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Precession driven flows are of great interest for both, industrial and geophysical
applications. While cylindrical, spherical and spheroidal geometries have been
investigated in great detail, the numerically and theoretically more challenging case of a
non-axisymmetric cavity has received less attention. We report experimental results on the
flows in a precessing triaxial ellipsoid, with a focus on the base flow of uniform vorticity,
which we show to be in good agreement with existing theoretical models. As predicted,
the uniform vorticity component exhibits two branches of solutions leading to a hysteresis
cycle as a function of the Poincaré number. The first branch is observed at low forcing and
characterized by large amplitude of the total fluid rotation and a moderate tilt angle of the
fluid rotation axis. In contrast, the second branch displays only a moderate fluid rotation
and a large tilt angle of the fluid rotation axis, which tends to align with the precession
axis. In addition, we observe the occurrence of parametric instabilities early in the first
branch, which saturate in the second branch, where we observe the same order of the
kinetic energy in the base flow and instabilities.
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1. Introduction

The term precession denotes the slow, gyroscopic motion of a spinning object, resulting
from a torque that tends to tilt the object’s rotation axis. Precessing, fluid-filled containers
are found in industrial contexts, for example as soft mixers in bio-engineering (Meunier
2020) or in spacecraft with a liquid payload, for which minimization of mechanical energy
dissipation is crucial for stability (Vanyo & Likins 1971). In the context of geo- and
astrophysical fluid dynamics, it has been suggested that precession driven flows could act
as a stirring mechanism for planetary dynamos (Bullard 1949; Malkus 1968) or could be
responsible for power dissipation in liquid planetary cores and subsurface oceans (Yoder
& Hutchison 1981; Williams ef al. 2001; Lin, Marti & Noir 2015; Cébron et al. 2019).
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The problem of flows inside a precessing spheroidal container has been studied
theoretically since the end of the 19th century, starting with the seminal works of Hough
(1895), Sloudsky (1895) and Poincaré (1910). Under the assumption that the vorticity is
uniform and steady in the frame of precession, they derived an inviscid solution in the form
of a tilted solid body rotation, which is complemented by a gradient flow. This solution is
often referred to as Poincaré flow and is closely related to the so-called spin-over mode,
a solid body rotation around an equatorial axis. Later, viscosity was reintroduced through
the viscous torque in the boundary layer (Busse 1968; Noir et al. 2003; Kida 2020) and
the main characteristics of the viscous solutions have been confirmed experimentally and
numerically for spherical and spheroidal cavities (e.g. Vanyo et al. 1995; Noir et al. 2001a;
Noir, Jault & Cardin 20015; Tilgner & Busse 2001; Noir ef al. 2003). While the viscous
solution in the sphere is always unique, in spheroids two stable solutions may be found over
a finite range of precession rates, leading to a hysteresis cycle (Noir et al. 2003; Cébron
2015; Nobili er al. 2020).

In non-axisymmetric, i.e. triaxial, ellipsoids, the flow of uniform vorticity has been
investigated theoretically and numerically by Noir & Cébron (2013) and experimentally
and numerically by Cebron, Le Bars & Meunier (2010). The former treat the true
geophysical problem of a solid container with a fixed shape in the rotating frame, while
the latter consider a deformable container with a shape fixed in the frame of precession,
yet both approaches share similar dynamics. As for the spheroidal geometry, multiple
solutions are expected over a range of precession rates, but have not yet been observed
either experimentally or numerically. In contrast to the solutions in an axisymmetric
spheroid, the uniform vorticity flow in a triaxial ellipsoid is not steady, which renders
the analytical treatment more cumbersome.

The base flow of uniform vorticity is prone to instabilities, in both the boundary
layer and the bulk of the fluid. Instabilities of the Ekman layer are observed when
the local Reynolds number Rej;, defined on the boundary layer thickness and a proxy
for the free-stream velocity, exceeds a critical value, typically between 50 and 100
(Lorenzani & Tilgner 2001). Also, Sous, Sommeria & Boyer (2013) derived and validated
experimentally the onset criteria for the primary instability (Rep; 2 55) and the subsequent
transition to turbulence (Rep; = 150) for a steady Ekman layer. However, more recently
Buffett (2021) argued that a boundary layer driven by precession should be treated as a time
dependent Ekman layer, for which their numerical simulations yield turbulence only above
Rep;, > 500. Concerning bulk instabilities, the irrotational component of the base flow and
its viscous correction associated with the critical latitude in the boundary layer can drive
bulk parametric instabilities, eventually leading to space filling turbulence (Malkus 1968;
Kerswell 1993; Goto et al. 2007; Lin et al. 2015; Kida 2020). However, instabilities due
to the elliptical distortion of the Poincaré solution (uniform vorticity base flow) are also
observed in the purely inviscid case, as reported by Roberts & Wu (2011). Finally, Giesecke
et al. (2019) recently proposed that transition to turbulence in a precessing cylinder may
be triggered by a centrifugal instability of the background zonal flow profile. While there
is now a considerable understanding of the destabilizing mechanisms, the saturation of
those instabilities and the associated kinetic energy remain poorly understood, in particular
the fundamental nature of the turbulence, quasi-geostrophic or three-dimensional wave
turbulence, remains unpredictable for a given range of parameters (Le Reun, Favier & Le
Bars 2019).

Here, we experimentally investigate the flows driven in a precessing triaxial ellipsoid
for which we present the theoretical foundations in § 2. Using the experimental device
introduced in § 3, we first investigate the uniform vorticity component of the flow (§ 4).
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Figure 1. (a) Sketch of the experimental device. (b) Close-up photography of the container and definition of
the coordinate system. The x-axis is pointing towards the reader.

In the second part we focus on instabilities (§5) paying particular attention to the
distribution of the kinetic energy between base flow and instabilities. Finally, we draw
some conclusion on the applicability of our findings for planetary core dynamics and
industrial applications in § 6.

2. Problem formulation

2.1. Governing equations and uniform vorticity base flow
Let us consider a precessing triaxial ellipsoid with semi-major axes a = b # c, filled with
an incompressible fluid of uniform density p and kinematic viscosity v. The ellipsoidal
cavity is spinning around the c-axis as 25 = k2, which itself precess as 2, = IAcP.Q
fixed in the inertial frame of reference (see figure 1a). Here, IAcs denotes the rotation vector
and IAcp the precession vector. For the description of the problem we choose a right-handed
Cartesian coordinate system in which the z-axis is always aligned with the spin axis along
c. Using 2 1" as the time scale and R = (abc)!/? as the length scale, the dimensionless
Navier—Stokes equations in the frame of the container are

3 . . .
a—': +2(ks + Poky) x u+u+Vu = —Vp — Po(ky x ks) x r+ EAu, @.1)

V.eu=0, 2.2)

where u is the flow velocity and p is the reduced pressure including centrifugal forces.
The two non-dimensional numbers in (2.1), are the Poincaré number Po = §2,,/£2,, that
measures the strength of the precession forcing and the classical Ekman number E =
v/ 2,R?, with v the kinematic viscosity.

Following Hough (1895), Sloudsky (1895) and Poincaré (1910), let us search for a
solution in the form of a uniform vorticity component written in the frame of the container
as

U=w0xr+Vy, (2.3)
where @ x r represents a rigid body rotation, with r the position vector (x, y, z) and @

the fluid rotation vector (@y, @y, ;) and Vi the irrotational stretching term necessary
to enforce the non-penetrating boundary condition u - 1 = 0 at the wall of the container.
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Using a set of coordinates fixed in the frame attached to the container with X along a, y
along b and z along c, the velocity field (2.3) is expressed as

T »
a2 + 2 “a? + 27 '
U2 2 25)
Y Za2+b2 x62+b2’ ’
¢ T2 4 2 Ya2 + 27 '

Substituting this ansatz in (2.1), Noir & Cébron (2013) derived the equations governing
the evolution of the three components of the rotation vector @ in the frame of reference
attached to the container, which we present here for a triaxial ellipsoid precessing at an
angle of 90°:

Owy 2a? 2a? L P -2 2a?
= — W, (4] Sln
ot a2+ a2+pr] Y a? b2
2a? .
ma)y + Po sm(t) + ﬁFx, (27)
dawy 2b? 2b? + Pocost 12— 2
— = — W 0 COS
ot a2+b 42| F 2"
2b?
TP re ——5x + Pocos(t) + LT, (2.8)
dw; 2¢% 2¢? 2¢?
e il 2id Wywy —Pocos(t)—a2 +C2a)y
2¢2
— Po s1n(t) 5wy + LI, (2.9)
242
where I’ is the viscous torque and E is a matrix accounting for the geometry of the cavity
b2 2
+c 0 0
b2c? s
15
atc o . (2.10)
167 a2C2
0 0 e

Assuming a laminar Ekman boundary layer, Busse (1968), Noir et al. (2003) and Noir &
Cébron (2013) derived expressions for the viscous torque in the asymptotic limit of small
Ekman and Poincaré numbers. The viscous torque arises from the differential rotation
between the fluid and the container, @, which we decompose into an axial (dw,y) and
equatorial component (8w, ) with respect to the fluid rotation axis. The two components

are given by
2 —k
Swax = (75 . 9) 2, (2.11)
80y = 2 — ky — 804, (2.12)
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where we have introduced
2 =w+k,, (2.13)

the fluid rotation vector as seen from the frame of precession, i.e. the turntable.

Assuming that the viscous torque acting on the fluid prevents the growth of a spin-over
mode from the equatorial differential rotation and the spin-up of the fluid from the
axial differential rotation, Noir & Cébron (2013) derived the following expression for the
viscous term:

Q. L2 2.
cr=vEQ[A| @ |[+2 -2 |+eu-1)]2]. (2.14)
.21 21 o Q

Z Z

where A, and A; are the real and imaginary parts of the viscous correction to the
spin-over mode and Ag,, represents a spatially integrated decay rate of the axial rotation.
Furthermore, we have introduced

2 - Q.

R
a measure of the no spin-up condition introduced by Noir et al. (2003). We refer to
expression (2.14) as the full damping.

In the limit ¢ < w/£2, when the axial torque is negligible in comparison with the
equatorial one, we may neglect the last term in (2.14), to obtain

&= (2.15)

Q. L2
cr=vee|a| 2 |[+2|-2.]]. (2.16)
.21 21 o
Z

which is equivalent to the expression of the viscous torque in a spheroid from Busse (1968)
and Noir et al. (2003). We refer to (2.16) as the reduced damping.

While the inviscid left-hand side of (2.7)—(2.9) is exact, all the assumptions are
contained in the parameterization of the viscous effects, and it is thus important to make
a few remarks regarding their range of validity: first, the approximation of the torque by
the decay of spin-over and axial spin-up is only valid for a laminar boundary layer, and
we shall later see that this assumption is satisfied in our experiments. Additionally, the
parameters for the viscous correction of the spin-over mode A, and A; can be calculated
only when the fluid rotation axis is aligned with one of the principal axes of the ellipsoid
(Vantieghem 2014). Finally, to the best of our knowledge, there is no analytical expression
of Agyp in a non-axisymmetric ellipsoid and one has to rely on experimental estimates for
this parameter. In conclusion, we note that, while the model will prove to be robust for
small to moderate values of Po, we should keep in mind these limitations when discussing
experiments with a large differential rotation between the fluid and the container or with a
large tilt of the fluid rotation axis. In the remainder of this article, we will use 4, = —2.55
and 4; = 0.79 as calculated from Vantieghem (2014) for the geometry of our ellipsoid and
for A5, we use an experimentally determined value of —2.50, which is explained in further
detail in Appendix A.

2.2. Numerical integration

In contrast to the spheroidal geometry, the governing equations for a non-axisymmetric
ellipsoid are not in the form of an implicit equation and we must solve the system by
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Figure 2. Time averaged amplitude of the fluid rotation vector from the numerical integration of (2.7)—(2.9):
two distinct branches of solution are identified and bi-stability (grey) is observed for 0.075 £ 0.005 < Po <

0.23 £0.005. The colours represent the number of randomly selected initial conditions converging to the
respective solution. The values of a, b and ¢ are the exact same ones as in the experiment.

time stepping the system of ordinary differential equations (ODEs) (2.7)-(2.9). To capture
potential multiple solutions of the system, we randomly select 300 initial rotation vectors
by uniformly sampling the three variables (w, 8, ¢) in the range ([0, 1], [0, 2], [0, 27])
from which we construct the initial rotation vectors as w, = wsin(f) cos(¢), wy =
wsin(0) sin(¢) and w, = w? cos(9)). Starting from the respective initial condition, we
numerically integrate the (2.7)—(2.9) for 30 viscous spin-up times. Figure 2 represents
the time averaged amplitude of the fluid rotation vector (|w|); at the same conditions as
our experiment. A more detailed discussion of the time evolution of the uniform vorticity
in our numerical model can be found in Appendix B. In a range from Po! = 0.075 4 0.005
to Po% = 0.23 £ 0.005, the system admits two solutions at each Po, as previously reported
for axisymmetric spheroids (Cébron 2015; Nobili et al. 2020).

3. Experimental set-up and flow measurements
3.1. Experimental set-up

The experimental set-up is sketched in figure 1(a). An ellipsoidal acrylic container of
semi-major axes @ = 0.125 m, b = 0.104 m and ¢ = 0.078 m is rotating around c using
a servomotor (type: SGMGV-09DDAGF, produced by YASKAWA) and a belt driving

system. The rotation rate £2; is set to 1.57 rad s~!. To create a precessional forcing, the
rotating tank and the drive system are mounted on a turntable driven by another belt system
connected to a second servomotor (type: SGMGH-30DCAG61, produced by YASKAWA).

The precession rate §2, can be varied between 0.018 and 3.674 rad s~! in increments of
0.018 rad s~!. The angle between 2 p and L2y, i.e. the precession angle, is fixed to 90°. The
container is completely filled with water at room temperature with a kinematic viscosity
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uj X y Z Wi
Uy 1.25 0.47 0 w;
iy 0 1 0.25 Wy
U, 0.47 0 0.78 wy

Table 1. Position of the UDV probes (centre of the front lens), measured velocity components (z;) and
associated component of the fluid rotation vector (w;). All coordinates are non-dimensional.

v=1x10"% m?> s~!. The experimental values of the non-dimensional parameters
introduced above are 6.3 x 10> for the Ekman number and the Poincaré number is varied
between 0.035 and 0.33.

3.2. Flow measurements

We measure the flow inside the ellipsoid with ultrasonic Doppler velocimetry (UDV) from
which we recover velocity profiles along selected chords in the fluid. To that end, the fluid
is seeded with a mixture of 2AP1 Particles produced by Griltex, of sizes 50 wm (60 % by
weight) and 80 jum (40 % by weight). The density of the tracer particles is 1.02 g cm™>.
We use a DOP4010 system produced by Signal Processing SA,1073 Savigny, Switzerland,
which allows us to simultaneously measure three velocity profiles at a sampling rate up to
12 Hz on each probe. Each profile consists of ~500 individual sampling points along the
chord with a spatial resolution of 0.5 mm.

The probe location has been carefully chosen to allow a direct measurement of the
uniform vorticity component (2.4)—(2.6). The precise locations of the transducers are
presented in table 1. To illustrate the concept of our determination of the fluid rotation
wy, wy and w;, let us consider the probe measuring uy, i.e. probe 1 in figure 1(b), located
at y = 0 and z = —0.47 (in dimensionless units) and measuring in direction of x. In the
direction of measurement, the uniform vorticity component U, is constant along the chord
and takes the value U, = a)y(2a2) / (a2 + cz)(—0.47). Hence, we can use the velocity
average along the chord (uy),, where (), denotes the spatial average along x, as a proxy
for wy. Placing two additional probes in the same fashion, we can reconstruct all three
components of @ as a function of time. In the rest of the paper, unless explicitly stated, all
velocities are in dimensionless units, i.e. re-scaled by $24R.

Figure 3(a) illustrates a typical measurement of the velocity components uy, u, and
u; and the corresponding time series of the deduced uniform vorticity at Po = 0.05
(figure 3b). At leading order, the velocity is constant along the profile, in agreement with
the uniform vorticity assumption. The uniform vorticity is dominated by the equatorial
components wy and wy, which are oscillating at §2;, while the axial component w, is
characterized by a small, steady retrograde rotation and a oscillation at 2£2;.

3.3. Experimental protocol

We apply the following experimental protocol: the container is set into rotation at £2
and we wait until the fluid co-rotates with the container, which is indicated by a vanishing
velocity on all UDV channels. Subsequently, we start the motion of the turntable at £2,, and
wait until a statistically steady state is reached. We then start our measurements collecting
3000 samples on each channel at a sampling frequency of 12 Hz. Finally, we change the
precession rate to the next value of §2,, and wait again until the fluid motion at the increased
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Figure 3. Typical velocity measurements in the experiment: (a) velocity profiles at Po = 0.05. (b) Computing
the spatial average along each profile allows us to reconstruct the three components of the uniform vorticity
as a function of time. The error bars display the standard deviation of the spatial average. The Ekman number
is 6.30 x 1073 and x, y and z in (a) are made dimensionless by R and the time in (b) is made dimensionless by
£2s.

precession rate is in a steady state. We perform two sets of experiments: in the first one we
subsequently increase Po from Po = 0.035 to Po = 0.33, in the second set of experiments
we start from Po = 0.33 and decrease the precession rate down to Po = 0.035.

4. The uniform vorticity
4.1. Overview of the results

We start with a discussion of the uniform vorticity component and define four important
quantities that characterize the rotation of the fluid: first, the time averaged total rotation
of the fluid (£2);, second, the time averaged differential rotation between the fluid and the
container, (dw);, third, the time average rotation of the fluid along the spin axis (§2;); and,
finally, the time averaged tilt angle of the fluid rotation axis with respect to the container
axis, (0);. These quantities are defined in the frame of precession, i.e. viewed from the
turntable, and can be obtained from our measurements of wy, wy and w; as follows:

(2), = <\/a)§ +0? + (0, + D), (4.1)
(bo) = (o + o + w2)y, 4.2)
(£2:)r = (w; + 1)y, (4.3)

9), = §2: 4.4

0), = <arccos 5>[, 4.4)

where (); denotes the average in time. The experimental data for the four quantities as
a function of Po are presented in figure 4, together with the prediction from the model
(2.7)—~(2.9), using the full damping (blue curve) and the reduced damping (red curve). As
we have seen above, the model predicts two distinct branches of solutions in the range
Po! =0.07540.005 < P, < Po?> = 0.23 4 0.005, indicated by the grey area. We call
branch 1 the solutions characterized by a large total fluid rotation, a small differential
rotation, a large axial rotation and a moderate tilt angle. In contrast, the solutions of
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Figure 4. Fluid rotation viewed from the precession frame: (a) total fluid rotation. (b) Differential rotation
(6w), between the fluid and the container. (¢) Axial component of rotation of the fluid. (d) Angle between the
fluid and container axis of rotation. The points represent the experimental data, circles when increasing Po,
triangles when deceasing Po. The solid and dashed lines represent the model branches 1 and 2, respectively, for
the full damping (blue) and the reduced damping (red). The shaded area represents the range of Po for which the
model accepts two solutions. The two bounds of this region are Po! = 0.075 + 0.005 and Po? = 0.23 + 0.005.
The arrows materialize the experimental transition from branch 1 to branch 2 and vice versa. All experiments
are performed at E = 6.3 x 107> and the parameters for the damping in the model are 1, = —2.55, A; = 0.79
and Ay, = —2.50. The error bars are representative of the standard deviation of the displayed quantities over
the entire time series.

branch 2 have a small total fluid rotation, a large differential rotation of O(1), a vanishing
axial rotation and a large tilt angle.

Experimentally, as we start from the smallest values in Po &~ 0.03 and subsequently
increase Po between the individual experiments, we follow the solutions of branch 1
until a critical value Pogxp = 0.18 £ 0.006 is reached. At this point, the uniform vorticity
component in the experiment transits to branch 2, where it remains for all larger Po

values. In contrast, when decreasing Po after starting from large values Po ~ 0.33, the

experimental data follow branch 2 down to Poéxp = 0.11 £ 0.006, from where they transit

to branch 1. Outside of the hysteresis region ranging from Polxp to Po?,, the measured
quantities for increasing and decreasing Po overlap almost perfectly. Comparing the model
with the experimental data, we observe a very good agreement in branch 1 for all four
quantities. However, in branch 2 the model systematically underestimates the differential
rotation and the tilt of the fluid rotation axis. Moreover, the model predicts a small positive
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axial rotation whereas we observe negative values in the experiment. Nevertheless, it is
fair to say that the model still captures the fundamental properties of this second branch
correctly.

We notice that Poéxp and Pogxp in the experiment do not match exactly the boundaries
of the hysteresis domain of the model. For both, increasing and decreasing Po, the
experimental data transit to the other branch before the end of the hysteresis range in the
model. As we shall see later, both transitions occur in a range of Po where fully developed
instabilities are observed, with amplitudes comparable to that of the underlying uniform
vorticity flow. In such conditions it is likely that finite amplitude perturbations may trigger
early transitions, in comparison with the uniform vorticity model, which is free of any
perturbations or instabilities by construction. Alternatively, since the fluid rotation is no
longer close to the container axis, it may be argued that the asymptotic values of the
damping coefficients A,, A; and A, are not representative of the boundary layer dynamics
in this range of Po. In Appendix C we consider finite variations of the three damping
coefficients, demonstrating that no set of values (4, 4;, Azp) can consistently explain our
observations. Using different values of A,, 4; and Ay, for each Po may seem somewhat
more physical and might even yield a better agreement between experimental data and
model, however, there is a high risk of over-fitting the data, especially in the absence of
an underlying physical model. We believe it is more appropriate to use the model with the
asymptotic values and keep in mind the limitations of its validity range.

4.2. Spin-over and spin-up damping contribution

Integrating the system of ODEs with the full and the reduced damping yields almost
identical solutions, as indicated by the similarity between the blue and red curves in
figure 4. Both damping models fit equally well the data at the smallest Po in branch 1
while showing a less good agreement at larger Po, which suggest that the viscous torque
is dominated by the spin-over component over the entire range of explored Po. From the
expression of the viscous term (2.14), we calculate the time averaged amplitude of the
spin-over contributions (|£I,|); and spin-up contribution (|LI,|); as

(ILL supl)e = (1eVES2 Asup$2 )1, (4.5)
(ILFsol)i = (ILT — LT gup|)s- (4.6)

The results for branch 1 and branch 2 solutions are depicted in figure 5. Over the entire
range of investigated Po values, both the model and the experiment are dominated by the
spin-over viscous term, which explains the close similarity between the full and reduced
model. In branch 1, the damping from the model is in excellent agreement with the
experimental data, with a spin-over contribution one order of magnitude larger than the
spin-up. In branch 2, the model still captures the dominance of the spin-over contribution
correctly but the actual amplitude of both torques is larger in the experiment, which may
be a signature of nonlinear contributions which are not accounted for in the model.

These findings suggest that the so-called no spin-up condition in a spheroid as derived by

Busse (1968) and Noir et al. (2003), i.e. (2% — .QZ)/.Q2 = 0, may also hold at small Po in
an non-axisymmetric ellipsoid. Figure 6 shows (|¢|); = (2% — £2;)/ 22|, as a function
of Po for the solutions of branches 1 and 2 from the model and the experiment, confirming
that the no spin-up condition is a reasonable assumption at small Po in branch 1. In
branch 2, this condition is clearly violated, as the experimental data and the model display
values > 1.
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Figure 5. Comparison of the spin-over (red) and spin-up (green) damping term in the experiment and in the
model. (a) Branch 1 solutions (solid line). () Branch 2 solutions (dashed line).
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Figure 6. Measure of the no spin-up condition (|¢]); = (| (£22 - .Qz)/.(22|), in the experiment. The error bars
are representative of the standard deviation of the displayed quantities over the entire time series.

5. Non-uniform vorticity flow
5.1. Kinetic energy in the uniform and non-uniform vorticity flow

By construction, the semi-analytical model only accounts for the uniform vorticity
component of the flow, which may not be dominant at large Po. Considering the flow in the
frame of precession, the velocity can be decomposed into its uniform vorticity component,
hereafter referred to as the base flow Up and the non-uniform vorticity components u;,,,:

u=Up+ uyn, 5.1

with
Upy=2 xr+ V. (5.2)
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Figure 7. (a) Time averaged ratio of the non-uniform vorticity flow and the base flow mean kinetic energy
E,on/Ep as a function of Po; (b) uniform vorticity base flow mean kinetic energy Ej as a function of Po;
(¢) non-uniform vorticity flow mean kinetic energy E,,, as a function of Po. The colour scheme characterizes
the branch of solution, the two symbols represent the increasing/decreasing Po experiments. The error bars
are representative of the standard deviation of the displayed quantities over the entire time series. The unit of
energy is (£2,R).

We define the associated mean kinetic energy as

E —l Z%d 5.3

b_V 2 U, ()
1 — Uy)?

Epon = ‘—//—(u 7 b) dv. (5.4)

In figure 7(a) we present the time averaged ratio (E,,,/Ep); when increasing and
decreasing Po in branches 1 and 2. The dynamics evolves from a largely dominant
uniform vorticity flow in branch 1 to a state of almost equal kinetic energy in the uniform
and non-uniform vorticity flow. Comparing the individual energies (Ep); and (E,,,); we

observe two distinct behaviours: the base flow amplitude hardly evolves over the entire

branch 1, but abruptly drops by a factor of 10 across the transition to branch 2 at Pogxp

(figure 7b). In contrast, (E,,); increases continuously by almost two orders of magnitude
in branch 1, reaching a saturation value that also holds in branch 2 with a much smaller
jump at the branch transition (figure 7c). The increasing amplitude of the fluctuating
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increasing Po; (b) DFT decreasing Po. Blue and orange colours mark branch 1 and branch 2, respectively.

velocity component u,,,, at larger forcing amplitude is also reflected in the more complex
flow regime, as can be anticipated from movies of qualitative flow visualization using
rheoscopic fluid (Borrero-Echeverry, Crowley & Riddick 2018), which we provide as
supplementary movies are available at https://doi.org/10.1017/jfm.2021.932.

5.2. Instabilities

After characterizing its amplitude, we now aim at shedding light on the dynamical nature
of the non-uniform vorticity flow. Three instability mechanisms have been identified in
precessing fluid cavities: parametric resonances (Kerswell 1993; Goto et al. 2007; Lin
et al. 2015), viscous boundary layer instabilities (Tilgner & Busse 2001; Cébron et al.
2019; Nobili er al. 2020; Buffett 2021) and, more recently, experiments and numerical
simulations suggest that centrifugal instabilities may occur in precessing cylinders leading
to space filling turbulence (Giesecke et al. 2018, 2019). Our spatially limited UDV
measurements may not allow us to completely disentangle these mechanisms, for example
we cannot get access to the radial profile of the angular momentum that plays a crucial
role in the identification of the centrifugal instability reported by Giesecke et al. (2018).
Nevertheless, we can still gain insights into the evolution of instabilities from the spectral
content of uy,,. To that end, we calculate the discrete Fourier transform (DFT) in time
of w0, at all positions along the three velocity profiles. We then take the spatial average
along each chord, to obtain the space averaged spectral content of upon, x, Unon,y and Uyen, ;.
Finally, we stack all three DFT components and the resulting spectra are presented in
figure 8a) for increasing Po and figure 8b) for decreasing Po. At very small Po < 0.11,
we observe only frequencies corresponding to the forcing at dimensionless frequency
w/S2s =1 and @ /2, = 2. Following branch 1 for Po > 0.12 up to the transition at
Po = 0.18 (figure 8a) we distinguish individual peaks which satisfy the typical parametric
resonant conditions w] £ wy = w, with @ = 2 or w = 282, near onset (Kerswell
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Figure 9. Time series of E,,, and Ej for the lowest Po = 0.129 of branch 2. The background grey curves
correspond to the unfiltered data, the coloured curves represent a running averaging of the energies with a
window of 1.5 rotations.

1993; Lin et al. 2015), where the instability saturates via viscous and/or detuning effects.
After the transition to branch 2, the spectra are again characterized by dominating peaks
w/$2s =1 and @ /2, = 2, but this time significant energy is widely spread over all
frequencies. This observation is characteristic for all experiments of branch 2, also for
the experiments at decreasing Po depicted in figure 8b)

We observe typical growth and collapses of the instability as illustrated in figure 9 for
the smallest Po of branch 2, i.e. at Po = 0.13, where we observe a decay of the base flow
during the growth of the instability until a state is reached, where base flow and instability
have almost the same kinetic energy. At that point, the instability collapses and allows the
base flow to recover its initial amplitude. These cycles of growth and collapse are typical
of weakly super critical parametric instabilities (Malkus 1989; Eloy, Le Gal & Le Dizes
2003; Herreman et al. 2010) and somewhat reminiscent of the intermittent solution as
predicted by the amplitude equations for the weakly nonlinear instability in a precessing
cylinder reported by Lagrange et al. (2011). At larger Po, the temporal dynamics of the
flow becomes more and more complex, with shorter period of growth and collapse and
eventually indistinguishable cycles.

Concerning boundary layer instabilities, it is suggested that instabilities of a steady
Ekman boundary layer should occur at Rep; > 55 and a transition to turbulence at
Rep; > 150 (Caldwell & Van Atta 1970; Sous et al. 2013), where Rey; is the Reynolds
number based on the thickness of the Ekman layer. However, the recent numerical study
of Buffett (2021) suggests that, for oscillating flows, such as the ones driven by precession,
the Ekman boundary layer would only become turbulent at Rep; > 500. We define the
boundary layer Reynolds number based on the amplitude of the differential rotation

between the wall and the fluid Sw as Rep; = SwEf_ l/ 2, where Ey is the effective Ekman
number based on the fluid rotation £2. With our notation it follows that

Rep = (8w)(E/(£2)) 712, (5.5)
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Figure 10. Boundary layer Reynolds number Rep; = 8w (ES2)~'/2 as a function of Po in branches 1 and 2.
The dashed black line represents the onset range Rep; > 55 for the initial boundary layer instability.

As shown in figure 10, Ekman boundary layer instabilities may occur in branch 2, yet
never reach the onset condition for turbulence. Consequently, the instabilities reported
above starting at Po ~ 0.117, could not be underlined by a boundary layer mechanism.

To conclude this section, we shall briefly discuss the evolution of the Rossby number
based on the fluctuating velocity component uy,, and the fluid rotation

1/2
ro — (@B ) 56
(£2)R

In figure 11 we display Ro as a function of Po for our experimental data. In branch 1, Ro
increases from ~0.01 to ~0.06, in agreement with the increasingly nonlinear dynamics
observed from the frequency spectra, yet remaining less than unity. In contrast, branch 2
is characterized by a Rossby number greater than one, giving rise to a strongly nonlinear
dynamics. Given the reported values of Ro > 0.5 it is difficult to apprehend this regime,
as it may no longer follow the classical rotating nor non-rotating dynamics. Further
investigations will be necessary to fully comprehend this regime, in particular the
emergence of a regime where E, and E,,, are of the same order is of great interest for
dynamo experiments and industrial applications.

6. Conclusions

We have experimentally investigated the flows in a triaxial ellipsoid subject to precession
at an angle of 90°. We first focused on the base flow of uniform vorticity and, by exploiting
symmetry properties of this flow, we measure the three components of the uniform
vorticity flow using UDV. In agreement with a semi-analytical model for the evolution of
the uniform vorticity proposed by Noir & Cébron (2013), we observe two distinct branches
of solutions: branch 1 is typically observed at small to moderate forcing (Po < 0.18) and
is characterized by a large amplitude of the total fluid rotation (~1 in dimensionless units),
as well as a small angle between the fluid rotation and the rotation axis of the container. In
contrast, branch 2 is characterized by a much smaller total rotation of the fluid and a large
tilt of the fluid rotation axis, which tends to align with the axis of precession. Furthermore,
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Figure 11. Effective Rossby number based on the fluctuating velocity component u,,, and the total rotation
of the fluid.

we find a hysteresis cycle of the uniform vorticity component as a function of Po, from
both the model and the experimental data. A remarkable agreement between the uniform
vorticity model and experimental data is observed in branch 1, especially at small values
of Po. This might justify the application of the model in the context of planetary core and
subsurface ocean dynamics, which are typically characterized by a small amplitude of the
forcing.

Although the model still captures the fundamental features of branch 2, the agreement
with experimental data is less good. This is to be expected as the semi-analytical model
is only valid at small Po, yet the predictions remain in good enough qualitative agreement
with the observations to capture the first-order dynamics of the system.

It is of great interest for both planetary science and industrial applications to characterize
different instability mechanisms in precessing flows, which could lead to space filling
turbulence. Our results suggest that a parametric instability mechanism occurs early
in branch 1 and evolves towards a complex saturated state in branch 2 with a kinetic
energy comparable to that of the underlying base flow. It should be emphasized that
our observation of a hysteresis in the amplitude of the uniform vorticity base flow is not
necessarily related to that of turbulence (as reported by e.g. Malkus 1968; Herault et al.
2015; Horimoto et al. 2018; Komoda & Goto 2019), while the opposite is likely true. In
fact, one could imagine a scenario where branch 2 of the base flow is not necessarily
unstable. Nevertheless the observation of the fluctuating velocities being of the same
order as the base flow in branch 2, as well as the qualitative flow visualization (see
supplementary movies), point towards the first scenario in our experiment. Of course it
would be quite valuable to draw a conclusive picture of the transition to turbulence in
various container shapes, (i.e. in cylinder, spheres, spheroids and ellipsoids) but this is
beyond the focus of the present article.

The observation of a state with same order of kinetic energy in the base flow and
fluctuating velocity component provides a reasonable estimate for the typical uye, in
industrial applications operating in similar range of parameters, i.e. E > 107% and Po ~ 1.
In planetary settings, i.e. E ~ 1074, it has been suggested that the saturation mechanism
of the instabilities might be fundamentally different, i.e. inertial wave turbulence instead
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of geostrophic turbulence (Le Reun et al. 2019). Whether a state of quasi-equal kinetic
energy holds in planetary cores or subsurface oceans remains an open question. Further
investigations at much lower Ekman numbers will be necessary, such as the one accessible
in the upcoming Dresdyn experiment (Stefani ef al. 2015).

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2021.932.
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Appendix A. Spin-up in a triaxial ellipsoid

To the best of our knowledge, no formulation exists for the decay rate of the axial rotation
in a non-axisymmetric container, and thus an estimate for A, has to be determined
experimentally. To that end, we conducted a number of axial spin-up experiments to obtain
estimates of Ay, under the following experimental protocol: we set the container into
constant rotation at £2p around the c-axis and then increase the rotation rate by a small
amount 652, which creates an initial differential rotation of the fluid with respect to the
container. In order to keep the spin-up in the laminar regime, we choose §£2 in such a way
that the Rossby number 6£2/£2¢ remains small. Following Greenspan & Howard (1963),
the differential motion decays exponentially with time as

8@ax(1, 1) = 804 (0)[1 — exp(Ayp (NVED)], (A1)

with the decay factor Ay, (r). In general, Ag,, locally depends on the height of the fluid
column in the direction of the rotation axis and is thus a function of space. However,
for our damping model we need to obtain a spatially averaged value of the decay factor
acting on the axial components of the uniform vorticity and we thus fit the time series to
the same quantity, which is (dw,y)s, Where ( )y denotes the spatial average. In figure 12,
we display inverted values of Ay, as a function of the Rossby number in the axial
spin-up experiments. All experiments are recorded at Ekman numbers in the range of
1.5 x 107 to 6.3 x 107>, comparable to the values of E in our precession experiments.
We observe considerable scatter around a mean value of Ag,, ~ —1.89 (dashed red line),
but nevertheless our spin-up experiments give a maximum amplitude of Ay, > —2.5,
which allows us to estimate the contribution of the spin-up to the damping in (2.14).

Appendix B. Time evolution of the uniform vorticity model

In figure 13(a,b) we display the time evolution of the uniform vorticity as predicted
from the numerical integration of (2.7)-(2.9)) computed for Po = 0.05 and Po =
0.25 representing typical solutions of branch 1 and branch 2, respectively. For both
Po we start from the randomly selected initial conditions [wy(0), wy(0), w,(0)] =
[—0.166, —0.002, —0.213] and integrate the equations for an equivalent of 10 Ekman
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Figure 12. Inverted values for the spatially averaged decay rate of the axial spin-up in a triaxial ellipsoid.
Experiments were conducted at various Ro between 0.05 and 0.2. Range of Ekman numbers: 1.5 x 107> to

6.3 x 1075.

Unifrom vorticity at Po = 0.05

Fourier spectra at Po = 0.05

(a) (b)

0.15 0.08 4

0.10

0.05 4 0.06 -

0 ) ‘ :
‘ ] ‘ ‘ : 0.04 4
—0.05 4
—0.101 o, 0.02
—0.154 Y wy
—w ,_,J
o204 C 0 : : : :
0 1 2 3 4 5 6 0 0.5 1.0 1.5 2.0 2.5
Unifrom vorticity at Po = 0.25 Fourier spectra at Po =0.25
(0) (d)

0.50 - 0.07-

0.251 0.061
—0.25 1 0.04
—0.50 A 0.03 4
—0.75 1 0.02 -
—1.00 0.01 i
—1.25 1 0

0 1 2 3 4 5 6 0 0.5 1.0 1.5 2.0 2.5
t @/82;

https://doi.org/10.1017/jfm.2021.932 Published online by Cambridge University Press

Figure 13. Time evolution of the uniform vorticity model at Po = 0.05 (a,b) and at Po = 0.25 (¢,d) in branch 1
and branch 2, respectively. The solid line represents the solution as calculated with our model and the light
colours show the experimental data at the exact same conditions for comparison. In (b) and (d), we display
the spectral content of the amplitude of the uniform vorticity |@|. Again, the light colours represent the
experimental data for comparison.

932 A24-18


https://doi.org/10.1017/jfm.2021.932

https://doi.org/10.1017/jfm.2021.932 Published online by Cambridge University Press

Flows in an ellipsoid under precession

a - - -
(@) — 4,=-255,1,=08, 1, =—1.00

1.0 & - — A,=-255,4,;=0.8, 4, =-2.50
— A,=-2.55,2,=08, 1, =-4.00

[e) p
081 > — 1,=-2.55,4,=08,4,=-10.0

0 Increasing Po
v Decreasing Po

(£2), 06
0.41
® ® ©
______________________________ A
0.2 ;\\‘“ Vyvy®® T m e e
0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
®) 1.0] —e—=o A,=-2554,=04,1,, =-2.5
"TU?J\\ — 1,=-255,4,=08, 1, =25
08 © s — 1 :72.55,/1=16,/lmp=725
’ o Increasing Po
v Decreasing Po
0.6
(£2),
0.4 -
® ® ® °
v o< e °
0.2 B Vvrye o
0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
(o)
1.2 4
1.0 © %t
Sl 1,=-2.00,1,=0.8, A)up—72.5
08/ ®o — 4,=-2.55,4,=08, 4, = 2.5
—1,=-4.00,2.=08,1, =-2.5
() 061 — =100, 1=08, " =25
o Increasmg Po
041 . v Decreasing Po
N“"'@ """" v 2o S v .2
0.2 W T lvrvryeo® ®
0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

Po

Figure 14. Comparison of the experimental total fluid rotation varying the damping parameters of the model.
(@) Effect of Agp, 4, = —2.55 and A; = 0.79. (b) Effect of 4;, A, = —2.55 and Ag,p = —2.5. (¢) Effect of 4,,
A; =0.79 and Ay, = —2.5. The experimental data are the same as in figure 4(a). The solid lines represent the
solution of branch 1, the dashed lines of branch 2.

time scales. We display a time series, equivalent to six rotation times in steady state. To
allow a comparison between model and experimental data, we additionally display the
corresponding experimental data in light colours. Note that we artificially shifted the start
of the experimental time series to be in phase with the numerical data.
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In agreement with the experimental data we observe that the two equatorial components
of the uniform vorticity w, and w, show time harmonic oscillations at dimensionless
frequency @ /§2 = 1. For the axial component w, the model also predicts a time harmonic
solution at dimensionless frequency @ /2 = 2, with a constant offset, which is in good
agreement with the experimental data. However, the amplitude of the time harmonic
oscillations in the axial component are underestimated in the model in comparison with the
experimental data. In contrast to the experimental data there is no fundamental difference
observed between branch 1 and branch 2 in the model. As expected, there is less of an
agreement between model and data in branch 2, because our model cannot capture the
increasingly nonlinear dynamics in this branch.)

Appendix C. Varying the damping coefficient of the semi-analytical model

The calculation of (4, Ay, Agp) involves integrals over the fluid domain, which depend
on 6, the tilt of the fluid rotation axis with respect to the figure axis of the cavity. In our
experiment 0 varies from 0 to more than 90°, thus it could be argued that the asymptotic
values used to integrate the model are not representative over the entire range of explored
Po. In figure 14, we compare the experimental measurements with the semi-analytical
models obtained by varying the damping parameters around their asymptotic values at
6 ~ 0 (Po < 1). We observe a high sensitivity of the model to both A, and A, while
A; has limited effect on the solutions in branch 1. Increasing Ag,, to large values could
explain the early transition of branch 1 (figure 4a), however, the associated value of ¢
for these solutions are already order O(1) in branch 1, which is in contradiction to our
observations (figure 6). Furthermore, it has no influence on transition from branch 2 to
branch 1. Decreasing A, merely improves the transition from branch 1 (figure 4) while
making the branch 2 to branch 1 solution worse. Increasing A, to large values improves
the second transition but delays the first transition. It seems difficult to reconcile our
observations by somewhat artificially fitting the damping parameters. While it may seem
more physical to use different values of the damping as 6 increases, no analytical models
exist for an arbitrary orientation yet.
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