
/ . Austral. Math. Soc. (Series A) 37 (1984), 223-242

EXTENSION AND INVERSION OF EXTENDED
ORTHOMORPHISMS ON RIESZ SPACES

MICHEL DUHOUX and MATHIEU MEYER

(Received 12 July 1982, Revised 21 February 1983)

Communicated by R. O. Vyborny

Abstract

Let £ be an Archimedean Riesz space and let Orth°°( E) be the /-algebra consisting of all extended
orthomorphisms on E, that is, of all order bounded linear operators T: D -> E, with D an order dense
ideal in E, such that T(B n D) C B for every band B in E. We give conditions on E and on a Riesz
subspace F of E insuring that every T G Orth°c(7r) can be extended to some f E Orth°°(E), and we
also consider the problem of inversing an extended orthomorphism on its support. The same problems
are also studied in the case of a-orthomorphisms, that is, extended orthomorphisms with a super order
dense domain. Furthermore, some applications are given.
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Introduction

An extended orthomorphism on an Archimedean Riesz space E is an order
bounded linear mapping T: D -> E, where D is an order dense ideal in E, such
that T(B n D) C B for every band B in E. The set Orth°°(£) of all extended
orthomorphisms on £ is a laterally complete Archimedean Riesz space and, even,
an/-algebra with unit. The space Orth(£) of all orthomorphisms on E, that is, of
everywhere defined extended orthomorphisms, is an /-subalgebra of Orth°°(£).
Extended orthomorphisms have been introduced in a special setting by Nakano
[11], used by Luxemburg and Schep [7] and were recently studied by the authors
[3]. They form a natural generalization of the orthomorphisms and the richness of
their structure allows to characterize many properties of E.
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224 Michel Duhoux and Mathieu Meyer [2 ]

In Section 1 we introduce the main notations and some useful tools. Section 2
is mainly devoted to the following problem: given a Riesz subspace F of E and
T e Orth°°(ir), does there exist some f E Orth°°(£') extending T in some sense?
The same kind of problem was considered by Wickstead [16] in the case of
orthomorphisms; although Orth°°(£) has generally much more elements than
Orth(is), the extension of extended orthomorphisms does not require so strong
hypothesis as the extension of orthomorphisms does and, in fact, the two
problems and their solutions are very different. The concept of a quasi-unital
Riesz subspace in an /-algebra, introduced here, seems to be specially useful in
that setting. The main extension theorem (2.5) is general enough to contain the
case when F is a quasi-unital Riesz subspace in an /-algebra E (2.4) as well as the
case when F is any Riesz subspace in a uniformly complete Riesz space E (2.6).
Finally we use our results to study the equality Orth°°(Orth(£)) = OnW(E) (2.7,
2.10), which is not always true unlike the following easier ones: Orth(Orth(/s)) =
O r t h ( £ ) and Orth°°(Ortti=°(£)) = Orth°°(£).

Section 3 is concerned with the invertibility of extended orthomorphisms. It is
shown (3.3) that under some conditions on principal ideals of E, every extended
orthomorphism is invertible on its support. In particular, if E is uniformly
complete, then T is invertible in Orth°°(£) if and only if | T\ is a weak order unit
(3.4).

In Section 4 we investigate the extension and inversion properties of a-ortho-
morphisms, that is, of extended orthomorphisms with a super order dense
domain. It is shown in [3, 4] that the study of the /-subalgebra Orth"(£) of
Orth°°(£), consisting of all a-orthomorphisms on E, allows to characterize the
universal and the lateral a-completions of many almost Dedekind o-complete
Riesz spaces.

The authors wish to express their gratitude to the referees for all their valuable
suggestions.

1. Preliminaries

For terminology, notations and the general theory of Riesz spaces (resp.
/-algebras, extended orthomorphisms), we refer to [1, 8] (resp. [5, 6, 10, 12], [2, 3,
7]). Nevertheless we recall here some definitions and results (with some proofs for
the sake of completeness).

The symbols i(A) and b(A) (or iE(A) and bE{A)) will denote respectively the
ideal and the band generated in a Riesz space £ by a subset A of E; if A — {x}
we shall write i(x) and b(x).
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[ 3 ] Extended orthomorphisms on Riesz spaces 225

An/-algebra is a Riesz space E which is also an algebra such that xy^O for all
x, y £ E+ , and such that xz A y = zx A y = 0 for all x, y, z E E+ satisfying
x A y = 0. It is known that every Archimedean /-algebra is automatically com-
mutative. An /-algebra will be called nowhere trivial if x2 = 0 implies x = 0 or,
equivalently in the Archimedean case, if xy = 0 is equivalent to x A. y (note that
x -L y => xy — 0 holds in any/-algebra). An f-subalgebra is a Riesz subspace which
is also a subalgebra. An f-homomorphism between two /-algebras is a Riesz
homomorphism which is also a ring homomorphism, and similarly for /-isomor-
phism. By an ideal, even in an/-algebra, we shall always mean an order ideal, that
is, a solid Riesz subspace.

We now recall some facts about extended orthomorphisms on an Archimedean
Riesz space E. An extended orthomorphism on E is an order bounded linear
mapping T: Z>r -> E, with DT an order dense ideal in E, such that Tx ± y for all
x £ D r and ally E E satisfying x JLy or, equivalently, such that T(B n DT) C B
for every band B in E. Such a 7" can be shown to be order continuous and there is
thus a largest ideal D™ of E, called the maximal domain of T, such that T can be
(uniquely) extended to an extended orthomorphism T: D™ -» E.

Let Orth°°(£) be the set of all equivalence classes of extended orthomorphisms
S, T,... on E, S and T being equivalent if 5 = T on some order dense ideal of E
(this implies that S = T on D™ = D™)\ DT will denote any order dense ideal of E
on which T can be defined. It is known that Orth°°(£) is a laterally complete (that
is, every positive disjoint system has a supremum) Archimedean Riesz space
under pointwise definitions of addition, scalar multiplication and ordering on
order dense ideals of E. For every S,T £ Orth°°(£) we have the formulas:

(SVT)x = SxVTx (0<xEDsnDT),

| )= | 71(1*1)1 = 1 7>| ( x 6 D r ) .

Note that the identity / on E is a weak order unit in Orth°°(£): T = sup{r A nl\
n=\, 2,...} holds for every T EOnh%fE), since Tx E b(x) implies that
Tx = supn Tx Anx(0^xE DT).

LEMMA 1.1 [3; 1.3]. IfT E Orth°°(£), then D - {x E DT; Tx E i(x)} is a super
order dense ideal in DT.

PROOF. We can assume T > 0. Since D = Un
+

="Ker(r - nl)+ , D is clearly an
ideal. For every 0 =£ x E DT we have x = supn(x — n']Tx)+ , and the proof will
be complete if we show that (x - n~*Tx)+ E D {n = 1, 2,...). Fix 0 < x E DT,
0 < X e R, and define y - (x - XTx)+ , and S = I - XT. In order to see that
Ty < A"V (and so that y E D), observe first that S~ ° S+ : DT -> E is defined.
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For every 0 *s u E DT we have S~ (S+ u A nu) A S+ u = 0, hence S~ ( 5 + u A
«M) A S " S + U = 0. But S+ u A nu T«5+

 M and, using the order continuity of S~ ,
we get S~ S+ AS" S+ = 0, that is, S" 5 + = 0. The required inequality Ty < X"V
follows now from 0 = 5 " S+ x = S~y = (y - X7»~ .

It follows from this lemma that, given S, T E Orth°°(£), the product STcan be
defined (as in [7]) by (ST)x = S(7x) for all x in the order dense ideal {x E Z)r;
7* G Ds} of £, and so Orth°°(£) becomes an Archimedean/-algebra with the
identity / on E as (multiplicative) unit. In particular, the algebra Orth°°(/f) is
commutative.

The collection Orth(£) of all orthomorphisms on E, that is, of all T E Orth°°(£:)
such that Dp = E, is obviously an /-subalgebra of Orth°°(£). The center Z(E) of
the Archimedean Riesz space E is the/-subalgebra of Orth(£) consisting of all
linear mappings T: E -» E for which there exists X G R+ satisfying | Tx |< Xx for
all x G £ + ; Z{E) is obviously the (order) ideal generated by 7 in Orth(/i).

LEMMA 1.2 [7; 1.5]. If F is a Riesz subspace of the Dedekind complete Riesz space
E, then every T E Z{F) can be extended to To G Z{E).

PROOF. Given T E Z+(F), there exists \ G R+ such that 7x < Xx for all
x G F+ ; define p(jc) = Xx+ for all x E E. Then p is a sublinear mapping and
Tx *s T(x+) *£ p{x) holds for every x E 7\ It follows from the Hahn-Banach
theorem (in which R can be replaced by any Dedekind complete Riesz space [15])
that T has a linear extension To: E -» £ such that Jox *s p(x) for all x G £; it is
obvious that To G Z + ( £ ) .

Let £ be any Archimedean Riesz space. If T G Orth°°(£), then its support BT is
defined to be the band in E generated by T{DT)\ by order continuity, BT does not
depend on the choice of domain Dj*

LEMMA 1.3 [3; 1.4]. / / T 6 Orth°°(£), then Ker T= DTn B$. In particular:
(1) Ker T is a band in DT; (2) Tx ¥= 0 /or all x ¥= 0 in DT D BT; (3) 6(4) n BT

= b{T(A)) for all subsets A of DT.

PROOF. If x e DTn B* then x JL 7x, hence Tx -L 7x, that is, Tx = 0; so
DTn B!f-Q Ker 71. For the converse, let 0 < x «s DT. Since Ker T is an ideal,
there exists a net 0 < xa + ya t x, with 0 < xa G Ker T and O ^ ^ e (Ker T)d.
By order continuity, T(xa + >>a) = Tva is order convergent to Tx and, since
Tya E (Ker T), this shows that 7x E (Ker T)d. Hence 5 r C (Ker T)d, and so
Ker TQDTn Bf
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(1) and (2) are obvious and (3) can be deduced from (2) and (1.1).

COROLLARY 1.4. If S, T E Orth°°(£) satisfy Sx «£ Tx for all x in A C Ds n DT

n E+ , then S < T on Ds n DT n

Lemmas 1.1 and 1.3 are simple generalizations of known results on orthomor-
phisms (see [6]). The proof of the next theorem is rather technical and will be
omitted.

THEOREM 1.5 [3; 1.8]. Let (Ta\ a E A) be a family in Orth+(£) such that
T = sup Ta exists. Then

Tx = s u p { r a j > ; a £ A a n d y £ DT^ n [ 0 , x ] }

for every 0 < x £ DT. In particular, if 0 «£ x £ DT D (Ha 6 / 4 DTJ, then Tx —
; aEA}.

We now recall that multiplication operators on an Archimedean /-algebra E are
orthomorphisms. More precisely, we may consider the natural /-homomorphism
(p: E -» Orth(£), defined by <p(x)(y) — xy for all x, y £ E. It is well-known (and
easy to verify) that <p is one-to-one if and only if E is nowhere trivial, and that E
and Orth(£) are /-isomorphic via <p if and only if E has a (multiplicative) unit. In
particular Orth(Orth(£)) = Onh(E) holds for any Archimedean Riesz space E.
Since every laterally complete Archimedean Riesz space E satisfies Orthoc(£) =
Orth(£) [3; 2.8.2], the next result is clear.

LEMMA 1.6. / / E is any Archimedean Riesz space, then Orthco(Orth00( E)) =
Orth(Orth°°(£)) = Orth°°(£).

The next lemma will be also useful.

LEMMA 1.7. Let E be an Archimedean Riesz space with a uniformly complete
center (this occurs in particular if E is uniformly complete). If T £ Z(E) satisfies
\T\> XI for some 0 < X £ R, then T has an inverse in Z(E).

PROOF. By Yosida representation theorem [8, 14], Z(E) is Riesz isomorphic to
Q(K), with / = 1, for some-compact space K. It follows easily from / = 1 and 1.4
that this Riesz isomorphism is actually an /-isomorphism, and the result is now
obvious.
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Given an Archimedean Riesz space E, let & be a Riesz subspace of Orth°°(£)
and, for every ideal / of F, define

&(J) = {TE&;BTCJ}.

(£(./) is clearly an ideal in &. In the special case when & = Orth°°(F), Orth(F) or
Z(E), we shall write Orth°°(F, J), Orth(£, J) or Z(E, J) instead of &(J).

We shall say that & is rich if &(b(x)) ¥= {0} for all x ^ 0 in £; by [3; 2.4], & is
rich if and only if & is order dense in Orth°°(F).

We shall say that # is ultrarich if &(i(x)) ¥= {0} for all x ¥= 0 in E. Riesz spaces
with a rich or ultrarich center have been studied in [9].

EXAMPLES. If £2 is a locally compact topological space and E — 5f(ft) is the
Riesz space of all real continuous functions on ft with compact support, then E
has an ultrarich center (/-isomorphic to <2*(ft), the bounded continuous functions
on ft operating by product). If E — LP(IA), 1 < p < + oo, where JH is the Lebesgue
measure on [0,1], then Z{E) (/-isomorphic to L°°(/t)) is rich (since E is Dedekind
complete), but Z(E) is not ultrarich because Z(E, /'(/)) = {0} for a l l /E E (see
also [9; 4.11]).

2. Extension theorems and applications

The new concept that we introduce now is very important for what follows.
Let F be a Riesz subspace of the Archimedean/-algebra E. We shall say that F

is quasi-unital if the ideal generated in F by

M = {x E F\ xy — x for some y E F + )

is order dense in F; if this ideal is super order dense in F, we shall say that F is
super quasi-unital. Notice that xy — x in E implies that x'y = x' for all x' E bE{x)
(an easy consequence of 1.4); in particular, M is a solid subset of F. It follows
easily from this and A M c M ( A e R ) that

«
2 x , ; 0 < x , E Mandn = 1,2,.

/ = i

Considering the following statements
(1) E has a unit e and e E F,
(2) £ has a unit e and x A e E F for all x E F + ,
(3) £ is nowhere trivial and, for every x E F+ , there exists u E F+ such that

xy A _y = My for all ) > 6 f + ,
(4) F is super quasi-unital,
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it is not difficult to verify that (1) => (2) => (3) => (4). For (3) => (4) observe that (3)
will mean that E can be identified with the/-subalgebra <p(E) of Or th^) (<p is
the natural /-homomorphism from E into Orth(£)) and that <p(x) A / e <p(F)
for all x E F+; hence it suffices to show that (2) =» (4), which follows from

(x - n~]e)+(e A nx) = (x - «"'e)+ (x £ F+ , n = 1,2,...).

Observe also that any quasi-unital Archimedean /-algebra E is nowhere trivial.
Let indeed x £ E such that x2 = 0; ii x ¥^0 there would exist 0 < x' < | x | with
x'y = x' for some y £ E+ ; it follows easily from x'2 — 0 that x' = x'y — 0, and
this contradiction establishes the result.

EXAMPLES. (1) An example of a super quasi-unital Archimedean f-algebra without
unit is given by all continuous functions with compact support on a locally
compact non compact topological space.

(2) A quasi-unital Archimedean f-algebra which is not super quasi-unital. Let
Kj — [\,2] for ally in some non countable set J and £2 = 2A"7- (topological sum);
for w £ 6(Q) denote by u, its restriction to Kj. Let 9 be the Riesz subspace of 6
[1,2] generated by polynomials in R[x] and define x9 — {xf; f £ "3*}; <j and x9
are /-algebras for the usual product. Let also E be the /-subalgebra of 6(0)
consisting of all u such that K, £ <? for ally G J and {j E J; Uj & xtf*} is at most
countable. Observing that fg =£f for all / , g G JC^, it is easily seen that E is
quasi-unital but not super quasi-unital.

(3) If E = x^P, then E is not quasi-unital for the usual product. But if for
f=xh, g = xk (h, k e <3>) we define / * g = xM (usual product), then E
equipped with the product "*" is an/-algebra with the polynomial "x" as unit.

The next two propositions provide other examples of super quasi-unital /-alge-
bras.

PROPOSITION 2.1. Let E be a nowhere trivial Archimedean f-algebra. If Z(E) is
uniformly complete (this occurs in particular if E is uniformly complete), then E is
super quasi-unital.

PROOF. Fix x e E+ , define T e Orth(£) by Ty = xy and, for n = 1,2,...,
define also Tn = (TV n~lI) A nl, and xn = (x - n^x2)+An(x2 - n~xx)+.
Since E is nowhere trivial, we have b(x2) = b(x); hence x = supxn. It follows
easily from («"'/ — T)+ xn = (T — nl)+ xn = 0 that n~lxn < xxn < «xn and, so,
Tnxn — xxn. Now the uniform completeness of Z(E) and n"1/ < Tn^ nl imply
that SnTn = / for some Sn £ Z(£) (1.7). Defining^ = Snx, it remains to observe
that xn = Sn(Tnxn) = Sn(xxn) = xnyn.
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PROPOSITION 2.2. Any uniformly complete Archimedean Riesz space E contains

an order dense ideal which is a super quasi-unital {-algebra.

PROOF. Let (ea) be a maximal disjoint system in E+ and let A be the direct sum
of all Ea — /(<?„); A is an order dense ideal in E. The Yosida representation of Ea

as G(Xa), with ea = 1, for some compact topological space Xa, shows that Ea can
be equipped with a structure of /-algebra with unit ea. Define (lxa)(1ya) =
2xaya(xa,ya G Ea\ xa = ya = 0 for all but a finite number of choices for a ) . The
Riesz space A becomes so an /-algebra and, for every x — 2x a G A, there exists
y = 1,ya G A+ such that xy = x; it suffices to define ya = ea if xa ¥= 0, and
ya = 0 if xa = 0.

The next lemma is needed in order to obtain the main result of this paper.

LEMMA 2.3. / / F is a {super) quasi-unital Riesz subspace of the Archimedean
f-algebra E, then every ideal D in F is (super) quasi-unital.

PROOF. Define M = {x G F; xy — x for some y E F+) and N = {x E D;
xy — x for some y G D+ } . By hypothesis iF(M) is (super) order dense in F,
hence iF(M) D D is (super) order dense in D, and we have to prove that iD(N) is
(super) order dense in D. It is thus sufficient to show that iD(N) is super order
dense in iF(M) D D; but every member of iF(M) n D+ is a finite sum of
members of M n D+ and, so, we have only to show that every x G M n D+ is
the supremum of some sequence in iD(N). Let y E F+ such that xy = x and,
« = 1, 2 , . . . , define

xn= (x- n~ly)+ , yn=yAnx,

and observe that xn,yn B D,0 ^ xn 1 x, and that

xnyn
 =

 H*B( '»- I>' ~ (x ~ n~ly)~ ) = xny = Xn-

Hence xn G N and the proof is complete.

THEOREM 2.4. Let E be an Archimedean f-algebra and F a quasi-unital Riesz
subspace of E. Then every T G Orthoc(F) can be extended to f G Orth°°(£, b{F))
in the sense that T = T on some order dense ideal of F.

PROOF. The proof is divided into two parts: given T E Orth°°(.F), we shall
define f G Orth°°(£') in the first part and, in the second one, we shall verify that
T — f on some order dense ideal of F.

(1) Let T G Orth0O(F); by l , l , D = { x E DT; Tx G iF(x)} is an order dense
ideal of F. Define K = {x G E; xy = x for some y G D+ } and / = iE(K). For
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any x G J+ write x — 2 " = ) x, (0 < xi G A"), choose yt G D+ such that xtyt — x,

(1 «s i «s n) , and define 7x = 2"=, x,7>,. In order to verify that f is well-defined,

let u G £ and t>, v' G Z>+ such that uv — uv' — u; then uTv — uTv' since, for

some X G R + , we have:

\ u T ( v - t > ' ) | = | « | - \ T ( v - v ' ) \ ^ \ u \ - X \ v - v ' \ = \ \ u ( v - u ' ) | = 0 .

On the other hand, if x — 2j"= | x'j with xj G £ + and xj^ ' = xj for some yj E. D+

(1 ^j^p), then it follows from the Riesz decomposition property that there
exists a sequence (x/y) in £ + such that x, = 2J=, x,̂ • (1 < / < n), and x'j = 2"=, x,7
(1 <7 ^ p). Since x̂ -̂ ,- = x^yj = xtJ, it follows that

' '.y '.y y
Hence 7: J+ -> J is well-defined, additive, positively homogeneous, and fx G
/£(x) for all x G y+ . Extending fby linearity to f G Orth(/) and setting f = 0
on /d , we obtain a member f:J®Jd-*Eof Orth°°(£, bE(F)) (since f = 0 on
/ n frf).

(2) The lemma 2.3 shows that D is quasi-unital, that is, iD(D C\ K) = iF(D n
A") is order dense in £>, hence in F. It remains to see that T = f on /f(£> flK);
since / f (D n K) is linearly generated by D+ C\K, it suffices to verify that T — f
onD+ C\K.

To this end fix x G D+ DK and choose y G Z>+ such that x^ = x; then
Jx = xTy by definition of f. since 7>> G //rC^), there is some X G R+ such that
| Ty |< Xy and, by 1.4, we also have | Tu |*£ AM for all M > 0 in fef(7) f lO = /'D(>').
Hence the restriction of T to ^C^) is in Z(bD{y)) and, by 1.2, this restriction can
be extended to some f G Z(E), where E is the Dedekind completion of E. Note
that 7x = Tx since x = xy G &£(.y) D D C bD(y). On the other hand, if 5 G
Orth(£) is defined by Su — xu for all u G E, then 5 can be extended by order
continuity to S G Orth(£). We finally obtain

fx = xTy = S(fy) = f(Sy) = f(xy) = fx = Tx,

and the proof is complete.

The next result is an improvement of Theorem 2.4.

THEOREM 2.5. Let E be an Archimedean Riesz space, F a Riesz subspace of E and
assume there exists an ideal A of E such that:

(1) F H A is order dense in F;
(2) A is an f-algebra and F n A is quasi-unital.

Then every T G Orth00^) can be extended to f G Orth°°(£, B), with B = b(F),
in the sense that T = f on some order dense ideal in F. If F is order dense in B, then
f = ${T) is unique and \p is an f-isomorphism from OrthD0(F) into Orth°°(£, B);
moreover T= f on &p n Df.
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PROOF. Let T E Orth°°(F) and define D = {x £ DT; Tx E iF(x)}. Since D is
an order dense ideal in F (1.1), the restriction of T to D n A is in Orth°°(F n A)
(actually, Orth°°(F n A) = Orthx(F)). Applying 2.4 to the quasi-unital Riesz
subspace F n A of the/-algebra A, we get f E Orth(3o(^, bA(F)), with domain /),
and an order dense ideal Lof F C\ A such that T = fonL. But L is also an order
dense ideal in F and, moreover, f can be extended to a member f:D®Ad^>E
of Orth°°(£, 5) by defining f = 0 on 4d. The results in the special case when F is
order dense in B are easy consequences of the order continuity of extended
orthomorphisms.

EXAMPLES. (1) Considering the situation of 2.5 we show that if E = b(F), but F
is not order dense in E, it can happen that T E Orth°°(.F) and one of its
"extension" f E Orlh°°(E) do not coincide on D? D Df (even if D'p C Df).
Take £ = ^[0,1] (all the real valued functions on [0,1]), F = G[0,1], and define
T E Orth°°(F) by (Tf)(x)=f(x)/x; then Z^ = { / E F ; l i m ^ o / W A = 0}.
Define also f E Orth(£) by ff=gf for all / E £, where g E £ is defined by
g(x) = 1/x (x =£ 0,1), g(0) = g(l) = 0. Then f is an "extension" of T since
T = f on the order dense ideal D - {/ E £>f; /(I) = 0} of F, but clearly Tf =£ f/
for all / E D™\D. Observe also that E, F are /-algebras with unit and are
uniformly complete (E is even laterally and Dedekind complete).

(2) Even if F is order dense in E, it is not necessarily true that T E Orth°°(F)
and its unique extension f E Orth°°(£) satisfy D™ C Df. take £ = G[0,1] and
consider the order dense Riesz subspace

F = {f G E;f is polynomial on some neighborhood of 0}.

Defining T E Orth°°(F) by (Tf)(x) = f(x)/x, we have

£>£"= f / E F ; l i m / ( x ) A exists and is finite) = { / 6 F ; / ( 0 ) = 0 } .

The unique extension f E Orth°°(£) is obviously defined by (ff)(x) = f(x)/x,
and Df - {/ E £; l imx^0 / (*)A = °}- It is clear that D? <£ Df, although E, F
are /-algebras with unit and E is uniformly complete.

(3) We finally show that 2.5 may fail without any special hypothesis on E of F;
our example is inspired from [16; example (a)]. Let F be the Riesz subspace of
S[0,1] generated by polynomials and E the one generated by F and exp(x); then
F is an order (and uniformly) dense Riesz subspace of E, containing 1. Moreover
F is an /-algebra, Z(F) = F (operating by product), and Z(E) = {XI; X E R}.
Let C be the collection of all constant functions on [0,1]. Then with the notations
of [3; 4.3], we have Orth°°(F) = L{F, ^,[0,1]) and Orth°°(£) = L(C, %[Q, 1]).
More precisely, ^ is the collection of all dense open subsets of [0,1] and, if G is a
Riesz subspace of <2[0,1], then L(G, CD, [0,1]) is the collection of all real valued
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functions / which are locally in G with respect to D̂, in the sense that: (a) / is
defined on some Uf £

 6D; (b) for every t E Uf there exists a neighborhood V of t
and g EG such that f=gonUfDV.

The next result shows how powerful Theorem 2.5 is

COROLLARY 2.6. Let E be a uniformly complete Archimedean Riesz space and F
any Riesz subspace of E. Then every T £ Orth°°(.F) can be extended to f £
Orth°°(£, B), with B — b(F), in the sense that T' — f on some order dense ideal of
F. If F is order dense in B, then f — \1>(T) is unique and\p is an f-isomorphism from
Orth°°(F) into Orth°°(£, B); moreover T = f on D? D Df.

PROOF. In order to obtain an ideal A of E satisfying conditions (1) and (2) of
2.5, consider a maximal disjoint system (ea) in F+ and let A be the direct sum of
all Ea = iE(ea). Continue as in the proof of 2.2.

REMARKS. (1) Even if F is order dense in E, it is not necessarily true that
Dj C Df (see example 2 after 2.5). However if 2? is a Dedekind (a-) complete
Riesz space and F a (super) order dense Riesz subspace of E, then every
T £ Orth°°(F) can be extended by order continuity to (a unique) f £ Orth°°(£)
such that Dip C Df.

(2) In a recent unpublished paper [13], B. de Pagter has obtained, with a
completely different proof, the following result, which is a special case of 2.6: If
E, F are uniformly complete Archimedean Riesz spaces such that F is an order
dense Riesz subspace of E, then any T £ Orth00(/r) has an extension f £
Orth°°(E).

Before starting the next corollary, we observe that the richness of Z(E) or
Orth(£) are equivalent properties (since the identity / on E is a weak order unit
in Orth°°(£)).

COROLLARY 2.7. / / the Archimedean Riesz space E has a rich center, then there
exists an f-isomorphism $ from Orth00(Orth(£')) into Orth00(£') such that U(T) =
xP(U)-Tfor all U £ Orthoo(Orth(£)) and all T £ D%.

PROOF. Let U £ Orth°°(Orth(£)); since, by hypothesis, Orth(£) is order dense
in Orth°°(£), it follows from 2.4 that there exists U £ Orth00(Orth00(£')) such that
[ / = ( / o n ^ n DQ. But, by 1.6, U is in Orth(Orth00(£)) and there exists
S £ Orttf°(£) such that U(T) = ST for all T £ Orth°°(£'). In particular U{T) =
ST for all TED™ and, since D% is order dense in Orth°°(£), such an S is unique.
It remains to define 4/(U) — S.
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Given an Archimedean Riesz space £ with a rich center, we shall say that
OrtrTCOrthCf)) = Orth°°(£) if the/-isomorphism i|/, defined in 2.7, is onto or, in
other words, if for every S E Orth°°(£) there exists an order dense ideal & in
Orth(£) such that ST E Orth(£) for all r e f t .

We conclude this section by giving conditions to have Orth°°(Orth(£)) =
Orth°°(£). For this the next two lemmas are needed.

LEMMA 2.8. An Archimedean f-algebra E is quasi-unital if and only if E is
nowhere trivial and contains an order dense ideal of Orth(£).

PROOF. If £ is quasi-unital, we already know that £ is nowhere trivial and, so,
the natural /-homomorphism <p from £ into Orth(£) is one-to-one; hence <p(£) is
rich, that is, order dense in Orthx(E), since 0 ^ y(x) e Orth(£, b(x)) for all
x =£ 0 in £. Define M = {x e £; xy — x for some y e E+ }. Then <p(iE(M)) is
order dense in Orth(£) since £ is quasi-unital and, moreover, <p(iE(M)) is an
ideal in Orth(£): it suffices to observe that if 0 «£ T < <p(x), with T G Orth(£),
x e £, and xy = x for some y E E+ , then T = <p(7>). The converse result
follows from 2.3.

Given an Archimedean Riesz space £ and T E Orth°°( £), define

by 1.1, AT is an order dense ideal in £. A Riesz space is said to be order Cauchy
complete if every order Cauchy sequence is order convergent; order Cauchy
completeness is weaker than Dedekind a-completeness and stronger than uniform
completeness.

LEMMA 2.9. For an Archimedean Riesz space £, the following statements are
equivalent:

(1) £ is order Cauchy complete;
(2) E is uniformly complete and b(x) C D? for all T E OrtrT(£) and all

x EAT.

PROOF. (1) => (2). Observe first that if x E £, then every T E Z(i(x)) can be
extended to S E Z(fo(x)). Indeed, assuming that 0 < r*£ \ / for some X £ R+

and considering 0 ^ y E. b(x), we can define Sy — supn Ty,,, where (yn) is any
sequence in i(x) such that 0 < yn \ y; the supremum exists because it follows from

0 «S Tyn+p - Tyn < \(yn+p - yn) < \{y - yn)[nQ

that (Tyn) is an order Cauchy sequence in £.
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Now let T e Orth°°(£) and x G AT; then the restriction of T to i(x) is in
Z(i(x)) and, hence, this restriction can be extended to S G Z(b(x)). The map-
ping

Dp + b(x) -> E:{y + z ) H» 7> + Sz

is well-defined (because T = 5 on D™ n ft(x)), is an extension of T and an
extended orthomorphism on E; hence Z?(x) C I>™.

(2) => (1). By [3; 3.11] and uniform completeness of E, it suffices to see that,
given x G E+ , every T G Z(i(x)) can be extended to 5 G Z(b(x)). But the linear
mapping R: i(x) ® i(x)d -+ E, defined by R = T on /(x) and R = 0 on i(x)d, is
in Orth°°(ij) and x £AR. Hence b(x) Q Dg and the restriction S of /? to b(x) is
in Z(6(x)) and is an extension of T.

A Riesz space is said to be disjointly complete if every positive order bounded
disjoint subset has a supremum.

THEOREM 2.10. Let E be an Archimedean Riesz space and assume that E has an
order dense ideal F such that Z(E) = Z{F) {that is, every TG Z(F) can be
extended to T G Z{E)) and such that one of the following hypothesis holds:

(1) F is disjointly complete;
(2) F is a quasi-unital f-algebra;
(3) Z(F) is ultrarich;
(4) Z(F) is rich and F is order Cauchy complete.

Then Z(E) is rich and Orth°°(Orth(E)) = Orth°°(£:).

PROOF. Since F is an order dense ideal in E, it follows from 1.1 that
Orth°°(£) = Orth°°(F). Since Z(E) is a (super) order dense ideal in Orth(£), and
similarly for F, we have also:

Orth°°(Orth(£)) = Orth°°(Z(£)) = Orth°°(Z(F)) = Orth°°(Orth(F)).

Observing moreover that Z{E) is rich if and only if Z(F) is rich, it is thus
sufficient to verify that Z(F) is rich and that Orth°°(Orth(.F)) = Orth00(7r).
Recall that this last equality will mean that, for every T G Orth00(ir), there exists
some order dense ideal # in Orth(F) such that TS G Orth(F) for all S G (£.

Let T G Orth°°(F). If (1) is true then, by [3; 2.8.2], Orth(F) is a (super) order
dense ideal in Orth°°(F), and the result follows from 1.1 applied to U G
Orth(Orth0O(/1)) defined by U(S) = TS. If (2) is true then Z(F) is rich and, by
2.8, F contains an order dense ideal of Orth(F); hence the result follows from 1.1
applied to T. If (3) holds, then we can take & = Z(F,D?) since Z(F, D?) is
obviously ultrarich. If (4) holds we can also take <$•= Z(F, D™) since, by 2.9 and
richness of Z(F), Z(F, D%) is rich.
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REMARKS. (1) We have no counterexample showing that the richness of E is not
sufficient to insure that Oittf°(Orth(E)) = Orth°°(£).

(2) Any Dedekind 0-complete Riesz space F satisfies (4) of 2.10. By [3; 3.10],
any order Cauchy complete Archimedean Riesz space F with a weak order unit
satisfies (4). If K is a compact topological space, then 6(K) has an ultrarich
center (/-isomorphic to Q(K)); hence if £ is a Banach lattice with a quasi-interior
point u, it follows from the Yosida representation theorem that F = i(u) satisfies
(2) and (3) of 2.10 and, moreover, Z(E) = Z(F) since every T E Z(F) is norm
continuous. More generally, if £ is a Banach lattice with a representation space in
the sense of [14; III, 5.4], then the same argument works.

3. Inversion in Orth°°(£:)

We start with a few comments about our hypothesis in the results of this
section. Considering the following conditions on an Archimedean Riesz space E,

(1) £ is uniformly complete,
(2) Z(i(x)) is uniformly complete for every x E E+ ,
(3) Z(E) is uniformly complete,

it is easy to verify that (1) => (2) =» (3), but (2) => (1) and (3) =» (2) are not true as
shown in the next examples.

EXAMPLES. (1) Let E = Am[0,1] be the Riesz space of all continuous piecewise
linear functions on [0,1]. Then for every/E E+ , Z(/(/)) is finite dimensional
and, hence, is uniformly complete, but E is obviously not uniformly complete.

(2) Let E be the Riesz space of all continuous functions if on R+ such that: (a)
for every integer n, f is piecewise linear on [n, n + 1]; (b) there exists m
(depending on / ) such that f(x + 1) = f(x) for all x > m. It is easily seen that
Z(E) is one dimensional and thus uniformly complete. Defining g £ £ + by
g(x + 1) = g(x) for all x and g(t) = t if t E [0,2"1], = 1 - /if t E [2"1,1], it is
not difficult to verify that Z(i(g)) is not uniformly complete.

LEMMA 3.1. Let E be any Archimedean Riesz space and T e Orthoc(£'). Then \ T\
is a weak order unit in Orth°°(£') if and only if BT = E. It is true, in particular, if T
has an inverse in Orth°°(£).

PROOF. \ T\ is a weak order unit in Orth°°(£:) if and only if / = supn / A n \ T\,
that is, x — sup,, x A n \ Tx \ for all 0 < x e DT (1.5). That will mean that x e
b(Tx) fr all 0 ^ JC E DT and, by 1.3, this is also equivalent to BT= E. Since
BST C BT for any S, T E Orth°°(£), the last assertion follows.
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LEMMA 3.2. Let E be an Archimedean Riesz space such that Z(i(x)) is uniformly
complete for all x E E+ . Let also T G Orth(£) and assume that for every x G E+

there exist 0 < A < n in R such that \x < | 7JC|*£ fix. Then T has an inverse in
Orth(£).

PROOF. If x G E and A|x|<| Tx\*z n\x\ for some 0 < A =£ JK, then A|_y|<
I Ty | < n |y | holds for all y E /(x) (1.4) and, by 1.7, the restriction of T to /(x) has
an inverse Sx in Z(i(x)). If x, y G E and x G i(y), then S^7x = x = 5,,rx and,
since x G i(7x), it follows that Sxx = Syx. Hence 5: £ -• E, defined by
Sx = Sxx, is a member of Orth(£) such that ST = /.

For every band B in an Archimedean Riesz space E, we define the extended
orthomorphism irB: B © Bd -> E by irB(x + y) - x for all x G B and all y G firf;
we shall write wB instead of mBd. It is easily seen that B ® Bd and B are
respectively the maximal domain and the support of mB.

THEOREM 3.3. Let E be an Archimedean Riesz space such that Z(i(x)) is
uniformly complete for all x G E+ . Then for every T G Orth°°(£) there exists
S G Orth°°(£:) such that ST = <nBr

PROOF. Let T G Orth°°(£), define J = {x G DT; X|x|<| Tx\*z n\x\ for some
0 < A < /i} and observe that / is an ideal in the band BT of E. Given 0 < x G BT

n DT, we have b(Tx) — b(x) (1.3), and so x = sup xn, where

* „ = ( * - «- ' |7^l ) + A n(\Tx\ -n-lx)+ (n = 1,2,...),

is in / , since n~xxn < | Txn |< nxn for all n. That shows that J is super order dense
in BT n l y , hence / is order dense in BT. By 3.2 the restriction of T to / has an
inverse S in Orth(/) and, extending S to J ® Bd by setting S — 0 on 2?£, we
obtain an 5 G Orth^Cf) such that ST = 7rBr.

REMARKS. (1) If £ is any Archimedean Riesz space, then the assertion in 3.3
continues to hold if we only assume that, for all x G E+ , every strong order unit
in Z{i{x)) has an inverse in Orthco(/(x)).

(2) The next example shows that some hypothesis on E in needed to insure that
every extended orthomorphism is invertible on its support. Let E be the Riesz
subspace of C[0,1] generated by the polynomials. Then E is an /-algebra with
unit, but the only members of Orth°°(£) = L(E, 6D, [0,1]) which are invertible on
their support are the functions in L^C,0!), [0, lj), where C is the collection of all
constant functions (see remark 3 after 2.5).
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The next corollary follows immediately from 3.1 and 3.3.

COROLLARY 3.4. / / E is as in 3.3, then T E Ort\F(E) has an inverse in
Orth°°(£) if and only if\T\is a weak order unit in Orth°°(£).

In [13] it is shown (with a rather technical proof) that if £ is a uniformly
complete Archimedean Riesz space, then the algebra Orth°°(.E) is von Neumann
regular, that is, for every T E. Orth°°(£) there exists S E Orth°°(£) such that
T = ST2. As a corollary it is also obtained that, when E is uniformly complete,
every weak order unit in Orth°°(£') is invertible. To conclude this section we
remark in the next corollary that the von Neumann regularity of Orth°°(£)
follows immediately from 3.3.

COROLLARY 3.5. If E is as in 3.3, then Orth°°(£) is von Neumann regular.

PROOF. If 5, T £ Orth°°(£:) satisfy ST - TTBT, then ST2 - mBT - T.

4. Applications to Orth°(£)

A a-orthomorphism T on an Archimedean Riesz space E is an extended
orthomorphism that can be defined on a super order dense ideal of E or, in other
words, such that D™ is super order dense in E; the set Orth0(£) of all a-ortho-
morphisms on E has been introduced and studied in [3]. When we shall consider a
possible domain DT for a a-orthomorphism T, it will be always supposed that DT

is super order dense. Using 1.1, it is easily seen that Orth"(£) is an/-subalgebra
of Orth00^); since moreover / E Orth"(£), it follows that Orth(Orth°(£)) =
0rtho(£), the members of Orth"(£) operating by product on Orth°(£).

Note that a-orthomorphisms are useful to characterize the universal a-comple-
tion (see [3]) and the lateral a-completion (see [4]) of many almost Dedekind
a-complete Riesz spaces (that is, Riesz spaces which are Riesz isomorphic to a
super order dense Riesz subspace of some Dedekind a-complete Riesz space).

It follows from [3; 3.6, 3.8.1] that if E is an almost Dedekind a-complete Riesz
space, then Orth°(Orth°(£')) = Orth(Orth°(£)). But the almost Dedekind a-com-
pleteness of E implies that Orth°(£') is rich [3; 3.4] and, as a consequence of 2.4
and the next lemma, we shall show that this richness suffices to insure that
Orth°(Orth°(£)) = Orth(Orth°(£)).

LEMMA 4.1. Let E be an Archimedean Riesz space such that Orth"(£) is rich, let
S E Orth°°(£), and assume that ST E Orth"(£)/or all T in some super order dense
ideal & ofOTth°(E). Then S G Orth"(£).
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PROOF. For T E & define the ideal K(T) = DT n DST n Ker(7 - T). In order
to show that J = i(U {K(T); T E &}) is super order dense in E, let (Tn) be a
sequence in & such that 0 *£ Tn T / in Ortho(£), hence also in Orth°°(£) by
richness of Orth°(£); note that 5n = nTn A / is in <$,. Fix x E E+ and, for each «,
choose a sequence (xp) in D^ n DSSn such that 0 < xn

p ipx. It follows from
/ = supn=S(?rn, order continuity and 1.5 that x = sup{Tnxp; n> q and p s* 1}
(? = 1,2,...); hence x = supnpy£ with >>; = (Tnx"p - «"'x;)+ . Observe that
y% E DSn n DSSn (since 0 < Tn < / and Drn = Ds) , and also that y% E Ker(7 -
Sn) since

(7 - Sn)y; = n- ' ( / - n7;)+ («7n - I)+x"p = 0.

Hence j p " E K(Sn) CJ, and 7 is super order dense in E.
It remains to see that / C £>s

m. But if T E &, the mapping

> E: (x +y) H* 5X + STy

is well-defined (since S = ST on D™ n AT(3")) and is obviously an extension of S
and an extended orthomorphism on E. Hence A"(T) C D™ for all T E &, and the
proof is complete.

REMARK. The same proof shows that if Orth(Ti) is rich, S E Orth°°(7i), and
ST E Orth°(7i:) for all T in some super order dense ideal of Orth(£), then
5 E Orth"(7i). It follows immediately from this fact that the /-isomorphism ^
defined in 2.7 satisfies ^(Orth"(Orth(7i:))) C Ortha(£).

THEOREM 4.2. 7 / £ is an Archimedean Riesz space such that Orth°(7i) is rich,
then

Ortha(Orth"(£)) = Orth(OrthCT(£)) = Orth"(£).

PROOF. Given U E Orth°(Orth°(£)), it suffices to see that U E Orth(Orth°(£)).
Since Orth"(£) is order dense in Orth°°(7i), it follows from 2.4 and 1.6 that there
exists £ E Orth(Orth°°(£:)) such that U = U on D%, and also S E Orth°°(7i)
such that U(T) = ST for all T E Orth°°(£). Hence 1/(7)_= ST for all T E D%
and, by 4.1^ S is in Ortha(£). Finally, U=S where S E Orth(Orth°(£)) is
defined by S(T) = ST.

REMARKS. (1) We do not know if the richness of Orth"(7i) is necessary for 4.2
and, even, we have no example of a Riesz space E such that Orth°(£) is not rich.

(2) It follows from 4.2 and [3; 3.10] that if Orth"(£) is rich, then uniform
completeness and order Cauchy completeness are equivalent properties for
0rtho(£).
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Let E be an Archimedean Riesz space and & a Riesz subspace of Ortl^is). We
shall say that & is super rich (resp. super ultrarich) if E is countably generated (that
is, is the band in itself generated by some sequence) and if, for every x G E+ ,
there exists a sequence (Tn) in &(b(x)) (resp. in &(i(x))) such that x — supn Tnx.
Note that in the examples at the end of Section 1, the ultrarich center of
E = %(Q) is not super rich if Q is not cr-compact, and that E = Lp(n) has a
super rich but not ultrarich center. A Riesz space is said to be disjointly a-complete
if every positive order bounded disjoint sequence has a supremum. With these
definitions we can state the next theorem which is similar to 2.10.

THEOREM 4.3. Let E be an Archimedean Riesz space and assume that E has a
super order sense ideal F such that Z(E) = Z(F) and such that one of the following
hypothesis holds:

(1) F is disjointly a-complete;
(2) F is a countably generated super quasi-unital f-algebra;
(3) Z(F) is super ultrarich;
(4) Z(F) is super rich and F is order Cauchy complete.

Then Z(E) is rich and Orth°(Orth(£)) = Orth°(£).

REMARK. Any Dedekind a-complege Riesz space F satisfies (1) of 4.3. Any
order Cauchy complete Archimedean Riesz space F with a weak order unit
satisfies (4). If E is a Banach lattice with a quasi-interior point u, then F = /(«)
satisfies (2) and (3) of 4.3, and Z(F) = Z(£) .

Now we shall investigate the invertibility of a-orthomorphisms.

THEOREM 4.4. Let E be an Archimedean Riesz space such that Z(i(x)) is
uniformly complete for all x G E+.IfT G Orth"(E), then there exists S G Orth°(£)
such that ST — ITB if and only if BT © Bf is super order dense in E.

PROOF. Let T G Orth"(£) and use the notations of the proof of 3.3. The super
order dense ideal J of BTC\ DT is now also super order dense in BT and, so, if
BT © Bj is super order dense in E, then J ® Bf has the same property; hence S:
J © Bj- -> E is a a-orthomorphism. Conversely, if ST = TTBT for some S G
Orth"(£), then TTBT E. Ortha(£) and, consequently, the maximal domain BT © Bf
of mB is super order dense in E.

The next corollary follows immediately from 3.1 and 4.4.

COROLLARY 4.5. Let E be as in 4.4. / / T G Orth°(£>) is invertible in Onhx(E),
then its inverse is a a-orthomorphism.
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COROLLARY 4.6. Let E be as in 4.4 and assume moreover that Orth°(£) is rich.
Then the following statements are equivalent:

(1) Orth°(£) has the principal projection property;
(2) For every T G Orth°(£) there exists S G Orth°(£) such that ST - TTBT;

(3) Orth°(£) is von Neumann regular.

PROOF. It is easily seen that two extended orthomorphisms are disjoint if and
only if they have disjoint supports; hence if &'•— b(T) in Orth°(£), we have
Orth°(£, BT) C (2 and &d = Orth°(£, Bf). But, if Orth°(£) is rich, we have also
& = Orth°(£, BT) by virtue of 1.5.

(1)=>(2). Let 1 6 Orth°(£); by (1), <S = b(T) is a projection band and it
follows from the above that irBr must be the component of / in <$.. So TTBT is a
o-orthomorphism, that is, BT © Bj is super order dense in E.

(2) => (3), because ST = TTBT implies ST2 = ITBTT = T.
(3) => (1). Let T £ Orth"(£) and & = b(T); by (3) there exists S e Orth°(£)

such that ST2 = T, hence such that T{TTBT - ST) = 0. So, by 1.3, TTBT = S T E
Orth°(£) and, consequently, every R £ Orth°(iE') can be decomposed as R =
TTB R + ITB R with wB R G & and TTBJ.R E. &d. Hence & is a projection band.

REMARK. If E is an almost Dedekind a-complete Riesz space, then Orth"(£) is
rich and has the principal projection property [3; 3.4, 3.6].

To conclude, we point out that a simple inspection of the proofs of 2.4 and 2.5
shows that it is possible to give an "extension theorem" for a-orthomorphisms
which is similar to 2.5, but with more complicated hypothesis.

THEOREM 4.7. Let E be an Archimedean Riesz space, F an order dense Riesz
subspace of E generating a super order dense ideal, and assume there exists a super
order dense ideal A of E such that:

(1) F n A is super order dense in F;
(2) A is an f-algebra and F D A is super quasi-unital.

Then the f-isomorphism \p: O r t h ^ F ) -> Orth°°(£) defined in 2.5 satisfies
\P(Onha(F)) C Orth"(£). Moreover, for any F e Orth"(£), T = ^(T) holds on
some super order dense ideal of F.

REMARK. If £ is uniformly complete and F+ has a maximal disjoint system (ea)
such that, for every x G £ + , {a; ea A x =£ 0} is at most countable, then £ has a
super order dense ideal A satisfying (1) and (2) of 4.7.
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EXAMPLE. Given an Archimedean Riesz space E and an order dense Riesz
subspace F, it can happen that every T G Orth°°(.F) has a (unique) extension
f G Orth°°(£), but that f $ Orth"(£) for some T G Orth^F) (even if F is an
ideal, in which case Orth°°(F) = Orth°°(£) by 1.1). Let Xbe a non countable set
and <5(X) the Riesz space of all real functions on X. If E = {/ G f (X); {f¥= a}
is at most countable for some a £ R ) and F = Co( X) (functions vanishing at 00),
then we have Orl\i°{F) = Orth°°(F) = <S(X), but Orth°(£) = E and Orth°°(£)
— 'S'(X) (all these functions operating by product).
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