ON THE HOLLAND-WALSH CHARACTERIZATION OF BLOCH FUNCTIONS

MIROSLAV PAVLOVIĆ
Faculty of Mathematics, University of Belgrade, Studentski trg 16, 11001 Belgrade, PP 550, Serbia (pavlovic@matf.bg.ac.yu)

(Received 2 September 2006)

Abstract It is proved that the Bloch norm of an arbitrary C^{1}-function defined on the unit ball $\mathbb{B}_{n} \subset \mathbb{R}^{n}$ is equal to

$$
\sup _{x, y \in \mathbb{B}_{n}, x \neq y}\left(1-|x|^{2}\right)^{1 / 2}\left(1-|y|^{2}\right)^{1 / 2} \frac{|f(x)-f(y)|}{|x-y|}
$$

Keywords: Bloch norm; holomorphic function; conformal automorphisms of the unit disc
2000 Mathematics subject classification: Primary 30D55; 46E15
Let \mathbb{B}_{n} denote the unit ball in \mathbb{R}^{n}, where $n \geqslant 2$. For a complex-valued function $f \in$ $C^{1}\left(\mathbb{B}_{n}\right)$, let $\|f\|_{\mathfrak{B}}$ denote the Bloch norm of f,

$$
\|f\|_{\mathfrak{B}}=\sup _{x \in \mathbb{B}_{n}}\left(1-|x|^{2}\right)|\mathrm{d} f(x)|,
$$

where $|\mathrm{d} f(x)|$ denotes the norm of the derivative $\mathrm{d} f(x)$ treated as a linear operator from \mathbb{R}^{n} to $\mathbb{C}=\mathbb{R}^{2}$. If f is real-valued, then $|\mathrm{d} f(x)|=|\nabla f(x)|$, where ∇f denotes the gradient of f :

$$
\nabla f(x)=\left(\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}\right), \quad x=\left(x_{1}, \ldots, x_{n}\right) .
$$

If f is holomorphic in the unit disc $\mathbb{D}=\mathbb{B}_{2}$, then $|\mathrm{d} f(x)|=\left|f^{\prime}(x)\right|$, where f^{\prime} denotes the ordinary derivative. Our starting point here is the following theorem of Holland and Walsh [1].
Theorem 1. For a function f holomorphic in \mathbb{D}, we have

$$
\begin{equation*}
\|f\|_{\mathfrak{B}} \asymp \sup _{x, y \in \mathbb{D}, x \neq y}\left(1-|x|^{2}\right)^{1 / 2}\left(1-|y|^{2}\right)^{1 / 2} \frac{|f(x)-f(y)|}{|x-y|} . \tag{1}
\end{equation*}
$$

Here we write $A \asymp B$ to denote that A / B lies between two positive constants. In (1), the $C-1$ and C_{2} are independent of f. Recently, Ren and Kähler extended (1) to the case of harmonic [3] and hyperbolically harmonic [2] functions on \mathbb{B}_{n}. In this note we show that (1) holds for an arbitrary C^{1}-function f on \mathbb{B}_{n} and, moreover, that ' \asymp ' can be replaced by ' $=$ '.

Theorem 2. For an arbitrary function $f \in C^{1}\left(\mathbb{B}_{n}\right), n \geqslant 2$, we have

$$
\begin{equation*}
\|f\|_{\mathfrak{B}}=\sup _{x, y \in \mathbb{B}_{n}, x \neq y}\left(1-|x|^{2}\right)^{1 / 2}\left(1-|y|^{2}\right)^{1 / 2} \frac{|f(x)-f(y)|}{|x-y|} \tag{2}
\end{equation*}
$$

Proof. Denote the quantity on the right-hand side of (2) by $\|f\|_{1}$. Assuming that $\|f\|_{1} \leqslant 1$ we have

$$
\begin{equation*}
\frac{|f(x)-f(y)|}{|x-y|} \leqslant \frac{1}{\left(1-|x|^{2}\right)^{1 / 2}\left(1-|y|^{2}\right)^{1 / 2}}, \quad x, y \in \mathbb{B}_{n} \tag{3}
\end{equation*}
$$

Now we use the formula

$$
|\mathrm{d} f(x)|=\limsup _{y \rightarrow x} \frac{|f(x)-f(y)|}{|x-y|}
$$

to conclude that

$$
\begin{equation*}
|\mathrm{d} f(x)| \leqslant\left(1-|x|^{2}\right)^{-1}, \quad x \in \mathbb{B}_{n} \tag{4}
\end{equation*}
$$

i.e. that $\|f\|_{\mathfrak{B}} \leqslant 1$.

In the other direction, assume that $\|f\|_{\mathfrak{B}} \leqslant 1$. We want to prove that this implies (3). In proving this we can suppose, after a suitable rotation, that x and y lie in $\mathbb{R}^{2}=$ $\left\{\left(x_{1}, x_{2}, 0, \ldots, 0\right): x_{1}, x_{2} \in \mathbb{R}\right\}$. Now let g be the restriction of f to $\mathbb{R}^{2}=\mathbb{C}$. Then, by (4),

$$
\begin{equation*}
|\mathrm{d} g(x)| \leqslant\left(1-|x|^{2}\right)^{-1}, \quad x \in \mathbb{D} \tag{5}
\end{equation*}
$$

whence, by integration,

$$
\begin{equation*}
|g(x)-g(0)| \leqslant \frac{1}{2} \log \frac{1+|x|}{1-|x|}, \quad x \in \mathbb{D} \tag{6}
\end{equation*}
$$

Now we use the simple inequality

$$
\begin{equation*}
\frac{1}{2} \log \frac{1+t}{1-t} \leqslant t\left(1-t^{2}\right)^{-1 / 2}, \quad 0 \leqslant t<1 \tag{7}
\end{equation*}
$$

to deduce from (6) that

$$
\begin{equation*}
|g(x)-g(0)| \leqslant|x|\left(1-|x|^{2}\right)^{-1 / 2} \tag{8}
\end{equation*}
$$

Finally, let

$$
\varphi_{a}(x)=\frac{a-x}{1-\bar{a} x}, \quad a, x \in \mathbb{D}(\text { complex notation })
$$

We know that φ_{a} is a conformal automorphism of the unit disc, that $\varphi_{a}\left(\varphi_{a}(x)\right)=x$, and that

$$
1-\left|\varphi_{a}(x)\right|^{2}=\left(1-|x|^{2}\right)\left|\varphi_{a}^{\prime}(x)\right|=\frac{\left(1-|x|^{2}\right)\left(1-|a|^{2}\right)}{|1-\bar{a} x|^{2}}
$$

This and (5) imply that

$$
\begin{aligned}
\left|\mathrm{d}\left(g \circ \varphi_{a}\right)(x)\right| & =\left|(\mathrm{d} g)\left(\varphi_{a}(x)\right)\right|\left|\varphi_{a}^{\prime}(x)\right| \\
& \leqslant\left(1-\left|\varphi_{a}(x)\right|^{2}\right)^{-1}\left|\varphi_{a}^{\prime}(x)\right| \\
& =\left(1-|x|^{2}\right)^{-1} .
\end{aligned}
$$

Thus $g \circ \varphi_{a}$ satisfies (5) so we can apply (8) to $g \circ \varphi_{a}$ to get

$$
\left|g\left(\varphi_{a}(x)\right)-g\left(\varphi_{a}(0)\right)\right| \leqslant|x|\left(1-|x|^{2}\right)^{-1 / 2}
$$

Hence

$$
\begin{aligned}
|f(y)-f(a)| & =|g(y)-g(a)| \\
& \leqslant\left|\varphi_{a}(y)\right|\left(1-\left|\varphi_{a}(y)\right|^{2}\right)^{-1 / 2} \\
& =|a-y|\left(1-|a|^{2}\right)^{-1 / 2}\left(1-|y|^{2}\right)^{-1 / 2}
\end{aligned}
$$

i.e. $\|f\|_{1} \leqslant 1$, which was to be proved.

Remark 3. Inequality (7) is a direct consequence of the formulae

$$
\frac{1}{2} \log \frac{1+t}{1-t}=t+\sum_{n=1}^{\infty} \frac{1}{2 n+1} t^{2 n+1}
$$

and

$$
t\left(1-t^{2}\right)^{-1 / 2}=t+\sum_{n=1}^{\infty} \frac{(2 n-1)!!}{(2 n)!!} t^{2 n+1}
$$

Remark 4. The above proof shows that Theorem 2 remains valid if we assume that f is a C^{1}-function from the unit ball of a Hilbert space and with values in a Banach space.

Acknowledgements. This research was supported by MNZŽS Serbia, project no. ON144010.

References

1. F. Holland and D. Walsh, Criteria for membership of Bloch space and its subspace, BMOA, Math. Annalen 273(2) (1986), 317-335.
2. G. Ren and U. Kähler, Weighted Hölder continuity of hyperbolic harmonic Bloch functions, Z. Analysis Anwend. 21(3) (2002), 599-610.
3. G. Ren and U. Kähler, Weighted Lipschitz continuity and harmonic Bloch and Besov spaces in the real unit ball, Proc. Edinb. Math. Soc. 48 (2005), 743-755.
