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ON THE DETERMINATION OF THE MAXIMUM
ORDER OF THE GROUP OF A TOURNAMENT

BY
B. ALSPACH AND J. L. BERGGREN()

1. Introduction. Let A(7T) denote the automorphism group of the tournament 7.
Let g(n) be the maximum of |(7)| taken over all tournaments of order n. It was
noted in [3] that g(n) is also the order of the subgroups of S, of maximum odd
order where S, denotes the symmetric group of degree n.

THEOREM 1. For each positive integer n we have g(n) <3 with equality holding
if and only if n is itself a power of 3.

Theorem 1 was conjectured in [3] and proved by group theoretic methods in [2]
and combinatorial methods in [1]. In this paper we examine the question of deter-
mining g(n) for all values of n. We establish a recursive method for determining
g(n) and attack the problem of explicitly determining g(n) from the ternary
representation of n. We also give a simple proof of Theorem 1.

Throughout this paper T, will denote a tournament of order »n for which
|A(T,)|=g(n) and A, will denote a subgroup of S, for which |U,|=g(n). The
wreath product of two groups G and H will be denoted by GlH.

2. Integers n for which some %[, is transitive and primitive. In addition to being
useful in the next section Theorem 2 is interesting in that it gives an upper bound
for the order of A(T) where T is any tournament such that A(7) is primitive.

THEOREM 2. Let T be a tournament with n vertices and suppose G=U(T) is a
primitive permutation group on T. Then n is a power of an odd prime and

1G] < ng((n—1)/2).

Proof. Since |G| is odd [5], we may deduce from the Feit-Thompson theorem
that G is solvable. Let N be a minimal normal subgroup of G. By (a) of Satz 3.2
[4, Ch. II] we may conclude that n=p™ for some prime p and integer m.

Now let x € T, G, the stabilizer of x, and #(x) the set of vertices in T which
dominate x. By (a) of Satz 3.2 [4] for each y € T—{x} there is a unique n, € N—{1}
such that n,(x)=y. We thus have a 1-1 correspondence y«<>n, between T'—{x} and
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N—{1}. If g € G, then gn,g71(x)=g(y), so ny iff for all g € G,, gn g >g(y)-
Thus as a permutation group on T—{x}, G, is isomorphic to G, considered as a
permutation group (the action being conjugation) on N—{1}. Let I(N)={n, ‘
y €#(x)}. From the above and the fact that G (#(x))=(x) we conclude that
n, € I(N) iff gn,g7* € I(N) for all g € G,. But N is abelian and, by (b) of Satz 3.2
[4, Ch.II], G=G,N. Thus I(N)is a union of G-conjugacy classes. As N is a minimal
normal subgroup of G each G-conjugacy class in I(N) contains a basis of the ele-
mentary abelian group N. It is now clear that if g € G, and if g(y)=y for each
y € F(x) then g e Cy(N). Since g € G, we conclude (by (b) and (c) of Satz 3.2
[4]) that g=1. Hence g € G, implies g induces a nontrivial automorphism of .#(x).
Now J£(x) is a tournament with (n—1)/2 vertices. Thus |G,|<g((n—1)/2). As
|G|=n|G,]| the conclusion follows.
We now prove the following.

THEOREM 3. U, is primitive iff n=1,3,5,7.

Proof. If n is even then, since |2, is odd, %, is not primitive. Now assume 7 is
odd. If n=1, 3, 5, 7 it is easy to show 2, is primitive. If 7<n<17 then, from the
table in [6, p. 81], it follows that g(n)>ng((n—1)/2) so A, is imprimitive. For
n=17,19, 21 it follows from the same table that g((n—1)/2)>n. If this is true for a
given n>17, then

g((—'-'j';i-l)=g(" Ly )23 ( ; )>3n>n+6

so it is true for all n2>17. Hence, for such n,

w2 (5> (5

By Theorem 2 %, is imprimitive for all n2>17. This proves the theorem.

We are now able to give a simple proof of Theorem 1. We verify the theorem
directly for n=1, 2, 3. Let m >4 and assume the theorem to be true for all n<m. If
A(T,,) is not transitive, say A(T,,) has k orbits, k >2, then |A(T,,)| <v/3"*. IfA(T,)
is transitive and primitive then the result follows from Theorem 3 and the table in
[6, p. 81]. If A(T,) is transitive but imprimitive with r blocks of length s then

g(m) < g(Ng(sy < 3137 = /37
with equality iff both r and s, and hence m, are powers of 3. If m=3¢, t>2, then
[Asd Wyoa | = 3m-1 and the theorem is proved.

Although the following remarks are elementary we state them here as they are
used several times in Theorems 4 and 5 without explicitly referring to them. If U,
is an automorphism group of maximal order then we may consider 20, as a sub-
group of S,. We know, from the general theory of permutation groups that 2, is
in fact a subgroup of the direct product S, X --- XS, where n;+ *-- +m=n
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and ;(%,), the projection of A, on S,,,, is a transitive subgroup of S,,. Thus, by
maximality of [, ], |7,(U,)|=g(n;) and A, =A, XA, X - - x‘l[,,t. We shall refer
to the ‘IIni(l <i<Lk) as the transitive constituents of U,,.

THEOREM 4. U, is transitive if and only if n=3%, 5 - 3% or 7 - 3* for some integer
k>0. In this case l‘l[n|=x/3"“1, 5-4/35 or 7-+/3"5 and W, =Wy Wgrr,
Wl W ge—r OF W d Wy g2 for all 1<r<k, respectively. In all other cases W, is in-
transitive, is the direct sum of its transitive constituents, and its order

g(n) = max {g(Dg(n—1i}

15¢{<n-

Proof. If %, is transitive and primitive, then n=1, 3, 5, or 7 and the theorem
is true in these cases. Assume U, is transitive and not primitive. Then n>7 and
there are odd integers m>1 and d>1 such that n=md and A,=NA,1Y,; thus,
g(n)=g(m)*g(d) where U, and 9, are transitive. By induction m and d are of the
form 3%, 5- 3%, or 7 3% and the orders and structure of 2, and U, are as in the
theorem. By Theorem 1 we may write Wge="U;.{Wse—,, and since wreath products
are associative the necessity of the conditions follows by showing that m=3" for
some r>1. If m=5 and d=3e then | U, |=|A; 1WA, | < | AU, | L g(n), a contra-
diction. We likewise obtain a contradiction if m=7 and d=3e. If both m, d € {5, 7}
we obtain a contradiction by showing that |U,, @U;| is greater than both |1,
and AU, |y @U>|WsQUs|, and [Wge @A, > [AQA;|. (All these may be
verified by using the table in [6, p. 81] and noting g(48) >36 g(16).) If m=5 - 3"
(r>1) then by induction |U,|=|Ag1A;2U,| < W5 1Us,| L g(n), a contradiction. A
contradiction also arises if m=7 3" (r>1). Thus m=3" and the necessity of the
conditions holds.

Suppose n=3%, 5 - 3%, or 7 - 3. If A, is intransitive then it is the direct sum of at
least three transitive constituents for » is odd and a transitive constituent has odd
degree. Hence |20, S\/E“"s, by Theorem 1. However l‘llal?ISkﬂI:\/ 5"‘1,
| Wae| LU | =5 - \/5“‘5, and |WgdA,|=7 - N 5”‘5, all of which exceed v/ 373, Hence
A, must be transitive and the theorem is proved.

We now state some consequences of Theorem 4.

THEOREM 5. The following statements are true:

(1) If n=3r then g(n)=3"g(r)

(2) If n=1, 2, or 4(9) then g(n)=g(n—1)

(3) If n=8(9) then g(n)=g(n—1) or g(n)=g(5)g(n—>5)

(4) If n=5(9) then g(n)=g(2)g(n—2), g(5)g(n—35) or g(n)=g(Ng(n—17)
(5) If n=T(9) then g(m)=g(T)g(1—"T)

Proof. We shall prove (1) here, the proofs of the others using the same method.
We note (1) is true for r=1 and suppose it proved for all 7', 1 <r' <r. If n=3r and
A, is transitive then (1) follows for n=3r immediately from Theorem 1. Assume
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A, is intransitive and ny, . . . , n, are the degrees of its transitive constituents. Then
each n, has the form 3¢, 5- 3¢, or 7 - 3% If each n;=0(3) then the induction hy-
pothesis applies to each n; and a short calculation shows the theorem then holds for
n=3r. If some n;%0(3) then n=n+ -+ +n,=0(3) implies there are three n;
(say ny, n,, ng) which are members of the set {1, 5, 7} such that n,+n,4+n;=0(3).
Using the table of [6, p. 81] it is easy to show that, for any such ny, n,, ns,

g(ny+ny+ng) > g(ny)g(ny)g(ng).
This contradicts the maximality of |2,,|, so each n,=0(3) and (1) is now proved.
Our final result generalizes Theorem 1.

COROLLARY 1. If the ternary expansion of n involves only 1’s and O’s and if the
number of 1’s in this expansion is n, then g(n)=\/§"“"1.

Proof. We induct on n, the result being true if n=1 or 3. If the ternary expansion
of n ends in 0 we may write n=3m, where the ternary expansion of m involves
only I's and 0’s and m;=n;. Then g(n)=3" g(m)=\/§2m\/§""""l=\/37"‘"‘. If the
ternary expansion of n ends in a 1 then n=1, 4 (mod 9) and Theorem 5 implies
g(m)=g(n—1). But (n—1);=n,—1 and n—1 satisfies the first hypothesis of the
corollary. Hence g(n)=g(n— 1)=/3t--tn-1 =/ 3=,
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