this represents the median of the resulting log-normal distribution. Both the mean and the
median of y can be interesting and reasonable quantities to present, but researchers must be
aware of the difference and should not confuse one with the other when interpreting results.
For unimodal, continuous skewed distributions, such as the log-normal distributed y, the median
is often considered to be a more typical value than the mean (von Hippel, 2005).

To develop a deeper intuition and to illustrate the consequences of choosing the mean or the
median as a typical value in the context of linear models, we walk through a motivating example
introduced by Rainey (2017). Consider the following data generating process (DGP):

ln (Income) = bcons + bedu Education+ e, and e � N(0, s2) (1)

The true values of the coefficients are given by βcons = 2.5, βedu = 0.1, and σ2 = 1. The challenge
with this DGP is that the dependent variable is log-transformed. Scholars, however, are usually
interested in interpreting the results on the original scale of the dependent variable because we
are interested in the results in dollars rather than ln(dollar). Suppose that we are interested in
a typical income for a person with 20 years of education given our model. How can we calculate
such a typical value of income in dollars, even if the dependent variable is income in ln(dollar)?

First, we need to choose whether we want to present the median or mean as our typical value.
Both can be interesting. To calculate a point estimate of the median income conditional on
our scenario of 20 years of education, we get Med(Yc) = e2.5+0.1×20 = e4.5≈ 90.06. If we are
interested in a point estimate of the mean income conditional on 20 years of education, we
get E(Yc) = e2.5+0.1×20+1/2×1 = e5≈ 148.41. This shows that the mean and median are two very dis-
tinct quantities.2

Table 1. Transformation formulas for point estimates of common quantities of interest, and their approximated
distributions to construct correct confidence intervals by using α/2 and 1− α/2 percentiles

Quantity of interest Point estimate Simulated confidence interval: use Qa
2, 1−a

2
(·)

Variance σ2 ŝ2 s̃2 � Inv−G( N−k
2 , ŝ2(N−k)

2 )

Regression coefficients β b̂ b̃ � MVN(b̂, s̃2(X ′X)−1)

Expected value E(Yc) eXc b̂+
1
2ŝ

2
eXc b̃+

1
2s̃

2

Median value Med(Yc) eXc b̂ eXc b̃

First difference E(Yc1 )− E(Yc2 ) eXc1 b̂+1
2ŝ

2 − eXc2 b̂+1
2ŝ

2
eXc1 b̃+

1
2s̃

2 − eXc2 b̃+
1
2s̃

2

First difference Med(Yc1 )− Med(Yc2 ) eXc1 b̂ − eXc2 b̂ eXc1 b̃ − eXc2 b̃

2The sampling distributions of these estimators for ̂Med(Yc) = eXcb̂ and ̂E(Yc) = eXcb̂+(1/2)ŝ2
are right skewed as well and

thus the estimators are biased. Rainey (2017) describes this bias as transformation induced bias.
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2. Simulating confidence intervals when the dependent variable is logged
Every estimation entails uncertainty. Transparent communication of this uncertainty is fundamen-
tal to scientific practice. In this section, we show how the simulation approach by King et al. (2000)
can be used to get confidence intervals for both, the median and mean of y on the original scale.
Figure 1 provides the algorithm to simulate confidence intervals for the mean when the dependent
variable is not transformed (left column), the median when the dependent variable is log-
transformed (center column), and the mean when the dependent variable is log-transformed
(right column). Consider the workflow for models with untransformed dependent variables first.

The procedure consists of four steps. In step 1 we approximate the distributions of the esti-
mated coefficients to account for estimation uncertainty.3 We start by drawing s̃2 from an
inverse-gamma distribution, Inv−G((N − k)/2, (ŝ2(N − k))/2), where ŝ2 is the estimated vari-
ance, N is the number of observations, and k is the number of coefficients (b̂ ). Next, we approxi-
mate the distribution of b̂ by drawing simulations b̃ from the multivariate normal distribution

Figure 1. Algorithm to simulate confidence intervals (King et al., 2000) when the dependent variable is untransformed (left
column), for the median when the dependent variable is logged (center column), and for the mean when the dependent
variable is logged (right column).

3The simulation approach follows an informal Bayesian logic. When we write that we simulate the distribution of a quan-
tity, then this means that we draw from an informal posterior distribution of that quantity.
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MVN(b̂ , s̃2(X′X)−1). In step 2 we choose our scenario of interest, i.e., we specify covariate values
Xc that are held constant during simulation. In step 3 we calculate Xcb̃, the linear combination of
the simulations b̃ and the chosen values of the covariates (Xc) that define the scenario of interest.
This results in a simulated distribution Ẽ(Yc) of expected values of Y conditional on the specified
scenario Xc. In step 4 we get a (1− a)× 100%-confidence interval by summarizing the distribu-
tion with the α/2 and 1− α/2 percentiles.

Now consider the center column in Figure 1 where we outline the simulation procedure for a
confidence interval for the conditional median of a model with a logged dependent variable.
Using the example in Equation 1, suppose that we are interested in the median income in dollars
of a person with 20 years of education. Steps 1–3 do not differ from the standard procedure: we
draw simulations of the model coefficients (b̃ and s̃2), we set Education = 20, and compute the
linear combination of the simulated coefficients and the scenario of interest. This yields
Ẽ( ln (Yc)), a simulated distribution of ln (Income) conditional on 20 years of education. To
get confidence intervals for the median in dollars, we exponentiate the distribution of
Ẽ( ln (Yc)) as shown in the transformation step in Figure 1. Step 4 then is the same as before.
Note that the resulting distribution is skewed and the confidence intervals will not be symmetric
around the point estimate from the previous section.4

In the right column of Figure 1, we show how to get confidence intervals for the mean, e.g., the
mean income in dollars of a person with 20 years of education. The procedure mostly remains the
same with the exception of step 3 where we need to add (1/2)s̃2 to Xcb̃. The derivation of con-
fidence intervals for first differences follows equivalently (see Table 1 for an overview).5

3. First-differences and interaction terms with log-transformed dependent variables
We point out two additional issues that arise when presenting quantities of interest on the ori-
ginal scale from regression models with log-transformed dependent variables. First, the magni-
tude of a first difference based on regression models with log-transformed dependent variables
depends on all covariates in the scenario, even those that are held constant. This is different
for regular linear regression models where the point estimate of the first difference does not
depend on the values of covariates that are held constant across scenarios.

Second, if an interaction term is present in the regression model, e.g.,
ln (y)= b0 +b1D+ b2X+b3(D×X)+ e, then the first difference E( y|D = 1, X )− E( y|D = 0, X )
can increase at higher levels of X, even if β3 is negative (and vice versa). This is different for regu-
lar linear models where the first difference is given by the marginal effect of D, i.e., β1 + β3X, and
changes as a linear function of X at a rate of β3. Figure 2 demonstrates this notion.

For applied work, these peculiarities show the benefit of presenting quantities of interest of regres-
sion models with log-transformed dependent variables on the original scale. At the same time they
alert researchers to choose and justify all values in their scenarios carefully. An insensitive selection of
any of a model’s covariate values may artificially inflate or deflate the size of a first difference.

4. Application—a reanalysis of Hollibaugh and Rothenberg (2018)
To demonstrate the utility of our approach, we reanalyze the results of a recently published study
by Hollibaugh and Rothenberg (2018). The study investigates factors that influence executive
appointment processes in the US context. The authors, among other things, study the relation
between agency dependence and appointee ideology. We are specifically interested in one of

4This is also the reason why taking the average of the simulations is not a good strategy to get a point estimate. As the
distribution is right skewed, continuous, and unimodal, the mean of this distribution will be biased upward.

5We show that the confidence intervals calculated with this procedure have the correct coverage through a Monte Carlo
simulation we present in the Supporting information (SI.2).
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Figure 2. Quantities of interest with an interaction effect. The DGP follows ln (Y) = b0 + b1D+ b2X + b3(D× X)+ e with β0 = 5, β1 =−5.5, β2 = 0.5, β3 = 0.4, and e � N(0, 1.52). As X
increases, the first difference on the log-scale of Y decreases, but it increases on the original scale of Y.
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their hypotheses: the higher the independence of the decision-maker in the targeted agency, the
higher the ideological divergence between the president and a nominee.6

To test this hypothesis, Hollibaugh and Rothenberg (2018) estimate linear models. Their
dependent variable is the natural log of the ideological divergence between a nominee and the
president (Nominee-President Divergence). The key independent variable is Agency Decision
Maker Independence. In support of the hypothesis, Hollibaugh and Rothenberg (2018) find
that Agency Decision Maker Independence is positively associated with the divergence between
the president and the nominee.

To facilitate the interpretation of this effect, Hollibaugh and Rothenberg (2018) report
“expected values” of ideological divergence between the president and the nominee from low
to high agency decision-maker independence. All binary variables are set to zero, and following
an average case approach, all covariate values of continuous variables to their means. We replicate
the analysis following our guidelines and present both conditional mean and median values of the
dependent variable in Figure 3.7 Our reanalysis reveals two things: first, researchers are not always
aware of the difference between conditional mean and conditional median values of y. What
Hollibaugh and Rothenberg (2018) present as expected values are actually conditional median
values. Second, this difference is not trivial. Figure 3 demonstrates that the conditional mean

Figure 3. Conditional mean and median values of nominee-president ideological divergence and first difference between
minimum and maximum values of the independent variable, conditional on two different sets of covariate values.

6This relates to hypotheses 6 in the original article. We refer interested readers to the original article for more details on the
theoretical arguments behind this hypothesis.

7Hollibaugh and Rothenberg (2018) z-transform the independent variables and transform simulated values to the empir-
ical percentile scale of the dependent variable.
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and the conditional median of y are two very distinct quantities. The conditional mean values are
considerably larger than conditional median values.

Next, we illustrate how the selection of covariate values matters for first differences. The right
panel of Figure 3 presents two first differences. Both estimates show a first difference of the
median between the minimum and maximum values of agency decision-maker independence,
but we alternated the values of the covariates that are held constant. One first difference is
based on an average case scenario (as in the left panel of Figure 3), for the other scenario we
set all these covariates to either their minimum or maximum. This would not affect the magni-
tude of the first difference in regular linear models, but it clearly affects the magnitude in this case
where the dependent variable is log-transformed. The first difference amounts to 0.075 for the
average case setting, but it roughly doubles to 0.156 if we fix the control variables at more extreme
values.

5. Conclusion
We have shown how to apply appropriate transformation formulas to estimated coefficients of
linear regression models with logged dependent variables in order derive various quantities of
interest on the original scale, and how to derive respective confidence intervals using simulations.
We conclude with a set of four recommendations that researchers should keep in mind when
improving the interpretation of such models.

First, it makes a difference whether conditional mean or median values are presented. Unless
there is a special theoretical interest in only one of both quantities, our advice is to present both
the conditional mean and the conditional median. Second, point estimates of conditional mean
and median values should be calculated directly based on the point estimates of the regression
model using appropriate transformation formulas (see Table 1). The simulation method in com-
bination with the same formulas allows to derive respective confidence intervals. Third, even
values that are held constant across simulations, typically values of control variables, are influen-
tial for quantities of interest on the original scale. These values have to be chosen and commu-
nicated transparently. Typical strategies are to set those variables to their means, their medians, or
to observed values (Hanmer and Kalkan, 2013). Fourth, if the model includes one or more inter-
action terms, researchers should refrain from interpreting marginal effects on the logged scale.
Larger marginal effects on the logged scale do not necessarily reflect larger marginal effects on
the original scale. In fact, the opposite may be true as we have shown. To interpret respective
results, our advice is to always calculate first differences on the original scale of the dependent
variable.

6. Software
A software implementation of the proposed method is available as an open-source R package,
simloglm, at https://github.com/mneunhoe/simloglm. We provide a code example for using the
package, as well as calculating all mentioned quantities of interest and confidence intervals by
hand in R in the Supporting information (SI.3).

Supplementary material. The supplementary material for this article can be found at https://doi.org/10.1017/psrm.2023.29 .
To obtain replication material for this article, https://doi.org/10.7910/DVN/KZWKT6
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