ON THE DISCRIMINANT $x^{\prime} A x \cdot y^{\prime} A y-\left(x^{\prime} A y\right)^{2}$.

H. Schwerdtfeger

(received March 15, 1958)

1. Let x, y be column matrices of n real homogeneous coordinates $\mathrm{x}_{\mathrm{j}}, \mathrm{y}_{\mathrm{j}}(\mathrm{j}=1, \ldots, \mathrm{n})$ representing points in $(\mathrm{n}-\mathrm{l})-$ dimensional real projective space $\mathrm{P}_{\mathrm{n}}-1$. Let A be an $\mathrm{n} \times \mathrm{n}$ real symmetric matrix. The equation $x^{\prime} A x=0$ represents a quadric in P_{n-1} and the equation

$$
x^{\prime} A x y^{\prime} A y-\left(x^{\prime} A y\right)^{2}=0
$$

represents in variable y the tangential cone with x as vertex, a pair of straight lines if $n=3$. The left-hand difference may be written as a quadratic form in y, viz. y'Sy, whose matrix

$$
S=x^{\prime} A x \cdot A-A x x^{\prime} A
$$

is seen to be singular since $S x=0$. (As to the notation see [1].) Moreover if A is regular and $x^{\prime} A x \neq 0$, then the equation $S z=0$ has no linearly independent solution except $z=x$; thus S has rank n-1.

If A is positive definite, then it represents an imaginary quadric and by Cauchy-Schwarz's inequality

$$
\begin{equation*}
x^{\prime} A x-y^{\prime} A y-\left(x^{\prime} A y\right)^{2} \geqslant 0 \tag{1}
\end{equation*}
$$

for all x, y, with the sign of equality if and only if the two points x and y in P_{n-1} coincide. Thus there is no real tangential cone to this quadric, which fact may be expressed by saying that every real point x is an inner point of the imaginary quadric.

From now on let A denote a regular real symmetric matrix and let x be a fixed point in P_{n-1} such that $x^{\prime} A x>0$. It will be shown that the following two properties of A are equivalent:
(i) A is of the congruence type $[+,-, \ldots,-]$, i.e. A has the signature $2-\mathrm{n}$;
(ii) y'Sy $\leqslant 0$ for all y (i.e. S is non-positively semi-definite) equality holding if and only if the points x and y coincide.
Can. Math. Bull., vol. 1, no. 3, Sept. 1958

The fact that (ii) follows from (i) has been pointed out recently by J. Aczel [2]. The inequality $y^{\prime} S y<0$ indicates that those points x for which $\mathrm{x}^{\prime} \mathrm{Ax}>0$ are the inner points of the quadric A because they are not vertices of tangential cones.
2. For the proof it will be sufficient to assume A in its congruence normal form. In the positive definite case this is the unit matrix E so that $S=x^{\prime} x \cdot E-x x^{\prime}$. The characteristic polynomial of S is found to be

$$
|\lambda E-S|=\left|\left(\lambda-x^{\prime} x\right) E+x x^{\prime}\right|=\lambda\left(\lambda-x^{\prime} x\right)^{n-1}
$$

All eigen values of S being non-negative one has $y^{\prime} S y \geqslant 0$ whence follows Cauchy-Schwarz's inequality in its primitive form: $x^{\prime} x a y^{r} y-\left(x^{\prime} y\right)^{2} \geqslant 0$ with equality if and only if the two points x and y in P_{n-1} coincide.
3. In the same way, namely by calculating the characteristic roots of S, the inequality (ii) will be proved in its primitive form if A has the signature $2-n$. Let

$$
J=\left(\begin{array}{ccc}
1 & 0 \\
-1 & \ddots & \\
0 & & -1
\end{array}\right)=[1,-1, \ldots,-1]
$$

be the congruence normal form of A and $S=\sigma J-J x x ' J$ where

$$
\sigma=x^{\prime} J x=x_{1}^{2}-x_{2}^{2}-\ldots-x_{n}^{2}>0
$$

Consider the eigen value problem $S z=\lambda z$ which can also be written in the form $(\sigma J-\lambda E) z=x^{\prime} J z \cdot J x$ or

$$
\begin{equation*}
(\sigma E-\lambda J) z=x^{\prime} J z \cdot x . \tag{2}
\end{equation*}
$$

It is equivalent to the following system:
whence
I. $(\sigma-\lambda) x_{1} z_{1}-(\sigma+\lambda)\left(x_{2} z_{2}+\ldots+x_{n} z_{n}\right)=x^{\prime} J z-\sigma$
which means $\lambda x^{\prime} z=0$. Therefore
(4) either $\lambda=0$ or $x^{\prime} z=0$;
II. $(\sigma-\lambda) x_{1} z_{1}+(\sigma+\lambda)\left(x_{2} z_{2}+\ldots+x_{n} z_{n}\right)=x^{\prime} J z \cdot x^{\prime} x$ so that by (4) if $\lambda \neq 0$ either

$$
\begin{array}{ll}
\text { (a) } \lambda=-x^{\prime} x & \text { or } \\
\text { (b) } \quad x^{\prime} J z=0 .
\end{array}
$$

In the case (a) the eigen value equation (2) will be ($\left.\sigma E+x^{\prime} x J\right) z=x^{\prime} J z \wedge x$ and instead of (3) one has the system

$$
\begin{aligned}
2 x_{1}^{2} z_{1} & =x^{\prime} J z^{\prime} \cdot x_{1} \\
-2\left(x_{2}^{2}+\ldots+x_{n}^{2}\right) z_{i} & =x^{\prime} J z \cdot x_{i} \quad(i=2, \ldots, n)
\end{aligned}
$$

whose solution z is uniquely defined if $x_{2}^{2}+\ldots+x_{n}^{2}$ is different from zero. For since $\sigma>0$ one has $x_{1} \neq 0$ and it may be assumed that $z_{1}=x_{1}$; then $x^{\prime} J z=2 x_{1}^{2}$ so that the z_{i} are readily expressible in terms of the x_{j}.

Thus $\boldsymbol{\lambda}=-x^{\prime} \mathrm{x}$ is another simple eigen value.

$$
\text { If } \left.x_{2}^{2}+\ldots+x_{n}^{2}=0 \text { (i.e. all } x_{i}=0(i=2, \ldots \ldots, n)\right)
$$ then obviously S equals the diagonal matrix $\left[0,-x_{1}^{2}, \ldots,-x_{1}^{2}\right]$.

In the case (b) the system (3) will be

$$
\begin{equation*}
(\sigma-\lambda) z_{1}=0, \quad(\sigma+\lambda) z_{i}=0 \quad(i=2, \ldots, n) . \tag{5}
\end{equation*}
$$

If $z_{1} \neq 0$, then $\lambda=\sigma>0$ and accordingly $z_{i}=0$ for $i=2, \ldots$, n. Since $x_{1} \neq 0$ this is incompatible with (4). Thus σ cannot be an eigen value and necessarily $z_{1}=0$ so that $\lambda=-\sigma$ appears as ($n-2$)-fold eigen value of S. The corresponding eigen vectors are given by the solutions of the equation $x_{2} z_{2}+$ $\ldots+x_{n} z_{n}=0$. Thus all eigen values of S are negative except $\lambda=0$ and therefore S is negative semi-definite and

$$
\begin{align*}
\left(x_{1}^{2}-x_{2}^{2}-\ldots-x_{n}^{2}\right) & \left(y_{1}^{2}-y_{2}^{2}-\cdots-y_{n}^{2}\right) \tag{6}\\
& \leq\left(x_{1} y_{1}-x_{2} y_{2}-\cdots-x_{n} y_{n}\right)^{2}
\end{align*}
$$

if

$$
x_{1}^{2}-x_{2}^{2}-\ldots-x_{n}^{2}>0 .
$$

Since 0 is a simple eigen value of S it follows that the equality sign is valid if and only if x and y represent the same point in P_{n-1}.
4. It remains to be shown that in all other cases S cannot be semi-definite. It will be sufficient to investigate the case where A has the congruence normal form

$$
J=[1,1,-1, \ldots,-1] .
$$

Let

$$
\sigma=x^{\prime} J x=x_{1}^{2}+x_{2}^{2}-x_{3}^{2}-\ldots-x_{n}^{2}>0
$$

The eigen value equations are now the following:

$$
\left\{\begin{array}{lrl}
(\sigma-\lambda) z_{1}=x^{\prime} J z a x_{1} & x_{1} & x_{1} \tag{7}\\
(\sigma-\lambda) z_{2}=x^{\prime} J z \cdot x_{2} & x_{2} & x_{2} \\
(\sigma+\lambda) z_{3}=x^{\prime} J z \cdot x_{3} & -x_{3} & x_{3} \\
(\sigma+\lambda) z_{n}=x^{\prime} J z \cdot x_{n} & \cdots x_{n} & x_{n}
\end{array}\right.
$$

In the case I the discussion is the same as in the preceding section and if $\lambda \neq 0$ one has the condition $x^{\prime} z=0$. In the case II there is again the alternative either (a) or (b). If $\lambda=-x^{\prime} x$ and $x_{3}^{2}+\ldots x_{n}^{2}>0$ the system (7) has a unique linearly independent solution and therefore - $x^{\prime} x$ is a simple eigen value of S. If $x_{3}^{2}+\ldots+x_{n}^{2}=0$, then

$$
S=\left(\begin{array}{cccc}
x_{2}^{2} & -x_{1} x_{2} & 0 & 0 \\
-x_{1} x_{2} & x_{1}^{2} & 0 & 0 \\
0 & 0 & -x_{1}^{2}-x_{2}^{2} & 0 \\
\vdots & \vdots & \vdots & \ddots \\
0 & 0 & 0 & \cdots \\
0 & x_{1}^{2}-x_{2}^{2}
\end{array}\right)
$$

which has the ($n-2$) fold eigen value $-x_{1}^{2}-x_{2}^{2}$ and the simple eigen value $x_{1}^{2}+x_{2}^{2}$.

In the case (b) the system (7) becomes

$$
(\sigma-\lambda) z_{1}=0,(\sigma-\lambda) z_{2}=0,(\sigma+\lambda) z_{i}=0(i>2) .
$$

Thus the eigen value $\lambda=\sigma$ cannot be excluded as in section 3 . In fact let $z_{1} \neq 0$ and therefore $\lambda=\sigma$; then $z_{i}=0(i>2)$ and z_{2} can be found such that the condition $x^{\prime} z=x_{1} z_{1}+x_{2} z_{2}=0$ is satisfied; if, e. g., $x_{1}=0$, then $z_{2}=0$. Thus the matrix S has a
simple positive eigen value σ; hence S is not semi-definite. This precludes the existence of an inequality of the type (ii) in the present case.

So it is in all the other cases. If

$$
J=[\underbrace{1, \ldots, 1}_{p}, \underbrace{-1, \ldots,-1}_{n-p}]
$$

it is found that

$$
|\lambda E-s|=\lambda\left(\lambda+x^{\prime} x\right)(\lambda-\sigma)^{p-1}(\lambda+\sigma)^{n-p-1}
$$

where

$$
\sigma=x^{\prime} J x
$$

5. Aczel's proof of the inequality (6) uses the method commonly applied in the proof of Cauchy-Schwarz's inequality. He observes that the quadratic function of the real variable ξ :

$$
\begin{aligned}
\eta=f(\xi) & =\left(x_{1} \xi+y_{1}\right)^{2}-\left(x_{2} \xi+y_{2}\right)^{2}-\ldots-\left(x_{m} \xi+y_{n}\right)^{2} \\
& =\sigma \xi^{2}+2 x^{\prime} J y \cdot \xi+y^{\prime} J y,
\end{aligned}
$$

has, because of $\sigma>0$, as graph in the $\xi \eta$-plane a parabola open above that cuts or touches the ξ - axis whatever y may be. Thus the discriminant of the function $f(\xi)$ must be non-negative. In all the other cases the sign of the discriminant depends on the choice of the point y.

REFERENCES

1. H. Schwerdtfeger, Introduction to Linear Algebra and the Theory of Matrices, Noordhoff, (Groningen 1950).
2. J. Aczél (Ya. Acel'), Some general methods in the theory of functional equations in one variable. New applications of functional equations (in Russian) Uspehi Mat. Nauk (N. \bar{S}.) 11,(1956) No. 3(69), 3-68; in particular p.42. Cf. Math. Reviews 18, p.807.

McGill University

