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Abstract

For a ZG-lattice A , the «th partial free Euler characteristic en(A) is defined as the infimum
of all

1=0

where Fm varies over all free resolutions of A . It is shown that there exists a stably free
resolution £„ of A which realises en{A) for all n > 0 and that the function n —> en(A) is
ultimately polynomial on residue classes. The existence of Et is established with the help of
new invariants on(A) of A . These are elements in certain image groups of the projective class
group of ZG . When ZG allows cancellation, Et is a minimal free resolution and is essentially
unique. When A is periodic, Et is ultimately periodic of period a multiple of the projective
period of A .

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 20 C 10, 20 C 05,
18 G 10.

Introduction

Our aim in this paper is to compare the projective and free resolutions of
a lattice A over ZG, the integral group ring of a finite group. An example
where such a comparison has some importance is when A is periodic: this
means that there exists a projective resolution which repeats with some period
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[2] Stably free resolutions of lattices over finite groups 365

q. Does A then have a periodic free resolution also of period q ? The answer
depends on the vanishing of a particular element in a certain factor group
of the projective class group of ZG . This was discovered many years ago
in the special case A = Z by Swan [4]. We shall show here that his ideas,
supported by additional material, lead to similar results in general.

A numerical measure of the difference between projective and free res-
olutions is given by the two partial Euler characteristics introduced by the
author in [2]. It was proved there that the partial projective Euler charac-
teristics Xn(A), n > 0 , are realised by any minimal projective resolution of
A. Moreover, the associated Poincare series X n̂>o Xn(A)tn is rational of the
form g(t)/(l-t")m , where g(t) € Z[t] and m, qeZ>0. This was observed
by P. Webb [7] and depends on earlier work of Evens and Swan which enables
one to calculate (in principle) the function x(-A) in terms of data from the
modular representation theory of G. No such method of calculation seems
available for the partial free Euler characteristics en(A), n > 0. Neverthe-
less, by adopting an indirect approach, we shall prove here that Y,n>o sn(A)t"
is rational of the same form as the ^(^4)-series. There is, in general, no free
resolution that realises e(A), but we establish the existence of a stably free
resolution that does. When ZG allows cancellation, this is a minimal free
resolution and then, by a result in [3], every minimal free resolution of A
realises e(A).

The functions x(A) and e(A) are related by inequalities

The proof of our stably free resolution theorem depends on relating the set of
integers n where the first of these inequalities is an equality with the vanish-
ing of invariants on(A) that live in different image groups of the projective
class group of ZG and generalise the Swan invariant for Z mentioned ear-
lier. When A is a non-periodic lattice, on{A) = 0 for all sufficiently large
n and consequently the functions e{A) and rLx(A) are ultimately equal.
When A is periodic we shall find that e(A) is also periodic and if the pro-
jective period is q, then arq_x{A) = 0 if, and only if, there exists a partial
free resolution to dimension rq — 1 with kernel in the genus of A .

In Section 1, we discuss in detail the results needed from the earlier papers
in this series, [2] and [3]. The new invariants an{A) are defined in Section
2, the stably free resolution theorem is proved in Section 3 and a periodic
version is given in Section 4.

There are two appendices. In the first I show that every positive integer
does indeed arise as the projective period of a suitable lattice, a result that is
very likely known but which I have been unable to find in the literature. The
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second appendix is an afterthought to the decomposition theorem of [2]. It
was pointed out to me by Serge Aloneftis that this theorem is valid for all
lattices and not just those in the class JB" based on Z. His argument is given
in the appendix and is a simple adaptation of the proofs in [2].

It is a pleasure to dedicate this paper to Tim Wall. My first visit to Australia
was the result of an invitation by him to the University of Sydney in 1971.
The crucial idea for establishing the existence of the Swan invariants of this
paper occurred to me during a brief return visit in 1985.

1. Survey of earlier results

We shall employ here the same notation, conventions and terminology as
in [2] and [3], but I repeat in this section sufficient material to save the reader
from having to refer to the earlier work (unless, of course, he is interested in
proofs).

Fix now a finite group G and consider a ZG-lattice A. A projective
resolution

where Cn is the image of Pn in Pn_{ if n > 0 and Co = A, will be denoted
by (P, C) or Pt. We call (P, C) minimal if Pn -> Cn is a minimal
projective presentation of Cn for all n > 0: this means that the kernel Cn+l

has no non-zero projective module as a direct summand.
Comparing projective resolutions involves the notion of genus. Recall that

ZG-lattices A and B belong to the same genus (are locally isomorphic) if
and only if A(G. ~ B,~ , where A,G) = A®z Z,G) and Z,G) is the subring of
Q consisting of all rational numbers a/b with b prime to |G|.

An important type of decomposition of a lattice that is unique to within
genus is a projective excision. This is a decomposition A — A1 ® P, where P
is ZG-projective and A' has no non-zero projective direct summand. Then
A' is called an A-core and dG(P,G)) (the minimum number of module gen-
erators of />(G)) is called the projective rank p r^ of A. If prA — 0 we shall
say A is core-equal. So all the kernels of a minimal projective resolution of
A are core-equal.

If P, and P't are projective resolutions of A with the property that
rankP,, = rank/^ for all n > 0, then Pt and P't belong to the same genus:
this means that (PJ(G) and (P'jiG) are isomorphic augmented complexes
over A(G). Two minimal projective resolutions always have the same rank
sequences and hence they belong to the same genus. Moreover, an arbitrary
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projective resolution (P, C) of A factors as

where (P1, C1) is a minimal projective resolution of A and (Q, D) is a
projective resolution of 0. Thus, Cn ~ C'n® Dn is a projective excision of
Cn for all n > 1. We propose to call the above decomposition a projective
excision of the complex (P, C). All the non-standard results mentioned so
far are proved in [2, Section 3].

Now let (E, K) be a free resolution of A. It is minimal if En —> Kn is
a minimal free presentation of Kn for all n > 0: this means that dG(En) =
dG(Kn). The rank sequences of two minimal free resolutions may differ, but
only if ZG fails to allow cancellation. When ZG does allow cancellation,
then all minimal free resolutions belong to the same genus, we need later the
fact that a minimal free presentation 0 - » ^ - t £ - » I - » 0 has K core-
equal if, and only if, L is a Swan module; otherwise prA = 1. Recall that
a Swan module is a lattice L satisfying dG{L) = dG(L,G)). These results are
all proved in [3, Section 2].

Rank sequences may be compared by partial Euler characteristics. If Pt

is a projective resolution of A then

7=0

and the infimum of the set {xn(P)\ all P,} is ^n(^) , the nth partial projective
Euler characteristic of A . The resolution Pt is minimal if and only if Pt

realises x(A) : xn(P) = Xn(A) for all n > 0 [2, (3.4)]. If E^ is a free
resolution of A we define

;=0

and set en{A) — inf{en(£')| all Et} . This is called the nth partial free Euler
characteristic of A. One should note that \G\en(E) = Xn(E) an d (since
projective Z(G)G-modules are free) Xn{P) — l< l̂en(̂

>(G)) • Moreover by [2,
(3.4)], Xn(A) = \G\en(A^). (The functions x a n d e a r e defined over Z(G)

just as they are over Z.) Because we are here interested in comparing the
two types of Euler characteristic we shall work with e(—,G)) rather than with

* ( - ) .
If (P, C) is a projective resolution and 5 > r > 0, we denote by S{P, C)r

the segment [s, r] of {P, C):
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Then n(P, C)o is the partial (or truncated) resolution to dimension n . Note
that we choose to write [s, r] rather than [r, s]; this is done to conform with
the convention that suffices increase to the left in a resolution.

It is clear that en(PiG)) depends only on n(P, C)o . We use our Euler
characteristic notation also for partial resolutions. Note that a projective
excision of (P, C) determines a projective excision of each truncation. If
the projective excision is (P, C) ~ {P', C') @{Q, D), then we easily verify

Periodicity is usually defined in terms of the behaviour of the functor
Ext%G(A, ) . An equivalent, and for our purposes more useful, definition is
this: the lattice A has projective period q if q is the smallest positive integer
so that there exists a minimal projective resolution (P, C) of an A-core A'
in which Crq ~ A' for all r > 1 and each segment [rq - 1, (r - l)q] is a
repeat of [q - 1, 0]. (Cf. [3,(3.1)].)

All the results noted in this section will be used freely and usually without
further reference in the rest of this paper.

2. The Swan invariants of a lattice

We shall need to work with the projective class group of ZG. Let K0(ZG)
be the Grothendieck group of projective Z(7-modules and {P} denote the
element corresponding to the projective module P. The homomorphism
3 : Z —• K0(ZG) given by 8(n) — n{ZG) is split by a homomorphism
6' : K0(ZG) — Z, where S'{P} = dG(QP). Both Ker<5' and Coker S have
been called the projective class group of ZG. Four our purposes it is more
convenient to work with Coker 3 , which we therefore call here the projective
class group of ZG. We write K{ZG) = Coker 3 and [P] for the element
determined {P}. Thus [E] = 0 if E is ZG-free and [P] = [Q] if and
only if P®E~Q®F for suitable free modules E and F. The projective
module P is called stably free if [P] = 0 and thus, whenever ZG allows
cancellation, stably free implies free. If Pt is a projective resolution of A
we put

Let M be a finite Z<7-module of order prime to |G| and let

be a Z(7-projective presentation. Then Q,G) ~ P{G), whence Q is also projec-
tive and [/*]-[£] is an element of K(ZG) which depends only on M and not
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on the projective resolution (by Schanuel's Lemma). We set [M] = [P]-[Q].
Now let L be a ZG-lattice, write V = QL and define Cv to be the

subgroup of K{ZG) generated by all [L1 /L], where L1 is a lattice such that
L c L' C V and \L': L\ is finite of order prime to |G|. (This construction
is due to Swan [5, page 198]. An equivalent definition of Cv is the subgroup
generated by all [S], where 5 is a simple image of L of order prime to
|G|.) We remark that CQ is the much studied subgroup, frequently denoted
by T(ZG), generated by all [rZG + vZ], where r is an integer prime to \G\
and v = Y.geGg.

Let (P, C) be a minimal resolution of A. We know that (P, C) is
uniquely determined to within genus and hence the QG-modules QCn,
n > 0, are uniquely determined by A. Therefore so are the subgroups
Sn{A) = CQC . As Pt varies, the elements en[P] may change but our main
result here shows that no change occurs modulo Sn+l(A).

(2.1) THEOREM. If Pt and Qt are minimal projective resolutions of A
then for each n>0,

en[P]-en[Q]eSn+l(A).

We give two quite different proofs of this theorem. The second one was
shown to me by Peter Linnell and I am grateful to him for permission to
include it here. It is representation theoretic and the central idea is to show
that if L and M are lattices in the same genus and L®P = M®Q with P
and Q projective, then [P] - [Q] e CQL . My own proof is more homological
and depends on describing globally the relation between two resolutions that
belong to the same genus.

We begin with this homological proof of (2.1).

(2.2) LEMMA. Let there be given a diagram of ZG-lattices
0 • B • P v A » 0

•1 I"
0 • B' • Q • A ' > 0 ,

with exact rows, P and Q projective and both a(G) and 0(G) isomorphisms.
Then there exists a commutative diagram

0 • B • P • A • 0

4 1 I-
0 > B' > Q • A ' • 0 ,

where <j>,G) is an isomorphism.
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PROOF. (The reader may like to compare what follows with the proof of
(3.5) in [2].) Let £ be the element in ExtZG(/l, B) determined by the top
sequence and let £,' in E\tZG(A', B1) correspond to the lower one. Now

(^, B) ® Z(G) ~ Extz<c)C(^(G), B(G))

and the isomorphisms a(G) and 0(G) determine an isomorphism

under which £(G) -> a~G)£(G)0(G).

Let E = EndZG(B'), so that E(G) ~ Endz G(-6('G)). Since £('G) gener-

ates Extz G(A',Gj, JB{'G)) as a right ii(G)-inodule [2, (3.6)(iii)], we can find an

(G)
z

element fi in l i ( G ) such that

But <̂ (G) generates its Ext-group and hence we can find v e i?(G) such that

£(G) = a(G)Z(G)e(G)V'

Thus 6'G) = £,[G)Hv . If / is the annihilator of <J('G) in E,G), then /us -I € I
and so £"(G) = nE^G)+I, whence [1, page 87] there exists an invertible element

P in £(G) of the form /? = fi + S, with del. Let fi~l = p ® \ , where
p is an injective endomorphism of E and r is prime to |G|. We can and
shall assume r = 1 (mod \G\). Then

$(G)e(G)P rlB[G)

and thus <Z,dp = a£'rlB,.
We may now construct extensions as follows:

£ 0 — B -» P -» y4 -> 0
«P 1 1 1 =

£0/> 0 -> 5 ' — T -> A -> 0 : the push-out to dp

0 -»

0 -»

0 - •

B
= 1
5 '
r]
B'

1
- > / ?

T
- G

—• A

l a
- > • A '

T =

-» 0

-+ 0

-» 0

: the pull-back to a

: the push-out to r\B,
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[8] Stably free resolutions of lattices over finite groups 371

Since £6p = a£'rlB,, the corresponding extensions are equivalent. Also
the extensions (R) and (Q) are equivalent because r= 1 (mod|(/|). So we
obtain a diagram as in the statement of (2.2).

(2.3) LEMMA. Given minimalprojective resolutions (P, C), {Q,D) of
A, there exists a complex homomorphism q>: (P, C) —*• (Q, D) over the
identity on A so that q>,G, is an isomorphism.

PROOF. We construct q> inductively. So suppose we have already estab-
lished the existence of a complex homomorphism with the required properties
on truncated resolutions,

<p(n):n(P,C)0^n(Q,D)0.

T h e n we have
0 —> <~ —* P —> C —> 0
u Un+2 rn+l *-n+l u

0 - Dn+1 - Qn+i - Dn+l - 0 ,

where Cn+2 and Dn+2 are in the same genus (by minimality). Hence (2.2)
yields a homomorphism 6: Pn+l -* Qn+l which induces <p(n) and is such
that 0(G) is an isomorphism. We define <p(n+l) to be 6 on Pn+l and f{n)
on Pt for i < n . This completes the proof.

The next lemma shows that, in the situation of (2.3), for each n > 0,
en[P] - en[Q] e Sn+i(A) and Theorem 2.1 is proved.

(2.4) LEMMA. Let there be given a commutative diagram of ZG-lattices,

0 • Kn+l , Xn > • Xo • A > 0

4 4 4 1=
0 > Ln+l • Yn > » Yo • A > 0,

with exact rows, Xi and Yi being ZG-projective (0 < / < n) and f,G) an
isomorphism. Then

[Xn]-[Xn_l)+-. = [Yn]-[Yn_l] + --- ( m o d C K ) ,

where V = QKn+l = QLn+l.

This lemma is a slight generalization of a result of Swan [5, 5.1]. For the
convenience of the reader we repeat Swan's proof.

PROOF. Let M9 be the mapping cone for / : I , -» 7 t . Thus Mt =
*,_i ®Yt, 0 < i < n + I (where X_l - Yn+i = 0), and we have an exact
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sequence

Here / induces / / , (X) —> Hm (Y) . Since A', and Y, are partial projective
resolutions, Ht(X) = Ht(Y) = 0 for 0 < i < n, H0(X) -+ H0(Y) is an
isomorphism and

is injective with cokernel of order prime to |G|. Consequently Ht(M) — 0
for 0 < / < n - 1 and i = n+l, while \Hn{M)\ is prime to |G|.

Now consider the projective complex

0 - > J l / ^ - • • • - Jl/O - 0

a n d let A ^ + , be the kernel of M{ -> A / ^ , (1 < / < « ) . T h e n

0 ^ Mn+i ^ M>n+i __ Hn{M) ^ 0

is exact and so M'n+l is projective because A/n+1 is projective. The projec-
tivity of Mt and the exactness of Mm at all dimensions at most n - 1 gives
splittings

Mt ^M\®M'M (1 < / < / ! )

a n d Af[ = Af0. W e have therefore

B u t [Mn+i] - [Mn] + • • • = ([Xn] - [ * „ _ , ] + • • • ) - (IYJ - [Yn_,] + • • •) a n d
[Hn(M)] = [Ln+l] - [Kn+l] G CK . This completes the proof.

We now turn to Linnell's proof of (2.1).

(2.5) LEMMA. Let I be the annihilator in 1G of the ZG-lattice L and
J the annihilator in ZG of I as right ideal. Then

(i) / and J are two sided ideals and both ZG/I and ZG/J are lattices;
(ii) QI©QJ = QG and \G\eI + J;

(hi) CQL = CQJ.

PROOF, (i) is obvious. Turning to (ii), since QG is semi-simple and Q/ is
a two sided ideal, QG = Q/© W, where W is the annihilator of Q / . Hence
W — QJ. Let A be a maximal order containing ZG and define 70 = Q/nA,
Jo = QJ n A. Then A = /„ © /„ and therefore |G| e |G|/0 + |G|/0 QI + J.
Thus (ii) is established.
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Finally, if e is a primitive central idempotent then (QL)e ^ 0 if, and only
if, e <£ Q/ which is equivalent to e G QJ. Hence QL and QJ involve the
same simple QG-modules. Now if a simple QG-module W is a summand of
QL and D is a Z-form of W (meaning that D is a ZG-lattice contained in
W such that QD = W), then every finite simple image of D of characteristic
prime to \G\ belongs to CQ L. Moreover CQL is generated by these finite
simple modules as W varies in QL. We conclude that CQL = CQJ .

(2.6) LEMMA. Let L and M be ZG-lattices in the same genus and sup-
pose L@ P ~ M © Q, where P and Q are projective. Then there exists an
injective ZG-homomorphism 6 : P -> Q so that [Q/Pd] e CQL .

PROOF. By (2.5)(i), / n J = 0 and thus the commutative diagram
•LG • ZG/I

ZG/J > ZG/I + J
is a fibre product diagram. It follows that the same is true of

P • P/PI Q • QIQI

I 1 and 1 I '
P/PJ • P/P(I + J) QIQJ • QIQ{I + J)

because PI n PJ = 0 as P is a direct summand of some ZG(m); similarly
for Q. Now L/LJ = L/L(I + J) and the right hand side is finite by (2.5)
(ii); also MjMJ ~ L/LJ since L and M lie in the same genus. The
isomorphism

L/LJ © P/PJ ~ M/MJ © Q/QJ
induces an isomorphism n{P/PJ) ~ n(Q/QJ), where n — \L : LJ\ and this
gives an isomorphism a: P/PJ ~ Q/QJ (because these modules are lattices
by (2.5)(i)). We also have an isomorphism

L/LI © P/PI ~ M/MI © Q/QI.

By semi-local cancellation we obtain an injective homomorphism /?: P/PI —>
QIQI. whose cokernel is finite of order prime to |G|.

We now have homomorphisms
P

(1) P/PJ -> P/P(I + J) <- P/PI

Q/QJ - Q/Q(i + J) - QIQI.
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Let a_be the homomorphism P/P(I + J) -> Q/Q(I + J) induced by
a and P that induced by /?. We claim that /? can be chosen so that
P = a. Since |Coker p\ prime to |G|, P induces an isomorphism mod-
ulo |G| and then, because \G\ € I + J, P is an isomorphism. We may lift
the automorphism a/?"1 of P/P(I + J) to an endomorphism p of
P/(PI + \G\P), since this module is projective over ZG / (\G\ZG+1). Thus p
maps to a unit in EndZG(P/P(I+J)) and so, because EndZG(P/(PI + \G\P))
is Artinian, we can find a unit a in EndlG{P/{PI + \G\P)) having the same
image as p (e.g. [1, page 87]). Because P/PI is projective over ZG/I, we
may lift a to an endomorphism y of P/PI and y has finite cokernel of
order prime to \G\ since y induces the automorphism a. It follows that
|Coker yfi\ is prime to \G\ and fP = a. So we may now replace /? by yfi
and we shall call this new map ft.

Now a = ft implies by (1) that the two homomorphisms

p _ p/pj _> QIQJ _ Q/Q{1 + J) ,

p^pfpj^QIQl^ Q/Q(I + J)

are the same, whence the fibre product property yields a homomorphism
8 : P —> Q. As 8 induces a and /?, both of which are injective, so x8 = 0
implies x e PJ DPI = 0, showing 8 is injective. But a is also surjective,
whence Q = P8 + QJ and the cokernel of P is Q/(P8 + QI) = Q/P8
because QI = (P0 + QJ)I = P 0 / . We know p has finite cokernel of
order prime to \G\; consequently [Q/P8] exists and belongs to CQR , where
R = QIQI. Clearly CQR = CQC/Q/ and QG/Q7 - QJ. Now (2.5)(iii)
completes the proof of the lemma.

Theorem 2.1 is an immediate consequence of (2.6) if we recall that [Q/Pd]
— [Q] - [P] • K (P, C), (Q, D) are minimal projective resolutions of A ,
then by Schanuel's lemma,

Cn+x®Qn®Pn_x@--- ^ Dn+l®Pn®Qn_,®---

and so by (2.6),

as required.

If (P, C) is a minimal projective resolution of A, we now know that
en[P] determines an element of K(ZG)/Sn+l(A), independent of the choice
of Pt. We shall write

and call this the nth Swan invariant of A .

https://doi.org/10.1017/S1446788700032390 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700032390
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Suppose A is non-periodic. Then for all sufficiently large n, QG is
a direct summand of QCn+l (cf. the proof of (3.5) in [3], which implies
Sn+l(A) — K(ZG). Hence on(A) is ultimately zero and we have established

(2.7) PROPOSITION. If A is a non-periodic ZG-lattice, there exists an in-
teger N>0 such that an{A) = 0 for all n>N.

The behaviour of the Swan invariant sequence for a periodic lattice will
be discussed in Section 4.

3. Stably free resolutions

Our first result connects the Swan invariants with the two partial Euler
characteristics.

(3.1) THEOREM. / / A is a ZG-lattice, then for all « > 0, an(A) = 0 if
and only if en(A) = en(A{G)).

We begin the proof with an elementary extension of Swan's inequality
dG(A)<dG(A{G)) + l.

(3.2) PROPOSITION.

(i) If the free resolution (E, K) of A realises en(A), then (E, K) is
minimal in dimension n .

(ii) If the free resolution (E, K) of A is minimal in dimension n then
£n{E) equals en(A,G.) or £n{A,G.) + 1 according as Kn is a Swan module
and Kn+l is core-equal or Kn is not a Swan module and prKn+l — 1.

(iii) en(A\G)<en(A)<en(A{G)) + l.

PROOF, (i) If we continue the segment [n — 1,0] of Et with a minimal
free presentation of Kn we obtain a new free segment [n, 0] and hence

en(E)>dG(Kn)-dG(En_l) + --- >en(A).

By hypothesis en(E) = en{A) whence (i) follows.

(ii) Take a projective excision

(E,K)~(P,C)(B(Q,D),

where (P, C) is a minimal projective resolution of A and (Q, D) is a
projective resolution of 0. Then Kn+1 ~ Cn+i 8 Dn+], whence
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Since En —> Kn is minimal free, prA^+1 is 0 or 1 according as Kn is, or is
not, a Swan module [3, (2.2)].

(iii) The first inequality is immediate from the meaning of en and the
second follows from parts (i) and (ii).

Assume (P, C) is a projective resolution of A that is stably free at some
dimension k > 0 . We define an adjustment of (P, C) at dimension k to
be a new projective resolution (/*', C1) which coincides with (P, C) on
[k-2, 0] and (oo, k+l], while P'k = Pk®F and PJc_l = Pk_i @F, where
F is ZG-free and is chosen so as to make P'k free. Thus (P1, C1) is

rk+\ rk™r rl-rr rk-2

\ / \ / \ y

It is important to note that an adjustment at k does not affect sn(P,G.)
or en [P] for any n > k .

(3.3) LEMMA. Let (E, K) be a stably free partial resolution of A to di-
mension n - 1 with Eo free. If on{A) = 0 then {E, K) can be extended to
dimension n by a stably free and minimal projective presentation En —• Kn to
give en(E,Gj) = £n(^(G)) - en(A). The presentation En —> Kn can be chosen
to be minimal free if Kn is a Swan module.

PROOF. Extend (E, K) to dimension n by a minimal projective presen-
tation 0 -» Z,n+1 —• Rn —y Kn —<• 0 and call the extension (R, L). If

(R,L)~(P,C)®(Q,D)

is a projective excision, then Ln+l being core-equal implies Dn+1 = 0 and so
en[<2] - 0. Hence en[R] = en[P] whence en[R] e Sn+l(A) since an(A) = 0
(Theorem 2.1). But

en[R] = [Rn]-[En_{] + -- =[Rn)

and so [Rn] e Sn+l(A). We may now apply Lemma 4.2 in [5] to obtain a
minimal projective presentation 0 —* Kn+l —> En —» Kn —* 0 with [En] = 0.
If (E, K) denotes the original (E, K) extended by this stably free term,
then

= en(P{G)) (since Dn+l = 0)
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Now adjust £„ at all positive dimensions to obtain a free partial resolution
E[. Then £n{E,G.) = £n(E') and, of course, en(E') > en(A), whence en(A) =
en(E,G,), as required. Finally, note that if Kn is a Swan module we may
choose /?„ to be free.

n

PROOF OF THEOREM 3.1. Lemma 3.3 establishes the "only i f half. So
now assume en(A) = en(A^) and choose a free resolution (E, K) realising
en{A). Then En —* Kn is a minimal free presentation and Kn+l is core-equal
(Proposition (3.2)). Hence if (P, C) is a minimal projective summand of
{E, K) in a projective excision, en[E] = £n[P] and the left hand side is 0,
whence an{A) = 0. This completes the proof of Theorem 3.1.

For any ZG-lattice A we define

(3.4) THEOREM. Given a "LG-lattice A, there exists a projective resolution
(E, K) of A with the following properties:

(i) Eo —> A is a minimal free presentation;
(ii) if n G I (A), £„ —> Kn is minimal projective and stably free;

(iii) if n $ I (A), En^Kn is minimal free and not minimal projective;
(iv) en(E{G)) = en(A)foralln>0.

REMARKS.

(1) Conditions (ii) and (iii) for n = 0 do not conflict with (i) because
0 e I (A) if and only if A is a Swan module, in which case Eo —> A can
be chosen minimal free and minimal projective. Moreover, for any n, if
n e I(A) and Kn is a Swan module, then Et can be taken free and minimal
projective at n (Lemma 3.3).

(2) If ZG allows cancellation, then stably free means free and hence £ , is
a minimal free resolution which, by (iv), realises e(A). Then every minimal
free resolution realises e(A) because any two such have the same rank se-
quences [3, (2.5)]. We can see this without using Swan invariants as follows.
Suppose (E, K) and and (E1, K1) are free and minimal at dimension n
and that {E, K) realises en(A). We must show that {E1, K1) also realises
en(A). Now Kn ® free ~ K'n® free, whence Kn is a Swan module if and
only if K'n is one [3, (2.3)]. Hence eH{E) = en(E') by (3.2)(ii).

(3) Two resolutions with the properties of (3.4) must have the same rank
sequences and so they belong to the same genus.

(4) If we adjust Et at all integers in [n, 1] n I (A), we obtain a partial
free resolution to dimension n that realises en(A).
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PROOF OF (3.4). Assume (E, K) has been constructed up to dimension
« - 1. If n e I(A), then (3.3) gives what we want. Suppose n £ I (A).
Choose a minimal free presentation En —> Kn and adjust (E, K) at all di-
mensions in [n- 1, l]n/(^4), so producing a partial free resolution n_1(£'')0

with £„_,(£') = en_l(E{G)). Now en{E(G)) = dG{En)-tn_x(E') andby(3.2),
Kn i s n o t a S w a n m o d u l e : o t h e r w i s e e n ( E n —• E ' n _ l —> • • • ) = sn(E,G>) =
Sn(A(G))- H e n C e en(E{G)) = e

n(A(G)) + l = En(A) a n d En ""> Kn i s n O t

minimal projective. This completes the proof.

(3.5) COROLLARY. Let A be a periodic ZG-lattice. If s is a multiple of
the projective period of A, then os_{(A) = 0 is a necessary and sufficient
condition for the existence of a partial free resolution

where B is in the genus of A and admits a projective excision of the form
B = B' © ZG{m)

PROOF. Suppose a^^A) = 0 . The resolution (E, K) of A given by
(3.4) has Ks core-equal and so Ks is in the genus of an /1-core. Suppose
B = Ks @ZG(m) is in the genus of A . Adding ZG(m) to Es_x and adjusting
(E, K) at all integers in [s - 1, 1] n I (A) produces a partial free resolution
as required.

Conversely, taking a projective excision of the given partial resolution
shows

where Pt is the minimal projective summand of the excision. Hence e^^P]
- 0 and so os_{(A) = 0.

REMARKS.

(1) If the genus of A in (3.5) consists of only one isomorphism class then
as_, (A) = 0 is a necessary and sufficient condition for the existence of a free
resolution of period s. An example of this situation is, of course, A = Z.
This is Swan's old result.

(2) There are weaker conditions that still guarantee in (3.5) a free resolu-
tion of period s. Here is an example.

If, for every B in the genus of A, there exists a projective module P so
that A® P ~ B © P and "LG allows cancellation, then as_{(A) — 0 implies
A has a periodic free resolution of period s.

Concerning the hypothesis on the genus of A, note that in general, A and
B belong to the same genus if and only if there exist projectives P and Q
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in the same genus so that A © P ~ B © Q: for we may embed B in A with
finite cokernel M of order prime to \G\, 0—>B^A^M—>0, and then
take a projective presentation of M, 0—•/>—>Q—>A/—•().

The italicized assertion above is a consequence of Corollary (3.5) and the
following result.

(3.6) LEMMA. Let 0 -> B -> ZG(m) —> L -> 0 be a free presentation and

assume B © Z(7(fc) ~ 4̂ © ZG(k). 77je« ?/?ere always exists a free presentation

—* A© MJ —> £(j -»L->U;

while if ZG allows cancellation or m>2, there is a free presentation

0^A-+ ZG(m) -> L -* 0.

PROOF. Since B © ZG(2) satisfies the Eichler condition, we obtain
B©ZG{2) ~A® ZG{2) by cancelling ZG(k~2) (assuming k > 2) and hence
a short exact sequence

Let P © ZG(2V = ZG(m+2). Then i» © ZGcj) is free since m > 1 so that
ZG{m+l) allows cancellation, while if ZG allows cancellation or m > 2,
P itself is free. Now <j> induces an injection A -* P whose cokernel is
isomorphic to L.

4. Periodic stably free resolutions

We begin with some remarks on Poincare series. Let <f> and y/ be Z-
valued functions defined on Z> 0 . If there exists N such that </>(«) = y/(n)
for all n > N we shall say that <f> and y/ are ultimately equal. The func-
tion y/: Z > 0 -+ Z is called PORC modulo q (polynomial on residue classes
modulo q) if there exist polynomials fo(t), . . . , fq_l(t) in Q[t] so that for
n = rq + i, 0 < i < q , we have y/{n) = ft(r). A function is called ultimately
PORC if it ultimately equals a PORC function.

The Poincare series associated with (j) is the formal power series

n>0

and it is a well-known fact that <f> is ultimately PORC modulo q if and only
if P(<f>) is a rational function of the form

- t")")m
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where g(t) e Z[t] and m is a positive integer. Note that if <f> is periodic
with period s (meaning that (j>(n + s) = <f>{n) for all n > 0) then

I <P)

As was noted in the introduction to this paper, for every ZG-lattice A,
the function e(A,G)) is ultimately PORC. We now claim the same of the
function s(A).

(4.1) THEOREM. If A is a ZG-lattice, then e(A) is ultimately PORC.

When A is non-periodic we already effectively know the result: by (2.7)
and (3.1), e(A) is ultimately equal to e(A^), whence e(A) is ultimately
PORC because e(A,G.) is. There remains the periodic case and this is a
consequence of the following result.

(4.2) PROPOSITION. If the ZG-lattice A is periodic with projective period
q, then e(A) is periodic with period a multiple of 2q.

PROOF. We may work with twice the projective period and so shall assume
without loss of generality that q is even. Let A = A' © Q be a projective
excision and (P1, C) a periodic minimal projective resolution of A1. If
(P, C) is the projective resolution of A which coincides with (P1, C) at all
positive dimensions but has Po — P'Q®Q, then (P, C) is a minimal projective
resolution of A. For any 0 < i < q and k > 0 we have Pkq+i = Pt and
Pkq = pq = p'o. Hence if 0 < / < q and k > 0,

and {-\)l+q = (-1) ' because q is even. Let e be the exponent of K(ZG)
(recall that the projective class group is finite). Then for all m > 0,

= et[P].

Now Skq+j(A) = Sj(A) for all j > 0 and k > 0 and therefore et[P] 6
Si+l(A) if and only if emeq+i[P] € Smeq+i+x{A). Thus i e I (A) if and only
if meq + i e I (A) for all m > 0 and 0 < i < q . Since e(^(G)) is periodic
of period # , it now follows (by (3.1)) that e{A) is periodic of period eq.

EXAMPLE. Let G be cyclic of prime order and chosen so that K(ZG) ^
0. We may therefore find a non-free projective ideal Q in ZG. Then
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e(G(C)) = ( 1 , - 1 , 1 , - 1 , . . . ) a n d e(G) = (2 , 0 , 2 , 0 , . . . ) , whence I(Q)
is empty. The usual minimal free resolution of Z of period 2 is also minimal
projective and so e(Z) = e(Z(G)) = ( 1 , 0 , 1 , 0 , . . . ) and /(Z) = Z > 0 . The
kernels in this resolution are Z and g, the augmentation ideal. Now S0(Z) =
CQ = 0 and S{(Z) = CQfl = K(ZG). Letting ^ = Z © g , w e s e e from
the calculation in the proof of (4.2) that at{A) e Si+l(A) if and only if
[Q] e Si+l(A). T h u s I(A) = 2 Z > 0 a n d e(A{G)) = ( 2 , - 1 , 2 , - I , . . . ) ,
w h i l e e ( ^ ) = ( 2 , 0 , 2 , 0 , . . . ) .

(4.3) THEOREM. If A is a periodic ZG-lattice, then there exists a stably
free resolution (E, K) of A which is ultimately periodic of period a multiple
of the projective period of A and has all the properties of the resolution in
Theorem 3.4.

PROOF. Let {E, K) be the stably free resolution of (3.4). By (4.2), e(A)
is periodic of some period r , an even multiple of the projective period of
A. Since e{A,G.) also has period r,

(1) m

Let (P, C) be a minimal projective resolution of A occurring in a projective
excision of (E, K). If m € I (A), then Km+i = Cm+l while if m <£ I(A),
then Km+l is in the genus of Cm+l®ZG. The lattices Cr, C2r, ... all belong
to a single genus and therefore, using also (1), the lattices Kr, K2r,... belong
to a single genus. By the Jordan-Zassenhaus theorem we can find m < « so
that Kmr ~ Knr. Replace ^(E, K)nr by repeats of the segment [nr— 1, mr)
and call the resulting resolution E\.

Now

is exact and so, because (n - m)r is even,

enr-\-
enr-2+ ••-emr = 0>

w h e r e et = prEt. H e n c e if 0 < / < ( « - m)r a n d k > 0 ,

enr+i+k(n-m)r(E(G)) ~ emr+i^(G)>-

But

emr+,(£('c)) =en,r+i(E(G)) Ow construction)

=<W+,M) (by (3.4))

=enr+i+k{n_m)r(A) (by (4.2)).
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Thus E\ is a stably free resolution with the four properties of (3.4) and it is
periodic beyond mr with period (« - m)r.

Appendix 1

PROPOSITION. Given a positive integer N, there exist a group G and a
"LG-lattice A having projective period N.

PROOF. In the arithmetic sequence 1 + kN choose an odd prime p. Find
1 < r < p such that r has order N modp . Let A = (a) be cyclic of order

p, B = (b) be cyclic of order N and let B act on A by b~]ab = d. If
G denotes the split extension of A by B, then the trivial ZG-module Z
has projective period 2N (e.g. [6]). This proves the proposition for all even
integers.

Henceforth assume N is odd and take a periodic minimal projective res-
olution (P,C) of Z. Then

is exact and C2Ar = Z. Hence "L®CN is periodic with N a period. We claim
the exact (projective) period is N. Suppose not and that the projective period
is I < N. Then / divides N (otherwise the greatest common divisor of /
and iV is a period and is strictly smaller than /) and so / is also odd. Now

whence

(1) H\G, )®Hi+N{G, )~HM(G, )®

We know that H'(G, Z) = 0 for all odd /'. So with / even in formula
(1),

(2) Hl{G, Z) ~ Hi+l+N{G, Z).

The projective period of Z is the smallest k such that H'(G,Z) is cyclic
of order \G\ [4, Lemma 4.2]. Taking i = N — I in (2) gives

HN~'(G, Z) ~ H2N(G, Z) ~ H°(G, Z) (Tate cohomology)

and therefore N - / is the projective period of Z. This is a contradiction,
whence I — N and the Proposition is proved.

Appendix 2

The decomposition theorem of [2] is the following result.
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THEOREM. Suppose (P, C) is a minimal projective resolution of the "LG-
lattice A. Then Cn+l decomposes as

Cn+l=Dl®---®Dk

with all Di ^ 0 if and only if there exists a decomposition

A © ZG(t) =Lx®---@Lk

for some t >0, with all L. non-projective, and satisfying

The difference between the above statement and (7.1) of [2] is that in (7.1),
A is restricted to a special class of lattices. We claim that this restriction is
unnecessary.

The sufficiency part of the theorem as given in [2, Theorem (5.1)] is valid
for all lattices. There remains the necessity. The following argument is due
to Serge Aloneftis. We shall write A = Z,G)G.

LEMMA. Let (E, K) be a A-projective resolution of the A-lattice V and
assume

with all Mt ± 0. Then there exists t > 0 such that

and projective resolutions ({E, tK) of Ni (1 < i < k) satisfying

Xn(E) = XnUE) + • • • + Xn(kE),

where Et = Ei for all i > 0 and E0 = EQ® A(0 .

PROOF. For a given A-lattice W we denote its Z(G)-dual Homz (W, Z(G))

by W*. For each / = 1, . . . , k , choose a projective resolution (tF, (. B) of
M*. The direct sum of these gives a projective resolution of

and hence Schanuel's Lemma, applied to this resolution and the dual of
(E, K), both truncated at dimension n , yields

for suitable t, s in Z> 0 .
The dual of n(tF, iB)0 is
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When i < k, we view (1) as the nth truncation of a projective resolution
(jE, jK); while (kE, kK) is to be a projective resolution whose nth trunca-
tion is (1) but with A(s) added to kFn and kB*+l . If we set Nt = tB*+l for
i <k and Nk = kB*n+x © A( i ) , then 0*Lj(,£, tK) is a projective resolution
of Nx®---®Nk ~ V © A w , with (n + l)st kernel Ml®---®Mk. Since
(£•, A) is also a projective resolution of F © A(r), Schanuel's Lemma yields

Kn+l © A(<?) ~ Ml © • • • © Mk © A(/)

for suitable e, f in Z > 0 . Semi-local cancellation gives e — f, which is
exactly the required equality

We return to the theorem and assume Cn+l decomposes. The minimality
of (P, C) ensures that Cn+l is core-equal, whence so is each summand Dt.
Apply the lemma with V = A(G), (E, K) = (P, C){G) and M. = (Z).)(G).

Because E is a minimal projective resolution of V © Aw ,

Xn{E) = Xn(V © A(") = Xn{A © ZG{1)).

Let A@ZG^ = L{®-- -®Lk be a decomposition with (£,)(G) — Nt for all / .
Since M( is core-equal, a projective excision of {E shows Xn(iE) = Xn(N{)
and so Xn(jE) — Xn(^j) • The conclusion of the lemma is now the required
equality for xn

 m t n e theorem.

Linnell's theorem (6.1) in [2] is thus not needed for the decomposition
theorem. Of course, it comes in crucially when we search for conditions
under which A © ZGW decomposes non-projectively. If Z (as in [2]) is the
class of all ZG-lattices that occur as direct summands of kernels (including
the Oth kernel) in projective resolutions of Z © ZG(f> for all t > 0, then for
every A in 2 , A® free decomposes non-projectively if and only if n(A) is
a disjoint union of closed subsets of n(G).

Are there similar graphical criteria for general A ? Moreover, do there
exist sensible combinatorial conditions on G that ensure the additivity of
Xn on a non-projective decomposition?
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