NON-ARCHIMEDEAN t-FRAMES AND FM-SPACES

N. DE GRANDE-DE KIMPE, C. PEREZ-GARCIA ${ }^{1}$ AND W. H. SCHIKHOF

Abstract

We generalize the notion of t-orthogonality in p-adic Banach spaces by introducing t-frames (§2). This we use to prove that a Fréchet-Montel (FM-)space is of countable type (Theorem 3.1), the non-archimedean counterpart of a well known theorem in functional analysis over \mathbb{R} or $\mathbb{C}([6], p .231)$. We obtain several characterizations of FM-spaces (Theorem 3.3) and characterize the nuclear spaces among them (§4).

1. Preliminaries. Throughout this paper K is a non-archimedean non-trivially valued complete field with valuation \mid. \mid. For the basic notions and properties concerning normed and locally convex spaces over K we refer to [11] and [7]. However we recall the following.
2. Let E be a K-vector space. Let $X \subset E$. The absolutely convex hull of X is denoted by co X, its linear hull by $[X]$. For a (non-archimedean) seminorm p on E we denote by E_{p} the vector space $E / \operatorname{Ker} p$ and by $\pi_{p}: E \rightarrow E_{p}$ the canonical surjection. The formula $\left\|\pi_{p}(x)\right\|=p(x)$ defines a norm on E_{p}.
3. Let $(E,\|\cdot\|)$ be a normed space over K. For $r>0$ we write $B(0, r):=\{x \in$ $E:\|x\| \leq r\}$. Let $a \in E, X \subset E$. Then $\operatorname{dist}(a, X):=\inf \{\|a-x\|: x \in X\}$. For $n \in N$ and $x_{1}, \ldots, x_{n} \in E$ we consider $\operatorname{Vol}\left(x_{1}, \ldots, x_{n}\right):=\left\|x_{1}\right\| \cdot \operatorname{dist}\left(x_{2},\left[x_{1}\right]\right) \cdot$ $\operatorname{dist}\left(x_{3},\left[x_{1}, x_{2}\right]\right) \cdots \operatorname{dist}\left(x_{n},\left[x_{1}, \ldots, x_{n-1}\right]\right)$. For properties of this Volume Function (in particular, its symmetry), we refer to [10]. A linear continuous map $E \rightarrow F$, where F is a normed space, is said to be compact if it sends the unit ball of E into a compactoid set (see below).
4. Now let E be a Hausdorff locally convex space over K. A subset X of E is called compactoid if for every zero-neighbourhood U in E there exists a finite set S of E such that $X \subset \operatorname{co} S+U . E$ is said to be of countable type if for each continuous seminorm p the normed space E_{p} is of countable type (Recall that a normed space is called of countable type if it is the closed linear hull of a countable set). E is called nuclear if for every continuous seminorm p on E there exists a continuous seminorm q on E with $p \leq q$, and such that $\Phi_{p q}$ is compact, where $\Phi_{p q}$ is the unique map making the diagram

[^0]commute. E is called Montel if it is polar, polarly barrelled and if each closed bounded subset is a complete compactoid. A Fréchet space which is Montel is called an FM-space.

The closure of a set $X \subset E$ is denoted by \bar{X}.
2. t-frames in p-adic Banach spaces. Throughout $\S 2 E$ is a normed space over K. We introduce a concept which generalizes the notion of t-orthogonality and it allows us to prove one of the main Theorems in the paper (Theorem 3.1).

Definition 2.1. Let $t \in(0,1]$, and let $X \subset E$ be a subset not containing 0 . We call X a t-frame if for every $n \in N$ and distinct $x_{1}, \ldots, x_{n} \in X$ we have $\operatorname{Vol}\left(x_{1}, \ldots, x_{n}\right) \geq$ $t^{n-1} \cdot\left\|x_{1}\right\| \cdot \cdots \cdot\left\|x_{n}\right\|$.

We make the following simple observations. Let $t \in(0,1]$.

1. Any t-orthogonal set in E is a t-frame. (Let $\left\{e_{i}: i \in I\right\}$ be a t-orthogonal set in E, let i_{1}, \ldots, i_{n} be n distinct elements of I. Then, by the definition of the Volume Function and by t-orthogonality,

$$
\begin{aligned}
\operatorname{Vol}\left(e_{i_{1}}, \ldots, e_{1_{n}}\right) & =\left\|e_{i_{1}}\right\| \cdot \operatorname{dist}\left(e_{i_{2}},\left[e_{i_{1}}\right]\right) \cdot \cdots \cdot \operatorname{dist}\left(e_{i_{n}},\left[e_{i_{1}}, \ldots, e_{i_{n-1}}\right]\right) \\
& \left.\geq\left\|e_{i_{1}}\right\| \cdot t \cdot\left\|e_{i_{2}}\right\| \cdots \cdot \cdot\|\cdot\| e_{i_{n}}\left\|=t^{n-1} \cdot\right\| e_{i_{1}}\|\cdots\| e_{i_{n}} \|\right) .
\end{aligned}
$$

2. Every t-frame in E is a linearly independent set.
3. Every subset of a t-frame is itself a t-frame.
4. Every t-frame in E can be extended to a maximal t-frame.

By a t-frame sequence we shall mean a sequence x_{1}, x_{2}, \ldots in E such that $\left\{x_{1}, x_{2}, \ldots\right\}$ is a t-frame.

Proposition 2.2 (Compare [8], Theorem 2). A bounded subset X of E is a compactoid if and only iffor every $t \in(0,1]$ every t-frame sequence in X tends to 0 .

Proof. Suppose X is a compactoid. Suppose, for some $t \in(0,1]$, and some $\alpha>0$, X contains a t-frame sequence x_{1}, x_{2}, \ldots for which $\left\|x_{n}\right\| \geq \alpha$ for all n. Then, for each $n \in N$,

$$
\operatorname{Vol}\left(x_{1}, \ldots, x_{n}\right) \geq t^{n-1} \cdot\left\|x_{1}\right\| \cdot \cdots \cdot\left\|x_{n}\right\| \geq \alpha^{n} t^{n-1}
$$

implying $\lim _{n \rightarrow \infty} \inf \sqrt[n]{\operatorname{Vol}\left(x_{1}, \ldots, x_{n}\right)} \geq \alpha t>0$ conflicting the compactoidity of X ([8], $\S 2$). This proves one half of the statement. The other half is obvious.

The following two Propositions are crucial for Theorem 2.5.
Proposition 2.3. Let $0<t<1$; let X be a maximal t-frame in E. Then $\overline{[X]}=E$.
Proof. Let $D:=\overline{[X]}$. If $D \neq E$ then we can find a nonzero $a \in E$ with $\operatorname{dist}(a, D) \geq$ $t \cdot\|a\|$ ([11], Lemma 3.14, here we use that $t \neq 1$). So we shall prove that $\operatorname{dist}(a, D)<$ $t \cdot\|a\|$ for every $a \in E-D$. By maximality $\{a\} \cup X$ is no longer a t-frame, yielding the existence of a $k \in N$ and distinct $x_{1}, \ldots, x_{k} \in X$ such that

$$
\operatorname{Vol}\left(a, x_{1}, \ldots, x_{k}\right)<t^{k} \cdot\|a\| \cdot\left\|x_{1}\right\| \cdot \cdots \cdot\left\|x_{k}\right\| .
$$

On the other hand we have

$$
\begin{aligned}
\operatorname{Vol}\left(a, x_{1}, \ldots, x_{k}\right) & =\operatorname{dist}\left(a,\left[x_{1}, \ldots, x_{k}\right]\right) \cdot \operatorname{Vol}\left(x_{1}, \ldots, x_{k}\right) \\
& \geq \operatorname{dist}(a, D) \cdot t^{k-1} \cdot\left\|x_{1}\right\| \cdots\left\|x_{k}\right\| .
\end{aligned}
$$

So $\operatorname{dist}(a, D)<t \cdot\|a\|$.
REMARK. We now can easily find examples of t-frames X that are s-orthogonal for no $s \in(0,1]$: Let $0<t<1$, let E have no base, choose for X a maximal t-frame (Observe that the clause $t \neq 1$ is essential!).

Proposition 2.4. Every uncountable subset of c_{0} contains an infinite compactoid.
Proof. Let X be an uncountable subset of c_{0}; it has a bounded uncountable subset Y. Let e_{1}, e_{2}, \ldots be the standard basis of c_{0}. We have $B(0,1)+\left[e_{1}, e_{2}, \ldots\right]=c_{0}$ so there exists an $n_{1} \in N$ such that

$$
Y_{1}:=Y \cap\left(B(0,1)+\left[e_{1}, e_{2}, \ldots e_{n_{1}}\right]\right)
$$

is uncountable. In its turn, there exists an $n_{2} \in N$ such that

$$
Y_{2}:=Y_{1} \cap\left(B(0,1 / 2)+\left[e_{1}, e_{2}, \ldots, e_{n_{2}}\right]\right)
$$

is uncountable. We obtain uncountable sets $Y_{1} \supset Y_{2} \supset \cdots$ such that $Y_{n} \subset B(0,1 / n)+D_{n}$ for each n where D_{n} is a finite-dimensional space. Choose distinct x_{1}, x_{2}, \ldots where $x_{n} \in$ Y_{n} for each n, and set $Z:=\left\{x_{1}, x_{2}, \ldots\right\}$. Then Z is infinite, bounded, in X. Also, for each $n \in N$ we have

$$
Z \subset\left\{x_{1}, \ldots, x_{n-1}\right\} \cup Y_{n} \subset\left[x_{1}, \ldots, x_{n-1}\right]+B(0,1 / n)+D_{n} \subset B(0,1 / n)+\hat{D}_{n}
$$

where \hat{D}_{n} is a finite-dimensional space. It follows that Z is a compactoid.
THEOREM 2.5. The following assertions about the normed space E are equivalent.
(i) E is of countable type.
(ii) For every $t \in(0,1)$, every t-frame in E is countable.
(iii) For some $t \in(0,1)$, every t-frame in E is countable.

Proof. (i) \Rightarrow (ii). We may assume $E=c_{0}$. Let X be a t-frame in E. For each $n \in$ N set $X_{n}:=\{x \in X:\|x\| \geq 1 / n\}$. If, for some n, X_{n} were uncountable it would contain an infinite compactoid $\left\{x_{1}, x_{2}, \ldots\right\}$ by Proposition 2.4. Then from Proposition 2.2 $\lim _{k \rightarrow \infty} x_{k}=0$, a contradiction.
(ii) \Rightarrow (iii) is obvious.
(iii) \Rightarrow (i). Let X be a maximal t-frame in E. By assumption X is countable. By Proposition 2.3, $E=\overline{[X]}$ is of countable type.

Remark. The question if Theorem 2.5 remains true when we consider in (i) and (ii) t-orthogonal sets instead t-frames is an open problem in non-archimedean analysis ([11], p. 199).
3. Characterizations of FM-spaces among F-spaces. From now on in this paper E is a polar Hausdorff locally convex space over K.

It is proved in [6], Theorem 11.6.2, that a Fréchet Montel space over \mathbb{R} or \mathbb{C} is separable. It does not simply carry over the non-archimedean case because K may be not locally compact; so we have to deal with compactoids ($\S 1.3$) rather than compact sets. This modification is obstructing the classical proof which is essentially based upon separability. It is here where the t-frames of $\S 2$ come to the rescue as will be demonstrated in the following theorem (for other applications of t-frames in p-adic analysis, see [9], p. 51-57).

Theorem 3.1. An FM-space is of countable type.

Proof. Let the topology of the FM-space E be defined by the sequence of seminorms $p_{1} \leq p_{2} \leq \cdots$. Set $U_{n}=\left\{x \in E: p_{n}(x) \leq 1\right\}$. Choose $\lambda \in K,|\lambda|>1$.

It suffices to show that $E_{1}:=E_{p_{1}}$ is of countable type. Let X be a t-frame in $\left(E_{1},\|\cdot\|_{1}\right)$ for some $t \in(0,1)$; we show (Theorem 2.5) that X is countable. Suppose not. We may assume that $\inf \left\{\|x\|_{1}: x \in X\right\}>0$. Choose an $A_{1} \subset E$ such that $\pi_{p_{1}}\left(A_{1}\right)=X$. Since $E=\cup_{n} \lambda^{n} U_{2}$ there exists an n_{2} such that $A_{2}:=A_{1} \cap \lambda^{n_{2}} U_{2}$ is uncountable. Inductively we arrive at uncountable sets $A_{1} \supset A_{2} \supset \cdots$ such that A_{n} is p_{n}-bounded for each $n \geq 2$. Choose distinct a_{1}, a_{2}, \ldots with $a_{n} \in A_{n}$ for each n. Then $\left\{a_{1}, a_{2}, \ldots\right\}$ is bounded in E. As E is Montel, it is a compactoid. By Proposition 2.2, $\lim _{n \rightarrow \infty} \pi_{p_{1}}\left(a_{n}\right)=0$ conflicting $\inf \left\{\|x\|_{1}: x \in X\right\}>0$.

Lemma 3.2. Every bounded subset B of a Fréchet space E, is compactoid for the topology of uniform convergence on the $\beta\left(E^{\prime}, E\right)$-compactoid subsets of E^{\prime} (where $\beta\left(E^{\prime}, E\right)$ denotes the strong topology on E^{\prime} with respect to the dual pair $\left.\left\langle E, E^{\prime}\right\rangle\right)$.

Proof. Consider the canonical map $J_{E}: E \rightarrow E^{\prime \prime}=\left(E^{\prime}, \beta\left(E^{\prime}, E\right)\right)^{\prime}$. It is easy to see that the set $J_{E}(B)$ is equicontinuous on $\left(E^{\prime}, \beta\left(E^{\prime}, E\right)\right)$. By [7] Lemma 10.6 we have that on $J_{E}(B)$ the topology $\tau_{\beta c}$ (on $E^{\prime \prime}$) of the uniform convergence on the $\beta\left(E^{\prime}, E\right)$-compactoid subsets of E^{\prime}, coincides with the weak topology $\sigma\left(E^{\prime \prime}, E^{\prime}\right)$. Hence $J_{E}(B)$ is $\tau_{\beta c}$-compactoid in $E^{\prime \prime}$. Since J_{E} is an homeomorphism from E onto a subspace of $E^{\prime \prime}$ ([7], Lemmas 9.2, 9.3) we are done.

TheOrem 3.3. For a Fréchet space E, the following properties are equivalent.
(i) E is an FM -space.
(ii) Every bounded subset of E is compactoid.
(iii) In E every weakly convergent sequence is convergent and $\left(E^{\prime}, \beta\left(E^{\prime}, E\right)\right)$ is of countable type.
(iv) In E^{\prime} every $\sigma\left(E^{\prime}, E\right)$-convergent sequence is $\beta\left(E^{\prime}, E\right)$-convergent and E is of countable type.
(v) Both E and $\left(E^{\prime}, \beta\left(E^{\prime}, E\right)\right)$ are of countable type.
(vi) $\left(E^{\prime}, \beta\left(E^{\prime}, E\right)\right)$ is nuclear.
(vii) $\left(E^{\prime}, \beta\left(E^{\prime}, E\right)\right)$ is Montel.
(viii) Every $\sigma\left(E^{\prime}, E\right)$-bounded subset of E^{\prime} is $\beta\left(E^{\prime}, E\right)$-compactoid.

Proof. The implications (i) \Leftrightarrow (ii) \Leftrightarrow (iii), (i) \Rightarrow (vi) \Rightarrow (viii) and (i) \Rightarrow (vii) \Rightarrow (viii) are known (see [7]) or easy. Also, from Theorem 3.1 we can easily prove (i) \Rightarrow (iv) and (i) $\Rightarrow(\mathrm{v})$.

Now we prove (viii) \Rightarrow (ii): Since E is a polar Fréchet space, its topology τ is the topology of uniform convergence on the $\sigma\left(E^{\prime}, E\right)$-bounded subsets of E^{\prime}. By (viii) these subsets are $\beta\left(E^{\prime}, E\right)$-compactoid. Now apply Lemma 3.2.

The implication (v) \Rightarrow (iii) follows from [7] Proposition 4.11.
Finally, for the proof of (iv) \Rightarrow (ii) observe that the topology on a polar Fréchet space of countable type is the topology of uniform convergence on the $\sigma\left(E^{\prime}, E\right)$-null sequences in E^{\prime} (see [4], Theorem 3.2). By (iv) these sequences are $\beta\left(E^{\prime}, E\right)$-convergent. Now apply Lemma 3.2.

Remark. It is known that a Fréchet space E over \mathbb{R} over \mathbb{C} is nuclear if and only if $\left(E^{\prime}, \beta\left(E^{\prime}, E\right)\right)$ is nuclear ([6], p. 491).

In the non-archimedean case the situation is essentially different. Indeed, in 4.1 we will give an example of an FM-space which is not nuclear (while its strong dual is by (i) $\Leftrightarrow(\mathrm{vi})$). To do that we need some preliminary concepts and results.

Definition 3.4. Let $A=\left(a_{i}^{k}\right)$ be a matrix of strictly positive real numbers such that $a_{i}^{k+1}>a_{i}^{k}$ for all i and all k. Then the corresponding Köthe sequence space $K(A)$ is defined by

$$
K(A)=\left\{\alpha=\left(\alpha_{i}\right): \lim _{i}\left|\alpha_{i}\right| \cdot a_{i}^{k}=0 \text { for all } k\right\} .
$$

On $K(A)$ we consider the sequence of norms $\left(p_{k}\right)$, where

$$
p_{k}(\alpha)=\max _{i}\left|\alpha_{i}\right| \cdot a_{i}^{k}, \quad k=1,2, \ldots ; \quad \alpha \in K(A) .
$$

It is known that $K(A)$ is a polar Fréchet space of countable type. For the importance of this class of spaces and for their further properties we refer to [3].

We then have:
Proposition 3.5. Let $\Lambda=K(A)$ be a Köthe space and let Λ^{*} the corresponding Köthe dual space. Then the following properties are equivalent:
(i) Λ is an FM-space.
(ii) $\left(\Lambda^{*}, \beta\left(\Lambda^{*}, \Lambda\right)\right)$ is of countable type.
(iii) $\left(\Lambda^{*}, \beta\left(\Lambda^{*}, \Lambda\right)\right)$ is nuclear.
(iv) $\left(\Lambda^{*}, \beta\left(\Lambda^{*}, \Lambda\right)\right)$ is Montel.
(v) The unit vectors e_{1}, e_{2}, \ldots form a Schauder basis for $\Lambda^{*}, \beta\left(\Lambda^{*}, \Lambda\right)$.
(vi) $n\left(\Lambda^{*}, \Lambda\right)=\beta\left(\Lambda^{*}, \Lambda\right)$ (where $n\left(\Lambda^{*}, \Lambda\right)$ is the natural topology on $\left.\Lambda^{*}\right)$.
(vii) No subspace of Λ is isomorphic (linearly homeomorphic) to c_{0}.
(viii) The sequence of coordinate projections $\left(P_{i}\right)$, where $P_{i}: \Lambda \rightarrow \Lambda: \alpha=\left(\alpha_{i}\right) \rightarrow$ $\alpha_{i} e_{i}$, converges to the zero-map uniformly on every bounded subset of Λ.
(ix) The sequence of sections-maps $\left(S_{n}\right)$, where $S_{n}: \Lambda \rightarrow \Lambda: \alpha=\left(\alpha_{i}\right) \rightarrow$ $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}, 0,0, \ldots\right)$ converges to the identity map Id uniformly on every bounded subset of Λ.

Proof. We only have to prove (i) \Rightarrow (v) \Rightarrow (vi), (vii) \Rightarrow (viii) and (ix) \Rightarrow (i). The other implications are easy.
(i) $\Rightarrow(\mathrm{v})$: The unit vectors e_{1}, e_{2}, \ldots form a Schauder basis for $\left(\Lambda^{*}, \sigma\left(\Lambda^{*}, \Lambda\right)\right)$. Then, apply (i) \Rightarrow (iv) in 3.3.
(v) \Rightarrow (vi): By [4], p. 21 it suffices to prove that $\beta\left(\Lambda^{*}, \Lambda\right)$ is compatible with the duality (Λ^{*}, Λ) and this is done as in [1], Proposition 20.
(vii) \Rightarrow (viii): Suppose Λ contains a bounded subset D on which $\left(P_{i}\right)$ does not converge uniformly to the zero-map. We show that Λ contains a subspace isomorphic to c_{0}.

From the assumption it follows that there exist $\varepsilon>0, k \in N$ and an increasing sequence of indices $\left(i_{n}\right)$ such that, for all n, there exists $\alpha^{n}=\left(\alpha_{i}^{n}\right) \in D$ with $\left|\alpha_{i_{n}}^{n}\right| \cdot a_{i_{n}}^{k}>\varepsilon$, $n=1,2, \ldots$. We put $z_{i_{n}}=\alpha_{i_{n}}^{n} \cdot e_{i_{n}}, n=1,2, \ldots$. Then, the sequence $\left(z_{i_{n}}\right)$ is bounded in Λ.

Now we can define a linear map

$$
T: c_{0} \rightarrow \Lambda: \sigma=\left(\sigma_{n}\right) \longrightarrow \sum_{n} \sigma_{n} z_{i_{n}} .
$$

We prove that T is an isomorphism from c_{0} into Λ. It is easy to see that T is injective and continuous. Also, $T: c_{0} \rightarrow \operatorname{Im} T$ is open.

Indeed, for $\sigma=\left(\sigma_{n}\right) \in c_{0}$, we have $p_{k}(T(\sigma))=\max _{n=1}^{\infty}\left|\sigma_{n} \alpha_{i_{n}}^{n}\right| \cdot a_{i_{n}}^{k} \geq \varepsilon \cdot\|\sigma\|_{c_{0}}$.
(ix) \Rightarrow (i): We prove that Id: $\Lambda \rightarrow \Lambda$ transforms bounded subsets into compactoid subsets. Observe that (ix) means that $\lim _{n} S_{n}=\operatorname{Id}$ in $L_{\beta}(\Lambda, \Lambda)$. Then apply Proposition 4 in [2].

The next corollary is for later use.
COROLLARY 3.6. If for every $k \in N$ and every subsequence (i_{n}) of the indices there exists $h>k$ such that the sequence $\left(a_{i_{n}}^{h} / a_{i_{n}}^{k}\right)_{n}$ is bounded, then $K(A)$ is an FM-space.

Proof. An analysis of the proof of (vii) \Rightarrow (viii) shows that if $K(A)$ is not an FMspace, there exist a subsequence of the indices (i_{n}) and elements $\eta_{i_{n}}$ in $K, n=1,2, \ldots$ such that the linear map $T: c_{0} \rightarrow \operatorname{Im} T:\left(\sigma_{n}\right) \longrightarrow\left(\sigma_{n} \eta_{i_{n}}\right)$ is an isomorphism of c_{0} into Λ.

Consider now in c_{0} the subspace c_{00} generated by the unit vectors e_{1}, e_{2}, \ldots. Then c_{00} is isomorphic to the subspace F of $K(A)$ generated by $e_{i_{1}}, e_{i_{2}}, \ldots$. Therefore the topology induced by $K(A)$ on F is normable. This means that there exists k such that for all $h>k$ there exists $t_{h}>0$ with $p_{h}(\delta) \leq t_{h} \cdot p_{k}(\delta)$ for all $\delta \in K(A)$. In particular, for $\delta=e_{i_{n}}$,
$n=1,2, \ldots$, we have that there is a k such that for all $h>k$, there exists $t_{h}>0$ with $a_{i_{n}}^{h} \leq t_{h} \cdot a_{i_{n}}^{k}$ for all n, and we are done.
4. Characterizations of nuclear spaces among FM-spaces. We start this section with the construction of an FM-space which is not nuclear.

Example 4.1. For $k=1,2, \ldots$, consider the infinite matrix

$$
A^{k}=\left(a_{i j}^{k}\right)=\left(\begin{array}{cccccc}
1^{k} & \cdots & 2^{k} & \cdots & j^{k} & \cdots \\
1^{k} & \cdots & 2^{k} & \cdots & j^{k} & \cdots \\
\vdots & & \vdots & & & \cdots \\
(k+1)^{k} & \cdots & (k+1)^{k} & \cdots & (k+1)^{k} & \cdots \\
(k+2)^{k} & \cdots & (k+2)^{k} & \cdots & (k+2)^{k} & \cdots \\
\vdots & & \vdots & & & \cdots
\end{array}\right) \rightarrow(k+1)
$$

We can think of A^{k} as a sequence for some order, $k=1,2, \ldots$ (we fix the same order for all k). We then consider the Köthe space

$$
K(A)=\left\{\beta=\left(\beta_{i j}\right): \lim _{i, j}\left|\beta_{i j}\right| \cdot a_{i j}^{k}=0, k=1,2, \ldots\right\}
$$

equipped with the sequence of norms $\left(p_{k}\right)$ where $p_{k}(\beta)=\max _{i, j}\left|\beta_{i j}\right| \cdot a_{i j}^{k}$.
We first show that $K(A)$ is not nuclear. If $k>1$, then the sequence ($a_{i j}^{1} / a_{i j}^{k}$) contains a constant sequence. Then by [3] Proposition 3.5 the conclusion follows.

We now apply Corollary 3.6 in order to prove that $K(A)$ is an FM-space.
Choose k and any subsequence of the indices $\left(i_{n}, j_{m}\right)_{n, m}$. We consider the corresponding elements $a_{i_{n} j_{m}}^{k}$ of A^{k}. There are several possibilities.
a) The subsequence $\left(a_{i_{n} j_{m}}^{k}\right)_{n, m}$ contains an infinite number of elements of some row of A^{k}.

If this row is between the rows $1, \ldots, k$, take $h=k+1$. Then the sequence of the quotients $\left(a_{i_{n} j_{m}}^{h} / a_{i_{n} j_{m}}^{k}\right)_{n, m}$ is unbounded.

If this row is the $(k+r)$-th row for some $r \geq 1$, then take $h=k+r$.
b) The subsequence $\left(a_{i_{n} j_{m}}^{k}\right)_{n, m}$ consists of finitely many elements of an infinite number of rows. Consider then a subsequence with one element in an infinite number of rows below the k th row. Such a subsequence looks like

$$
\left(k+l_{1}\right)^{k},\left(k+l_{2}\right)^{k},\left(k+l_{3}\right)^{k}, \ldots
$$

with $\left(l_{n}\right)_{n}$ increasing to infinity. Take now $h=k+1$.

Finally we investigate what the situation exactly is.
DEFINITION 4.2. A locally convex space X is said to be quasinormable if for every zero-neighbourhood U in X there exists a zero-neighbourhood V in $X, V \subset U$, such that on U^{o} the topology $\beta\left(X^{\prime}, X\right)$ coincides with norm topology of $X_{V^{o}}^{\prime}$.

DEFINITION 4.3. Let X be a locally convex space. A sequence $\left(a_{n}\right) \subset X^{\prime}$ is said to be locally convergent to zero if there exists a zero-neighbourhood U in X such that $\left(a_{n}\right) \subset X_{U^{o}}^{\prime}$ and $\lim _{n}\left\|a_{n}\right\|_{U^{0}}=0$.

THEOREM 4.4. For an FM -space E the following properties are equivalent.
(i) E is nuclear.
(ii) E is quasinormable.
(iii) Every $\beta\left(E^{\prime}, E\right)$-convergent sequence in E^{\prime} is locally convergent.

Proof. The implications (i) \Rightarrow (ii) and (ii) \Rightarrow (iii) follow by [2], Proposition 14 and [5], 5.2 respectively.
(iii) \Rightarrow (i) Since E is of countable type (Theorem 3.1) its topology can be described by the $\sigma\left(E^{\prime}, E\right)$-null sequences on $E^{\prime}([4]$, Theorem 3.2). By Theorem 3.3 (i) \Rightarrow (iv) these sequences are null-sequences in $\beta\left(E^{\prime}, E\right)$ and by (iii) they are locally convergent to zero. The conclusion then follows from [5], 4.6.i).

COROLLARY 4.5. The Köthe space in 4.1 is also an example of an FM-space which is not quasinormable.

[^1]10. A. C. M. Van Rooij, Notes on p-adic Banach spaces, Reports 7633 and 7725, Math. Inst. Katholieke Universiteit, Nijmegen (1976, 1977).
11. \qquad , Non-archimedean Functional Analysis, Marcel Dekker, New York, (1978).

Department of Mathematics
Vrije Universiteit Brussel
Pleinlaan 2 (10F7)
B 1050 Brussels
Belgium

Department of Mathematics
Falcutad de Ciencias
Universidad de Cantabria
39071 Santander
Spain

Mathematisch Instituut
Katholieke Universiteit
Toernooiveld, 6525 ED Nijmegen
The Netherlands

[^0]: ${ }^{1}$ Research partially supported by the Spanish Dirección General de Investigación Científica y Técnica (DGICYT, PS87-0094).

 Received by the editors September 18, 1991 .
 AMS subject classification: 46 S10.
 (c) Canadian Mathematical Society 1992.

[^1]: References

 1. N. De Grande-De Kimpe, Perfect locally K-convex sequence spaces, Proc. Kon. Ned. Akad. v. Wet. A 74(1971), 471-482.
 2. \longrightarrow On spaces of operators between locally K-convex spaces, Proc. Kon. Ned. Akad. v. Wet. A 75(1972), 113-129.
 3._, Non-archimedean Fréchet spaces generalizing spaces of analytic functions, Proc. Kon. Ned. Akad. v. Wet. A 85(1982), 423-439.
 3. , Non-archimedean topologies of countable type and associated operators, Proc. Kon. Ned. Akad. v. Wet. A 90(1987), 15-28.
 4. _, Nuclear topologies on non-archimedean locally convex spaces, Proc. Kon. Ned. Akad. v. Wet. A 90(1987), 279-292.
 5. H. Jarchow, Locally convex spaces, Teubner, Stuttgart, (1981).
 6. W. H. Schikhof, Locally convex spaces over non-spherically complete fields I-II, Bull Soc. Math. Belgique, (B) XXXVIII (1986), 187-224.
 7. \quad P-adic nonconvex compactoids, Proc. Kon Ned. Akad. v. Wet. A 92(1989), 339-342.
 8. W. H. Schikhof and A. C. M. van Rooij, Seven papers on p-adic analysis, Report 9125, Math. Inst. Katholieke Universiteit, Nijmegen, (1991).
