CORRECTION TO

'SUM-PRODUCT ESTIMATES AND MULTIPLICATIVE ORDERS OF γ AND $\gamma+\gamma^{-1}$ IN FINITE FIELDS'

IGOR SHPARLINSKI

(Received 25 October 2012; accepted 29 October 2012; first published online 21 February 2013)

Unfortunately, the argument of the proof of [2, Theorem 1] contains a gap. (The author is grateful to Moubariz Garaev for pointing this out.) Here we present and prove a corrected statement.

Let p be a prime number and let \mathbb{F}_{p} denote the finite field of p elements. We use ord γ to denote the multiplicative order of $\gamma \in \mathbb{F}_{p}$. For a fixed positive divisor $n \mid p-1$ we define $\Gamma_{p}(n)$ as the subgroup of \mathbb{F}_{p}^{*} generated by the nonzero elements of the form $\gamma+\gamma^{-1}$ for $\gamma \in \mathbb{F}_{p}^{*}$ with ord $\gamma \mid n$. Clearly $\# \Gamma_{p}(n) \geq(n-2) / 2$. We now obtain a stronger bound.

Theorem 1. There is an absolute constant $c>0$ such that for a prime p and a positive integer $2 \leq n \leq p^{1 / 2}$ with $n \mid p-1$,

$$
\# \Gamma_{p}(n) \geq c n^{12 / 11}(\log n)^{-4 / 11} .
$$

Proof. We define the sets

$$
\mathcal{S}=\left\{\gamma: \operatorname{ord} \gamma \mid n, \gamma^{2} \neq-1\right\} \quad \text { and } \quad \mathcal{A}=\left\{\gamma^{2}+\gamma^{-2}: \gamma \in \mathcal{S}\right\} .
$$

Thus, $n \geq \# S \geq n-6$. Hence,

$$
\begin{equation*}
p^{1 / 2} \geq n \geq \# S \geq \# \mathcal{A} \geq \frac{1}{4} \# \mathcal{S} \geq \frac{n-6}{4} . \tag{1}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\mathcal{A}^{2} \subseteq \Gamma_{p}(n) \cup\{0\} . \tag{2}
\end{equation*}
$$

Now let us take $\alpha, \beta \in \mathcal{S}$. Then

$$
\alpha^{2}+\alpha^{-2}+\beta^{2}+\beta^{-2}=\left(\alpha \beta+\alpha^{-1} \beta^{-1}\right)\left(\alpha \beta^{-1}+\alpha^{-1} \beta\right)
$$

Therefore we also have

$$
\begin{equation*}
2 \mathcal{A} \subseteq \Gamma_{p}(n) \cup\{0\} . \tag{3}
\end{equation*}
$$

[^0]Combining (2) and (3),

$$
\# \Gamma_{p}(n) \geq \max \left\{\#(2 \mathcal{A}), \#\left(\mathcal{A}^{2}\right)\right\}-1
$$

By the version of the sum-product theorem which is due to Rudnev [1], there is an absolute constant $c_{0}>0$ such that

$$
\max \left\{\#(2 \mathcal{A}), \#\left(\mathcal{A}^{2}\right)\right\} \geq c_{0}(\# \mathcal{A})^{12 / 11}(\log \# \mathcal{A})^{-4 / 11}
$$

provided that $\# \mathcal{A}<p^{1 / 2}$. Thus, recalling (1), we conclude the proof.

References

[1] M. Rudnev, 'An improved sum-product inequality in fields of prime order', Int. Math. Res. Not. 2012 (2012), 3693-3705.
[2] I. E. Shparlinski, 'Sum-product estimates and multiplicative orders of γ and $\gamma+\gamma^{-1}$ in finite fields', Bull. Aust. Math. Soc. 85 (2012), 505-508.

IGOR SHPARLINSKI, Department of Computing, Macquarie University, NSW 2109, Australia
e-mail: igor.shparlinski@mq.edu.au

[^0]: (C) 2013 Australian Mathematical Publishing Association Inc. 0004-9727/2013 \$16.00

