ON THE DISCRIMINANT $x'Ax.y'Ay - (x'Ay)^2$.

H. Schwerdtfeger (received March 15, 1958)

1. Let x, y be column matrices of n real homogeneous coordinates x_j , y_j (j = 1, ..., n) representing points in (n - 1)dimensional real projective space P_{n-1} . Let A be an $n \ge n$ real symmetric matrix. The equation x'Ax = 0 represents a quadric in P_{n-1} and the equation

$$x^{i}Ax^{i}y^{i}Ay - (x^{i}Ay)^{2} = 0$$

represents in variable y the tangential cone with x as vertex, a pair of straight lines if n = 3. The left-hand difference may be written as a quadratic form in y, viz. y'Sy, whose matrix

S = x'Ax - Axx'A

is seen to be singular since Sx = 0. (As to the notation see [1].) Moreover if A is regular and $x'Ax \neq 0$, then the equation Sz = 0has no linearly independent solution except z = x; thus S has rank n - 1.

If A is positive definite, then it represents an imaginary quadric and by Cauchy-Schwarz's inequality

(1)
$$x'Ax-y'Ay - (x'Ay)^2 \ge 0$$

for all x, y, with the sign of equality if and only if the two points x and y in P_{n-1} coincide. Thus there is no real tangential cone to this quadric, which fact may be expressed by saying that every real point x is an inner point of the imaginary quadric.

From now on let A denote a regular real symmetric matrix and let x be a fixed point in P_{n-1} such that x'Ax > 0. It will be shown that the following two properties of A are equivalent:

- (i) A is of the congruence type [+, -,..., -], i.e. A has the signature 2 n;
- (ii) y'Sy ≤ 0 for all y (i.e. S is non-positively semi-definite) equality holding if and only if the points x and y coincide.

Can. Math. Bull., vol. 1, no. 3, Sept. 1958

175

The fact that (ii) follows from (i) has been pointed out recently by J. Aczel [2]. The inequality y'Sy < 0 indicates that those points x for which x'Ax > 0 are the inner points of the quadric A because they are not vertices of tangential cones.

2. For the proof it will be sufficient to assume A in its congruence normal form. In the positive definite case this is the unit matrix E so that $S = x'x \cdot E - xx'$. The characteristic polynomial of S is found to be

$$|\lambda E - S| = |(\lambda - x'x)E + xx'| = \lambda(\lambda - x'x)^{n-1}.$$

All eigen values of S being non-negative one has $y'Sy \ge 0$ whence follows Cauchy-Schwarz's inequality in its primitive form: $x'x * y'y - (x'y)^2 \ge 0$ with equality if and only if the two points x and y in P_{n-1} coincide.

3. In the same way, namely by calculating the characteristic roots of S, the inequality (ii) will be proved in its primitive form if A has the signature 2 - n. Let

$$J = \begin{pmatrix} 1 & 0 \\ -1 & \cdot \\ 0 & \cdot & \cdot \\ 0 & \cdot & -1 \end{pmatrix} - [1, -1, \dots, -1]$$

be the congruence normal form of A and $S = \sigma J - Jxx'J$ where

$$\sigma' = x^{1}Jx = x_{1}^{2} - x_{2}^{2} - \ldots - x_{n}^{2} > 0.$$

Consider the eigen value problem $Sz = \lambda z$ which can also be written in the form $(dJ - \lambda E)z = x^{i}Jz \cdot Jx$ or

ŦΤ

(2)
$$(\delta E - \lambda J)z = x^{\dagger}Jz \cdot x.$$

It is equivalent to the following system:

(3)
$$\begin{cases} (\sigma' - \lambda) z_{\mathbf{i}} = \mathbf{x}^{\mathbf{i}} \mathbf{J} \mathbf{z} \cdot \mathbf{x}_{\mathbf{i}} & \mathbf{x}_{\mathbf{i}} \\ (\sigma' + \lambda) z_{\mathbf{i}} = \mathbf{x}^{\mathbf{i}} \mathbf{J} \mathbf{z} \cdot \mathbf{x}_{\mathbf{i}} & -\mathbf{x}_{\mathbf{i}} & \mathbf{x}_{\mathbf{i}} \\ \vdots \\ (\sigma' + \lambda) z_{\mathbf{n}} = \mathbf{x}^{\mathbf{i}} \mathbf{J} \mathbf{z} \cdot \mathbf{x}_{\mathbf{n}} & -\mathbf{x}_{\mathbf{n}} & \mathbf{x}_{\mathbf{n}} \end{cases}$$

whence

176

I.
$$(\sigma - \lambda)x_1z_1 - (\sigma + \lambda)(x_2z_2 + \dots + x_nz_n) = x^{i}Jz \cdot \sigma$$

which means $\lambda x'z = 0$. Therefore

(4) either
$$\lambda = 0$$
 or $x'z = 0$;

II.
$$(\sigma - \lambda)x_1z_1 + (\sigma + \lambda)(x_2z_1 + \ldots + x_nz_n) = x'Jz \cdot x'x$$

so that by (4) if $\lambda \neq 0$ either

(a) $\lambda = -x^{\dagger}x$ or (b) $x^{\dagger}Jz = 0$.

In the case (a) the eigen value equation (2) will be ($\sigma' E + x'xJ$)z = x'Jz-x and instead of (3) one has the system

$$2\mathbf{x}_1^{\mathbf{z}}\mathbf{z}_1 = \mathbf{x}^1 \mathbf{J} \mathbf{z}_1 \mathbf{x}_1$$

 $-2(x_{1}^{2} + ... + x_{n}^{2})z_{i} = x'Jz \cdot x_{i}$ (i = 2,...,n)

whose solution z is uniquely defined if $x_1^{t} + \ldots + x_n^{t}$ is different from zero. For since $\sigma > 0$ one has $x_1 \neq 0$ and it may be assumed that $z_1 = x_1$; then $x'Jz = 2x_1^{t}$ so that the z_i are readily expressible in terms of the x_j .

Thus $\lambda = -x'x$ is another simple eigen value.

If $x_i^{1} + \ldots + x_n^{1} = 0$ (i.e. all $x_i = 0$ (i = 2,, n)) then obviously S equals the diagonal matrix $[0, -x_i^{1}, \ldots, -x_i^{1}]$.

In the case (b) the system (3) will be

(5)
$$(\sigma' - \lambda)z_1 = 0, (\sigma' + \lambda)z_1 = 0 (i = 2, ..., n).$$

If $z_1 \neq 0$, then $\lambda = \sigma > 0$ and accordingly $z_i = 0$ for i = 2, ..., n. Since $x_1 \neq 0$ this is incompatible with (4). Thus σ' cannot be an eigen value and necessarily $z_1 = 0$ so that $\lambda = -\sigma'$ appears as (n - 2)-fold eigen value of S. The corresponding eigen vectors are given by the solutions of the equation $x_1 z_1 + \dots + x_n z_n = 0$. Thus all eigen values of S are negative except $\lambda = 0$ and therefore S is negative semi-definite and

(6)
$$(x_1^2 - x_2^2 - \dots - x_n^k)(y_1^2 - y_2^2 - \dots - y_n^k)$$

$$\leq (x_1y_1 - x_2y_k - \dots - x_ny_n)^2$$
if $x_1^2 - x_k^2 - \dots - x_n^k > 0$.

Since 0 is a simple eigen value of S it follows that the equality sign is valid if and only if x and y represent the same point in P_{n-1} .

4. It remains to be shown that in all other cases S cannot be semi-definite. It will be sufficient to investigate the case where A has the congruence normal form

$$J = \begin{bmatrix} 1 & 1 & -1 & \dots & -1 \end{bmatrix} .$$

$$\sigma = x^{1} J x = x_{1}^{1} + x_{1}^{1} - x_{3}^{1} - \dots - x_{n}^{1} > \dots$$

0.

Π

I

The eigen value equations are now the following:

Let

(7)
$$\begin{cases} (\sigma' - \lambda) z_{1} = x' J z_{1} x_{1} & x_{1} \\ (\sigma' - \lambda) z_{2} = x' J z_{2} x_{2} & x_{2} & x_{3} \\ (\sigma' + \lambda) z_{3} = x' J z_{2} x_{3} & -x_{3} & x_{3} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ (\sigma' + \lambda) z_{n} = x' J z_{2} x_{n} & -x_{n} & x_{n} \end{cases}$$

In the case I the discussion is the same as in the preceding section and if $\lambda \neq 0$ one has the condition x'z = 0. In the case II there is again the alternative either (a) or (b). If $\lambda = -x'x$ and $x_3^{t} + \ldots x_n^{t} > 0$ the system (7) has a unique linearly independent solution and therefore -x'x is a simple eigen value of S. If $x_3^{t} + \ldots + x_n^{t} = 0$, then

which has the (n - 2) fold eigen value $-x_1^{\lambda} - x_{\lambda}^{\lambda}$ and the simple eigen value $x_1^{\lambda} + x_{\lambda}^{\lambda}$.

In the case (b) the system (7) becomes

$$(\sigma - \lambda)z_1 = 0, (\sigma - \lambda)z_2 = 0, (\sigma + \lambda)z_i = 0 (i > 2).$$

Thus the eigen value $\lambda = \sigma'$ cannot be excluded as in section 3. In fact let $z_1 \neq 0$ and therefore $\lambda = \sigma'$; then $z_i = 0$ (i > 2) and z_1 can be found such that the condition $x'z = x_1z_1 + x_1z_2 = 0$ is satisfied; if e. g., $x_1 = 0$, then $z_2 = 0$. Thus the matrix S has a simple positive eigen value σ ; hence S is not semi-definite. This precludes the existence of an inequality of the type (ii) in the present case.

So it is in all the other cases. If

$$J \bullet \begin{bmatrix} 1, \dots, 1 \\ p \end{bmatrix}, \begin{bmatrix} -1, \dots, -1 \\ n-p \end{bmatrix}$$

it is found that

 $|\lambda E - S| = \lambda (\lambda + x'x) (\lambda - \sigma)^{p-1} (\lambda + \sigma)^{n-p-1}$ $\sigma = x'Jx.$

where

5. Aczel's proof of the inequality (6) uses the method com-
monly applied in the proof of Cauchy-Schwarz's inequality. He
observes that the guadratic function of the real variable
$$\xi$$
:

$$\gamma = f(\xi) = (x_1\xi + y_1)^2 - (x_k\xi + y_k)^2 - \dots - (x_k\xi + y_k)^2$$
$$= \sigma'\xi^k + 2x'Jy\xi + y'Jy,$$

has, because of $\sigma > 0$, as graph in the $\xi \eta$ -plane a parabola open above that cuts or touches the ξ - axis whatever y may be. Thus the discriminant of the function $f(\xi)$ must be non-negative. In all the other cases the sign of the discriminant depends on the choice of the point y.

REFERENCES

- 1. H. Schwerdtfeger, Introduction to Linear Algebra and the Theory of Matrices, Noordhoff, (Groningen 1950).
- 2. J. Aczél (Ya. Acel'), Some general methods in the theory of functional equations in one variable. New applications of functional equations (in Russian) Uspehi Mat. Nauk (N.S.) 11,(1956) No. 3 (69), 3-68; in particular p.42. Cf. Math. Reviews 18, p.807.

McGill University

179