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Abstract

Let a,, ...,<*„ be non-zero algebraic numbers and let li(at),.. ., /n(an) denote arbitrary fixed
values of the logarithms of av ..., an, respectively. Given that /((ai) '„(<*») are linearly
dependent over Q, the existence of a non-trivial dependence relation between these numbers with
integer coefficients of low absolute values can be proved. Existing results of this kind give bounds
for the absolute values of the coefficients which are expressions in the degree D —
[Q(alt . . . , a,): Q], the heights of a,, ...,<*„ and the magnitudes of the logarithms involved.

In the present paper it is shown by means of Baker's method that one can suppress the
dependence on D completely-at the price of the occurrence of more branches of logarithms in the
bounds. An application of this feature is given.

1980 Mathematics subject classification (Amer. Math. Soc.): 10 F 35.

1. Introduction

Let a,, . . . , an e C be non-zero algebraic numbers; let ^(a,), . . . , ln(an) denote
arbitrary fixed values of the logarithms of a,, . . . , an, respectively. Put D =
[Q(a,, . . . , a J : Q] and let H(a,) denote the classical height of a,, that is to say,
the maximum of the absolute values of the coefficients in its minimal poly-
nomial in TJ[X\. We consider the following problem. Let it be given that
li(at), . . ., ln(an) are linearly dependent over Q, that is that there exist
qv . . . , qn S Z, not all zero, satisfying
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[2 ] Degree-free bounds for dependence relations 497

Prove that the qv may be chosen such that their absolute values are relatively
small in terms of n, D, the //(a,) and the |/,(a,,)|.

Results of this kind can be found in Baker (1975), Bijlsma (1978) p. 53 and
Waldschmidt (1980). The related problem of multiplicative dependence was
treated by Van der Poorten and Loxton (1977). They assumed the existence of
? „ . . . , ? „ £ Z, not all zero, satisfying
(2) «?• • - • « « . = 1

and showed that relatively small qv exist with the same properties.
In all quoted results, the dependence on D (if already given explicitly) is

expressed as a factor greater than D 2", when D is large, in the occurring bounds.
We remark, that a refinement of the method of Bijlsma (1978) enables one to
reach a factor about D". On the other hand, taking n = 2, a, = 2, a2 = 2l/D

and principal values of the logarithms shows that the dependence on D cannot
be suppressed completely. The purpose of this paper is nevertheless to give
bounds which have no explicit dependence on D.

As a basis for the technique that we shall use, we state the following lemma:

LEMMA 1. For a, <n, £ C and xx, . . ., xn e Z, not all zero, satisfying
(JC,, . . . , xn) = 1, the following statements are equivalent:

i) there exist values ^(a,), . . . , ln(an) of the logarithms of a,, . . . , an respec-
tively such that

*,/,(«,)+ • • • + xJll(am)-0;
ii) «?' • • • <C = 1.

PROOF. Clearly i) implies ii). Now assume that ii) holds; this implies that there
is a rational integer k satisfying

x, Log a, + • • • +xn Log an = 2kiri.

As (x,, . . . , xn) = 1, there exist ku . . ., kn e Z satisfying AC,JC, + • • • +knxn

= -k. If we define /„(<*„) := Log o, + 2k¥iri for v = 1, . . . , n, we have

n n n

2 *„/„(«.,) = 2 xv Log «» + 2iri 2 Kx, = 2fari — 2km = 0.
, = i , = 1 , ,=1

Multiplicative dependence, once estabhshed, is invariant under conjugation; it
is a consequence of Lemma 1 that the same is true for linear dependence of
logarithms. This is formulated in the following property:

Let bit . . . , bn £ Z , not all zero, such that

*>,/,(<*,)+• • • +bnln(an) = 0.
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498 A. Bijlsma and P. L. Cijsouw [3]

Let a be a Q-isomorphism of Q(a,, . . . , <*„) into C. Then there also exist values
/f(a(a,)), . . . , l*(o(an)) of the logarithms of 0(0,), . . . , o(an) respectively such
that

- - - +bni;(o(an))=0.

Indeed, put xv := bv/(bv . . . , bn) for v = 1, . . . , n. Then a,, . . . , an and
xx, . . . ,xn possess property i) in Lemma 1, and thereby property ii); from this
we deduce that a(a,), . . . , a(«n) and JC,, . . . , xn possess property ii) and thereby
property i). The statement follows upon multiplication by {bx,. . ., bn).

Thus, if there exists a linear dependence relation between logarithms of
a,, . . . , an, we have in fact D such relations, all with the same coefficients,
between logarithms of conjugates of ax,. . ., an. Since each of these relations
can be considered as a vanishing linear form, we can apply Baker's method
simultaneously to all these forms, with one auxiliary function for each form. As
in Bijlsma (1978) we shall construct the desired low dependence relation from
the frequencies, used in the auxiliary functions. The final bound will be indepen-
dent of D, but will contain the magnitudes of all logarithms of all conjugates
involved.

It should be noted, that the above procedure cannot be used in order to
obtain similar theorems for multiplicative dependence instead of linear depen-
dence of logarithms. For, if for example n = 3, a, = 2, a2 = 3, a3 = -1 /6 , the
numbers «„ a2, a3 are multiplicatively dependent because a\a\a\ = 1; but no
product with relatively prime exponents can equal 1, and thus, by Lemma 1, no
linear combination of logarithms of otx, a2, a3 can be zero.

The sequel of this paper consists of three sections. In the next section we state
our main theorem and we formulate or give reference to the lemmas we need.
We remark, that Lemma 3 is of some independent interest. In section 3 we prove
the theorem; the final section contains an application.

2. The main theorem

We shall use the absolute logarithmic height h(a) of an algebraic number of
degree d, defined by

h(a) := d~l log M(a)

where
d

M(a) := a II max(|a,(a)|, 1);
5 = 1
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[4 ] Degree-free bounds for dependence relations 499

here, a is the leading coefficient of the minimal polynomial of a and
a^a), . . . , aj^a) denote the conjugates of a. For a detailed description of the
properties of the absolute logarithmic height we refer to Waldschmidt (1980);
here we only recall that

(3) h(a) < rf-'{log H(a) + log d) < log H(a) + 1.

Our theorem can be formulated as follows:

THEOREM. Let a,, . . . , an G C be non-zero algebraic numbers. Put
K := Q(av . . ., an), D := [K : Q]. Let ox, . .. , oD denote the Q-isomorphisms of
K into C, where a, is the identity; let l^io^a,,)) be an arbitrary fixed value of the
logarithm of a^a,) for jn = 1, . . . , D and v = 1, . . . , n, with / ^ ( ^ ( a , ) ) ¥= 0,
v = 1, . . . , n.

Suppose

Av > max(/j(aj, =max ^^(o^a,))], l), v = 1,. . . , n.

Define

fi, := Q/Av, v = 1,*. . . ,n;

S20 := max(£2, e).

Let E be a number satisfying

I eA, \
(4) e < E < min min expM ), •—-.—-—-— .

/ / there exist bv . . . , bn G Z , not all zero, such that

VM,iK(«i)) + • * * +bJ^{%M) = 0, [i = 1,.. . , D,

then there exist qv . . ., qn G Z, not all zero, such that

and

(5) \q,\ < CO, log" fi0 • log(B0£) l o g - E, v=\,...,n,

where C is an effectively computable number that depends only on n.

REMARK 1. When A > max(A(a,,), 1), v = 1, . . . , « , and L > ll^i^
ju = 1, . . . , D, v = 1, . . . , n, then we can use Av = max(/4, L), v = 1, . . ., n,
and

E = minlmax(e/l, eL), max! — ,e\\.
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With this choice,

max(cf'^4, e) < E < c2A

and thus

Cj1 max(logv4, 1) < log is < c3 max(log/4, 1)
where c,, c2, c3 are numbers, greater than 1, depending only on L. Now (5) takes
the form

\qv\ < CxA
n~x max(log,4, 1), v = 1, . . . , n,

where C, is an effectively computable number that depends only on n and L.

REMARK 2. Using inequality (3), one can easily reformulate the theorem as
well as its consequence indicated in the first remark, in terms of the classical
height.

REMARK

ma

3.

IX

When

|/ (,
D *i'"

is an algebraic

o,))| > max
( i - i , . . . .

integer,

|log|a

we have

,(<OII > D-1
D

2
D

> D1 2 max(lqg|o,,(eO|, 0)

so then
max(/?(«„), =max J / ^a /o , ) ) ! , l) = max( =max , l ) .

The auxiliary results we shall use are either very well known or contained in
Waldschmidt (1980), except for two that we formulate explicitly:

LEMMA 2. Siq>pose au . . . , a,, algebraic and put D := [Q(a], . . . , an): Q].
Then there exists a primitive element a for Q(a,, . . . , an) of the form

a = elal + • • • +enan,

where e x , . . . , e n a r e n o n - n e g a t i v e integers satisfying « , + • • • + e n < D 2 .

PROOF. From Mignotte and Waldschmidt (1977), Lemme 3, by induction.

LEMMA 3. Let £ „ . . . , £ , be algebraic numbers. Put K := Q(| , , . . . , £,),
D := [K:Q]. Let au . . . , aD denote the Q-isomorphisms of K into C. Let P e
Z[Xly . . . , Xn] have degree at most K, in Xv for v = 1, . . . , « . Then either

,, . . . . Q)\ > exp(-Z) 2 A,
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PROOF. Write

P= 2 ••• 2

then

D= n
H— 1

2 • • 2

Put dj, := dg(£,), r = 1, . . . , « . Then £„ has exactly rf, different conjugates, each
of which occurs D/dr times among aj(£), . . . , O/>(^); thus each of the different
conjugates of £, occurs in the above expression for rj to a power at most DKr/dv.
Let ar denote the leading coefficient of the minimal polynomial of £„; then
Hilfssatz 17 of Schneider (1957) implies that

den(i,) < fi a?*-'*.
y-i

However, as TJ is clearly invariant under conjugation and thus a rational number,
we conclude that either TJ = 0 or

hi > fi a;"*-'*.

The lemma now follows from the trivial estimate

a, < exp(deh(Q), v=\,...,n.

3. Proof of the main theorem

For abbreviation, we shall use

U := fi log" £20 • log2 (flo£)log(ZJSVB) log-"-lE

and

A(z; R) = (z + 1) • • • (z + R)/R\, R G N;

further, *<(/?) denotes the least common multiple of 1, . . . , R. By c4, c5, . . . , we
shall denote effectively computable real numbers greater than 1 that depend
only on n. By x we shall denote some real number greater than 1; additional
restrictions on the choice of x will be formulated at later stages of the proof.
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502 A. Bijlsma and P. L. Cijsouw 17 ]

I. Suppose tha t bn ¥= 0 a n d def ine B := max(|Z?,|, . . . , |6 n | ) . Also define

K, := [ x 4 n + X log" fl0 • l o g ( Q 0 £ ) l o g - £ ] , v=\,...,n;

M := [jc4n+6fl log" fi0- Iog(fl0£) \og"-xE][D\o%{D%B)\,

R:= [Dlog(DSl0B)];

S := [xAD log(B0£) log(Z>S20fl) log-1^];

r := [*4"+8fl log"+1 Q,,- log(00£) log"""^].

For v — 1, . . . , n we have log E < 4̂,,, so

log" E < log""1 E • log(Q0£) < 0, log(S20£:) < ft_ log" fl^- log(ao£),

which implies K, G N. By similar ways of reasoning, M/ R, S and T are positive
integers and S/ R > 1 when JC is more than some absolute constant.

The M functions

(A(z + r,; /?))'% r , = 0 , . . . , / ? - 1, r2 = 1, . . . , M//?,

will, in some arbitrary order, be denoted by AQ(Z), . . . , AA/_1(z). We introduce
the auxiliary functions

Kx-\ Kn-\ M-\ D-\

/t, = 0 fen=0 m=0 rf

where a is a primitive element for K satisfying the conditions of Lemma 2, and
where the />(k, m, d) = p(kx, . . . , kn, m, d) are rational integers to be de-
termined later.

As

2 *,U "
»=i

we have

where the summation ranges over all n-tuples T = (T0, . . . , TB_,) of non-negative
integers satisfying |T| := T0 + • • • +rn_x = t, and where

W-= 2 ••• 2 °2ID1

X "S (A;6B - A:n6,.)T' X expf 2 KU
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181 Degree-free bounds for dependence relations 503

Now consider the system of linear equations

(K*) W ' ' ' +T"-*"i» = o, s = o, . . . , s - 1, H < T - 1,
in the Kt • • • KnMD unknowns p(k, m, d). The coefficients of these linear
equations are polynomial expressions in a, a{, . . ., an with rational integer
coefficients; see Lemma 2.4 of Waldschmidt (1980). We can bound the lengths
of the polynomials involved by

The degrees in a of these polynomials are less than D and the degrees in each a,
are less than K^S < x4n+iDU/Ap. The absolute logarithmic height of a, is at
most Av and the absolute logarithmic height of a is, by Lemma 2.7 of
Waldschmidt (1980) and by Lemma 2, at most

n

2n(n + l)log D + log n + 2 ^M < cs l o§ D + C5 max(y4,, . . . , An)

the last inequality because log~"+1.E > Sl~lmax(Av . . . , An). The total number
of equations is less than

ST" < x4n2+Sn+4Dtt" log"2+"fi0-
 1 2 1

while the number of unknowns is A', - - - KnMD > xDST" when x exceeds a
certain absolute constant. According to Lemma 2.1 of Waldschmidt (1980),
there is a non-trivial choice for the p(k, m, d) such that F, T(.s) = 0, s = 0, . . . ,
S - \, |T| < T - 1, while P := max|/?(k, m, d)\ is at most exp(c5x

4"+9DU).
Note that the numbers F2r(s), . . ., FDT(S) are conjugate to Fl;£s) for each T and
s, so that the same choice of p(k, m, d) gives us

(7) F^T(s) = 0, s = 0, . . . , S - 1, |T| < T - 1, p = 1, . . . , D.

II. Define J := [log(x3r"-1)]. Fory = 0, . . . , J we put S, := [e'S], T} := T -
j[T/2J]. Then, by our special choice of the/»(k, m, d), we have tovj = 0, . . . ,J

(8) / ; » = 0, s = 0, . . . , Sj - 1, |T| < Tj - 1, ix = 1, . . . , D.

This is proved by induction; fory' = 0 the assertion is precisely (7). Now suppose
that (8) holds for some j < J - 1. Then, if |T| < 7}+, - 1 and r < [T/2J], we
have

https://doi.org/10.1017/S1446788700024319 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700024319


504 A. Bijlsma and P. L. Cijsouw (9 ]

where the summation ranges over all «-tuples p = (PQ, . . . , pB_,) of nonnegative
integers satisfying \p\ := p0 + • • • + p n _ , = /•, and where T + p := (T 0 +
p0, . . . , r n _ , + pn_i) . Clearly |T + p | < 7} — 1 and thus, by the induction hy-
pothesis,

/£>(s) = 0, 5 = 0, . . . , Sj - 1, H < Tj+l - 1, fi = 1, . . . , D, r < [ T/2J].

By Lemma 7 of Cijsouw (1974),

(9) max | ^ T ( z ) | < 2 max |F,,T(z)| • |

If |T| < TJ+l — 1, some computations show that

max \FJ(z)\ < 'exp(c6e

and
SAT/2J]

j
therefore, if we choose x > c6c7, substitution in (9) gives

max I J F ^ Z ) ! < exp(-CgVx4n+10D{/)

thus in particular

s = 0, . . . , £,+ 1 - 1, |T| < TJ+l - 1, ju = 1, . . . , D.

Therefore

fi | ( K « ) ) X I + - + T-*U*)I < exP(-c9-Vx4"+10Z)2C/),
s-%..., Sj+i- 1,|T| < 7 } + 1 - l .

Now for these values of s and T, the expression (v{R)y<>b*l+ ''' +T"-'FlJis) is a
polynomial in «, a,, . . . , a, with rational integer coefficients; the degree of this
polynomial with respect to a is at most D and its degree in a, is at most K,Sj+i.
Thus, by Lemma 3 above, either FxJ<s) = • • • = FDT(S) = 0 or

(11) II |(K*))To*>;i+ " ' + T - ' ^ T ( * ) I )
11=1

Combining (10) and (11), and choosing x2 > c9cl0, gives F^
= 0 for J = 0 , . . . , SJ+l - 1, |T| < 7}+ 1 - 1. This completes the proof of (8).

III. Takingy = J, n = 1 in (8) yields

FhT(s) = 0, S = 0,...,SJ-1,\T\<TJ-1.

https://doi.org/10.1017/S1446788700024319 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700024319
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Substitution in (6) shows that

/ ? > ( , ) = 0, s = 0,...,SJ-l,t=0,...,TJ-l.

Thus the number of zeros of F, in W := {z G C: \z\ < S, - 1} is at least

5,7} > cffj

However, if F, is not identically zero, the corollary of Theorem 1 of Tijdeman
(1971) implies that the number of zeros of F, in W does not exceed

3 * . • • • KnM + ASjiA^ + • • • +AnKn)/E

In this case, comparison of the two estimates for the number of zeros of F, in
W yields a contradiction if we choose x > cncxy Thus F, is identically zero. As
the p(k, m, d) are not all zero, the polynomials Am(z) are linearly independent
and a has degree D, it follows that two of the frequencies of F, must be equal.
This shows that there exist two non-identical /i-tuples (A:,, . . . , kn) and
(k\, . . ., k'n) of non-negative integers that satisfy

while

max(*>, k$<K,-l< x4n+4Slv log" fl0 • log(noF)log-nF> v = 1, . . . ,

Taking ^ := /c, — /ĉ  for v = 1, . . . , n proves the theorem with C = x*"+A.

4. An application

Let a T£ 0, 1 be an element of a number field K. It is known, that bounds can
be given for the exponents q for which a = f/J* where $, fi E: K and f is a root
of unity; see for example Schinzel (1978), Lemma 1. We propose to extend this
kind of bounds to products a?1 a^ instead of a, in the case of a totally
real field K.

COROLLARY. Let K be a totally real field of degree D; let a,, . . . , aD denote the
Q-isomorphisms of K into R. Let a, • • • a,, be multiplicatively independent ele-
ments of K and choose R > 1 such that e'R < |a (a,)! < eR for fi = 1, . . . , D
and v = 1, . . . , n. When qx, . . . , qn G Z, not all zero, and (i G K such that

(12) aj" • • • a? = P", (qlt . . . , qn, q) = 1,

then

(13) \q\ < C2A" log"+2G4 + Q)log"-\eA/R),
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where

A = max( max h(ap), R, l)
^ » > = 1 n '

and Q = max(|#,|, . . . , \qn\). Here C2 is an effectively computable number, de-
pending only on n.

PROOF. By c,4, c15 we shall denote effectively computable real numbers that
depend only on n. Suppose that there exist numbers /? G K and q G Z such that
(12) holds and (13) does not hold. We define Av = A for v = 1, . . . , n and
An+i = nQA- Further, tt0 < enAn+iQ and E = eA/R will be used; note that
exp(A) > eA > eA/R and exp(«£X4) > enA > eA/R. It follows from the theo-
rem that there exist numbers / • „ . . . , rn, r £ Z, not all zero (so in particular
r =£ 0), such that

(14) af> • • • an
r- = 0'

and

\r\ < cl4A"\ogl+l(enAn+iQ)\og(e2nAn+2Q/R)\og-n-\eA/R)

< ciAA" \og>+2(e2nAn+2Q)\og-"-l(eA/R)

<cl5A"logr+2(A + Q)\og-"-\eA/R).

For C2 > cM this implies \r\ < \q\. From (12) and (14) we can eliminate /?,
obtaining

n9\r-r,q . . . „«,'-'•„? _ 1
"1 "n x •

By the multiplicative independence of a,, . . . , an, we get qvr — rvq = 0 for
j ' = 1, . . . , n. Thus, q is a divisor of (<?„ . . . , qn)r; since (^,, . . . , qn, q) = 1 we
have q/r, contradicting |r| < |<jr|.

It should be noted, that the /J(O,,) are at most B := max,_, „ log
1, and that R can be chosen as B. So (13) implies

\q\ < C3B" log"+2(B + Q)

where C3 depends only on n.
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