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1. Let x, y be column mat r ices of n rea l homogeneous 
coordinates XJ, yj (j • 1, . . . , n) represent ing points in (n - 1) -
dimensional rea l projective space P n - 1 - Let A be an n x n rea l 
symmetr ic mat r ix . The equation x!Ax - 0 represen t s a quadric 
in P n _ i and the equation 

x!Ax*y!Ay - (x'Ay)2 « 0 

r ep resen t s in variable y the tangential cone with x as ver tex , a 
pa i r of straight lines if n = 3 . The left-hand difference may be 
writ ten as a quadratic form in y, v iz . y fSy, whose mat r ix 

S = x'Ax*A - Axx'A 

is seen to be singular since Sx = 0. (As to the notation see \lj .) 
Moreover if A is regular and x ' A x ^ O , then the equation Sz - 0 
has no l inearly independent solution except z » x; thus S has rank 
ti - 1 . 

If A is positive definite, then it r ep re sen t s an imaginary 
quadric and by Cauchy-Schwarz^ inequality 

(1) .x'Ax-y'Ay - (x'Ay)2 % 0 

for all x, y, with the sign of equality if and only if the two points 
x and y in P n _ \ coincide. Thus there is no real tangential cone 
to this quadric,which fact may be expressed by saying that every 
rea l point x is an inner point of the imaginary quadric . 

F r o m now on let A denote a regular rea l symmetr ic mat r ix 
and let x be a fixed point in P n _ i such that x'Ax > 0. It will be 
shown that the following two proper t ies of A a re equivalent: 

(i) A is of the congruence type [+, - , . . • , -0 , i . e . A 

has the signature 2 - n ; 

(ii) y'Sy ^ 0 for all y ( i . e . S is non-positively semi-defi
nite) equality holding if and only if the points x and y 
coincide. 
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The fact that (ii) follows from (i) has been pointed out r e 
cently by J . Aczel DO . The inequality y'Sy < 0 indicates that 
those points x for which x'Ax > 0 a re the inner points of the qua-
dr ic A because they a re not ver t ices of tangential cones . 

2 . Fo r the proof it will be sufficient to assume A in its 
congruence normal form. In the positive definite case this is 
the unit ma t r ix E so that S = x !x*E - xx ! . The charac te r i s t i c 
polynomial of S is found to be 

t A E - S t - | U - x ' x ) E + x x < | » M A - x ' x ) * - 1 . 

All e igenva lues of S being non-negative one has y!Sy £ 0 whence 
follows Cauchy-Schwarz ls inequality in i ts pr imit ive form: 
x*XAyry - (x ly) ^ 0 with equality if and only if the two points 
x and y in P n - 1 coincide. 

3» In the same way, namely by calculating the c h a r a c t e r i s 
t ic roots of S, the inequality (ii) will be proved in its pr imi t ive 
form if A has the signature 2— n. Let 

j v --J -[i'-' -3 
be the congruence normal form of A and S = <f J - Jxx1 J where 

<f - X ' J X = X * - X^ - . . . - X ^ > 0 . 

Consider the eigen value problem Sz = Az which can also 
be writ ten in the form (<f J - \ E)z = x1 Jz *Jx or 

(2) ( rfE - ;\ J)z = x ' J z - x . 

It is equivalent to the following system: 
I II 

{ (a* - A )zt = x'Jz.x^ X | X | 

(<f + A )*x = x ! J z . x ^ -x^ x*. 

( ' + A )zn = x J J z - x n - x n x n 

whence 
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I. ( <r - A )^x z l - (^ + A ) fcz2*. - » - . . . + x n z n) s x ' J z m ^ 

which meaas Ax'z = 0. Therefore 

(4) ei ther A = 0 or x'z = 0 ; 

II. (<f - A ) x i z 1 4- (<f ^ X ) ( x t z x + . . . + x n z n ) = x 'Jz«x !x 

so that by (4) if A + 0 either 

(a) A » - x lx or (b) x ' Jz = 0. 

In the case (a) the eigeti value equation (2) will be 
( cfE + x !xJ)z = x !Jz*x and instead of (3) one has the system 

2x£z^ = x'Jz^x^ 

-2 (x | + . . . + xfi )z^ = x ! jzvxi (i = 2, . . . ,n) 

whose solution z is uniquely defined if xj •+ . . . -*• xf̂  is dif
ferent from ze ro . For since (f > 0 one has xx * 0 and it may 
be assumed that z 1 = x^ ; then x1 Jz « 2x* so that the z-x a r e 
readily expressible in t e rms of the XJ. 

Thus A * - x !x is another simple eigen value. 

If x£ + . . . + x£ = 0 ( i . e . all xi - 0 (i - 2, . . . . . . . n) ) 
then obviously S equals the diagonal mat r ix £ 0, -x£, . . . , - x £ ] . 

In the case (b) the system (3) will be 

(5) (tf - A ) z x = 0 , (<f +X)zi = 0 (i « 2 , . . . , n). 

If z^ ^ 0, then \ =<J* > 0 and accordingly z't-• 0 for i = 2, . . . , 
n . Since x^% 0 this is incompatible with (4). Thus <f cannot 
be an eigen value and necessar i ly z± « 0 so that A = - <r* 
appears as (n - 2)-fold eigen value of S. The corresponding 
eigen vectors a re given by the solutions of the equation x^z^-»-
. . . -i-xrizri = 0. Thus all eigen values of S a re negative except 
A • 0 and therefore S is negative semi-definite and 

(6) (xj - x* - . . . - 4 ) (y,1 - y * - . . . - y£ ) 

L ( x l Y l - x ^ - . . . - x n y n ) 2 
if 

x£ _ XJ _ . . . _ x * > 0 . 
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Since 0 is a simple eigen value of S it follows that the equality sign 
is valid if and only if x and y represent the same point in Pn-1-

4. It remains to be shown that in all other cases S cannot 
be semi-definite. It will be sufficient to investigate the case 
where A has the congruence normal form 

J = ^1, 1, - 1 , . . . , - Ï ] . 
Let 

<f «*x!Jx » x£ •+ x£ - Xj - . e . - xj; > 0. 

The eigen value equations are now the following: 

( <f - \ )z^ s xlJz-,x1 Xj 

( <f - X )*% s x ' J Z ' X ^ X, 
(7) 

( <f •+ A ) z s ffl x'Jzrx^ -x-, 

((f + > )zn = x fJz-xn -x r 

In the case I the discussion is the same as in the preceding 
section and if À ^ 0 one has the condition x*z =0 . In the case II 
there is again the alternative either (a) or (b). If X = — x!x and 
x£ 4- . . . xj > 0 the system (7) has a unique linearly indepen
dent solution and therefore — x'x is a simple eigen value of S. If 
x^ -»-... + XQ » 0, then 

x£ 
^ x ^ 
0 

-x^x* 

xî 
0 

0 
0 

-xt-xt 

0 
0 
0 

0 0 0 • • -xj" -x* 

which has the (n — 2) fold eigen value -x£ -x£ and the simple 
eigen value x£ + x£ . 

In the case (b) the system (7) becomes 

(*• - X )z% = 0, (<f -\)zK = 0, (<f + X )Z i - 0 (i > 2). 

Thus the eigen value À = <f cannot be excluded as in section 3. 
In fact let ẑ 4= 0 and therefore À = <f ; then ẑ  » 0 (i > 2) and 
z t can be found such that the condition x'z = x1z1 + x^z^= 0 is 
satisfied; if,ec ge|x^- 0, then z^ = 0. Thus the matrix S has a 
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simple positive eigen value € ; hence S is not semi-definite. This 
precludes the existence of an inequality of the type (ii) in the pre
sent case . 

So it is in all the other cases . If 

P n - p 

it is found that 

where 
<f = x !Jx. 

5. Aczel (s proof of the inequality (6) uses the method com
monly applied in the proof of Cauchy-Schwarz!s inequality. He 
observes that the quadratic function of the real variable | : 

<H = f(\) - ( ^ + y 1 ) 2 - ( ^ \ + y „ ) 2 - . . . - ( * . * + X v ) 2 

• d*s •+2x ! Jy .^ •+• y ' J y , 

has, because of <f > 0, as graph in t h e ^ -plane a parabola open 
above that cuts or touches the ^ - axis whatever y may be. Thus 
the discriminant of the function f(^ ) must be non-negative. In 
all the other cases the sign of the discriminant depends on the 
choice of the point y. 
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