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ON THE DETERMINATION OF THE MAXIMUM 
ORDER OF THE GROUP OF A TOURNAMENT 

BY 

B. ALSPACH AND J. L. BERGGRENC1) 

1. Introduction. Let 9I(r) denote the automorphism group of the tournament T. 
Let g(n) be the maximum of |3I(r)| taken over all tournaments of order n. It was 
noted in [3] that g(n) is also the order of the subgroups of Sn of maximum odd 
order where Sn denotes the symmetric group of degree n. 

THEOREM 1. For each positive integer n we have g(n) <V3W _ 1 with equality holding 
if and only ifn is itself a power of 3. 

Theorem 1 was conjectured in [3] and proved by group theoretic methods in [2] 
and combinatorial methods in [1]. In this paper we examine the question of deter­
mining g{n) for all values of n. We establish a recursive method for determining 
g(n) and attack the problem of explicitly determining g(n) from the ternary 
representation of n. We also give a simple proof of Theorem 1. 

Throughout this paper Tn will denote a tournament of order n for which 
\yL(Tn)\=g(n) and %n will denote a subgroup of Sn for which |5IJ=g(«). The 
wreath product of two groups G and H will be denoted by G\H. 

2. Integers n for which some 3In is transitive and primitive. In addition to being 
useful in the next section Theorem 2 is interesting in that it gives an upper bound 
for the order of 31(7") where T is any tournament such that 51(7) is primitive. 

THEOREM 2. Let T be a tournament with n vertices and suppose G=yt(T) is a 
primitive permutation group on T. Then n is a power of an odd prime and 

IGI £**((*-1)/2). 

Proof. Since \G\ is odd [5], we may deduce from the Feit-Thompson theorem 
that G is solvable. Let N be a minimal normal subgroup of G. By (a) of Satz 3.2 
[4, Ch. II] we may conclude that n=pm for some prime/? and integer m. 

Now let x e 71, Gx the stabilizer of x, and J(x) the set of vertices in T which 
dominate x. By (a) of Satz 3.2 [4] for each y e T— {x} there is a unique ny G N— {1} 
such that nv(x)=y. We thus have a 1-1 correspondencey<-+ny between T— {x} and 
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N-{1}. If g G Gx then gnyg~1(x)=g(y), so nj->y iff for all g e Gx, griyg-^giy)-
Thus as a permutation group on T—{x}, Gx is isomorphic to Gx considered as a 
permutation group (the action being conjugation) on N—{\}. Let I(N) = {ny\ 
y G*/(X)}. From the above and the fact that Gx(J

r(x))=Jr(x) we conclude that 
ny e I(N) iïïgn^-1 e I(N) for all g e Gx. But TV is abelian and, by (b) of Satz 3.2 
[4, Ch. II], G=GXN. Thus I(N) is a union of G-conjugacy classes. As TV is a minimal 
normal subgroup of G each G-conjugacy class in I(N) contains a basis of the ele­
mentary abelian group N. It is now clear that if g e Gx and if g{y)=y for each 
y e J{x) then g e CG(N). Since g e Gx we conclude (by (b) and (c) of Satz 3.2 
[4]) that g= 1. Hence g£Gx implies g induces a nontrivial automorphism of J{x). 
Now J{x) is a tournament with (n —1)/2 vertices. Thus |Gy<g((«—1)/2). As 
|G| =n\Gx\ the conclusion follows. 

We now prove the following. 

THEOREM 3. 9tn is primitive iffn=l,3,5,7. 

Proof. If n is even then, since |9IJ is odd, 9In is not primitive. Now assume n is 
odd. If f i=l , 3, 5, 7 it is easy to show 2ln is primitive. If 7 < « < 1 7 then, from the 
table in [6, p. 81], it follows that g(n)>ng((n—l)l2) so %n is imprimitive. For 
«=17,19,21 it follows from the same table that g{{n—\)j2)>n. If this is true for a 
given «>17 , then 

8 f -^=-')- 8 (^+3) ,3 g (^)>3„>n + 6 , 
so it is true for all «>17. Hence, for such n, 

By Theorem 2 3IW is imprimitive for all n>ll. This proves the theorem. 
We are now able to give a simple proof of Theorem 1. We verify the theorem 

directly for « = 1 , 2, 3. Let ra^>4 and assume the theorem to be true for all n<m. If 
3 I ( r j is not transitive, say 2 I ( r j has fc orbits, £ > 2 , then | 9 I ( r j | < V3n"fc. HWCTJ 
is transitive and primitive then the result follows from Theorem 3 and the table in 
[6, p. 81]. If 3t(rm) is transitive but imprimitive with r blocks of length s then 

g(m) <, g(r)g(sy £ V r - y 3 * - » = V3"*-1 

with equality iff both r and s, and hence m, are powers of 3. If ra=3*, t>2, then 

|2l3^3«-i|=v 3W _ 1 and the theorem is proved. 
Although the following remarks are elementary we state them here as they are 

used several times in Theorems 4 and 5 without explicitly referring to them. If 9In 

is an automorphism group of maximal order then we may consider 3tw as a sub­
group of Sn. We know, from the general theory of permutation groups that 3tn is 
in fact a subgroup of the direct product Sn x " • xSn where nx+ • • • +nk=n 
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and 7r{(%„), the projection of %n on Sni, is a transitive subgroup of Sni. Thus, by 
maximality of |3IJ, M & J I =£(«<) and %ng^Lni x 3t„2 x • • • x 9 t v We shall refer 
to the 3tn.(l <*<^) a s the transitive constituents of 9In. 

THEOREM 4. 3In w transitive if and only ifn=3k,5-3kor7- Ve for some integer 
k>0. In this case | 2 I J = V 3 n - \ 5 • V3n~5 or 7 • ^3n~5 a/ïrf 9I„=9I3r 2I3*-r, 
?I3r?3I5>3fc-r or 3T3r^7.3fc-r/or a// l<r<fc , respectively. In all other cases %n is in­
transitive, is the direct sum of its transitive constituents, and its order 

g(n)= max {g(î)g(n-î)}. 
l < t < n - l 

Proof. If %n is transitive and primitive, then « = 1 , 3, 5, or 7 and the theorem 
is true in these cases. Assume 2In is transitive and not primitive. Then n>l and 
there are odd integers m > l and J > 1 such that n—md and 3I„=3ITOi3Icl; thus, 
g{n)=g(mfg(d) where 9tTO and 3Id are transitive. By induction m and J are of the 
form 3k, 5 • 3fc, or 7 • 3fc and the orders and structure of 2Im and 2td are as in the 
theorem. By Theorem 1 we may write 2T3fc=3I3r?3r3fe-r, and since wreath products 
are associative the necessity of the conditions follows by showing that m—3r for 
s o m e r > l . If m=5 and d=3e then \%n\ = \%l%l%\<\%l%l%\<g(n), a contra­
diction. We likewise obtain a contradiction if m=7 and d=3e. If both m,de {5, 7} 
we obtain a contradiction by showing that |2127©^8l is greater than both |̂ ît5^3I7| 
and \%l%l \^®%\>\%l%\9 and l ^ e ^ l ^ ^ l . (AH these may be 
verified by using the table in [6, p. 81] and noting g(48)>316g(16).) If m=5 • 3r 

( r ^ l ) then by induction \%n\ = \%rl%l%\<\%rl%d\<g(n), a contradiction. A 
contradiction also arises if m=7 • 3 r ( r > l ) . Thus m=3r and the necessity of the 
conditions holds. 

Suppose n=3k, 5 • 3k, or 7 • 3*. If 3In is intransitive then it is the direct sum of at 
least three transitive constituents for n is odd and a transitive constituent has odd 
degree. Hence |5lw |^V3n-3 , by Theorem 1. However l ^ ^ - i l W ^ - 1 , 
|2ta*|#t3|=5 • VJn-5 , and |2I3^9t7|=7 • ^3n~\ all of which exceed V3n"3 . Hence 
9tn must be transitive and the theorem is proved. 

We now state some consequences of Theorem 4. 

THEOREM 5. The following statements are true: 
(1) Ifn=3rtheng{n)=3rg(r) 
(2) Ifn=l, 2, or 4(9) then g(n)=g(n-l) 
(3) / /«=8(9) then g(n)=g(n-l) or g(n)=g(5)g(n-5) 
(4) / /W=5(9) then g(fi)=g{2)g(n-2)9 g(5)g(n-5) or g{n)=g(l)g(n-l) 
(5) 7 / H = 7 ( 9 ) then g(n)=g(l)g(n-l) 

Proof. We shall prove (1) here, the proofs of the others using the same method. 
We note (1) is true for r = 1 and suppose it proved for all r', 1 <£r' < r . If n=3r and 
%n is transitive then (1) follows for n=3r immediately from Theorem 1. Assume 
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2ln is intransitive and nl9 . . . , nk are the degrees of its transitive constituents. Then 
each n{ has the form 3e, 5 • 3e, or 7 • 3e. If each 7^=0(3) then the induction hy­
pothesis applies to each nt and a short calculation shows the theorem then holds for 
n—3r. If some «,•=)= 0(3) then n=n±+ • • • +nk=0(3) implies there are three n{ 

(say nl9 n2, nz) which are members of the set {1, 5, 7} such that n1+n2+n^=0(3). 
Using the table of [6, p. 81] it is easy to show that, for any such nu n2, nz, 

g{nx+n2+nz) > g(nùg(n2)g{nz). 

This contradicts the maximality of |9IJ, so each «^=0(3) and (1) is now proved. 
Our final result generalizes Theorem 1. 

COROLLARY 1. If the ternary expansion of n involves only Y s and 0's and if the 

number of Y s in this expansion is nx then g(n)= 

Proof. We induct on n, the result being true if n — 1 or 3. If the ternary expansion 
of n ends in 0 we may write n=3m, where the ternary expansion of m involves 
only l's and 0's and m1=n1. Then g(n) = 3m g(m)=^32m^3m-mi=\/3n-ni. If the 
ternary expansion of n ends in a 1 then « = 1 , 4 (mod 9) and Theorem 5 implies 
g(n)=g(n—1). But («—1)1=/71—1 and n—l satisfies the first hypothesis of the 
corollary. Hence < ?(r t)=g(«~l)=v

/3 ( n-1 )- ( n-1 ) l=\/3w-n i . 
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