NON-ARCHIMEDEAN t-FRAMES AND FM-SPACES

N. DE GRANDE-DE KIMPE, C. PEREZ-GARCIA¹ AND W. H. SCHIKHOF

ABSTRACT. We generalize the notion of *t*-orthogonality in *p*-adic Banach spaces by introducing *t*-frames (§2). This we use to prove that a Fréchet-Montel (FM-)space is of countable type (Theorem 3.1), the non-archimedean counterpart of a well known theorem in functional analysis over \mathbb{R} or \mathbb{C} ([6], p. 231). We obtain several characterizations of FM-spaces (Theorem 3.3) and characterize the nuclear spaces among them (§4).

1. **Preliminaries.** Throughout this paper K is a non-archimedean non-trivially valued complete field with valuation |.|. For the basic notions and properties concerning normed and locally convex spaces over K we refer to [11] and [7]. However we recall the following.

1. Let *E* be a *K*-vector space. Let $X \subset E$. The absolutely convex hull of *X* is denoted by co *X*, its linear hull by [*X*]. For a (non-archimedean) seminorm *p* on *E* we denote by E_p the vector space E/ Ker *p* and by $\pi_p: E \to E_p$ the canonical surjection. The formula $||\pi_p(x)|| = p(x)$ defines a norm on E_p .

2. Let $(E, \|\cdot\|)$ be a normed space over K. For r > 0 we write $B(0, r) := \{x \in E : \|x\| \le r\}$. Let $a \in E, X \subset E$. Then $dist(a, X) := inf\{\|a - x\| : x \in X\}$. For $n \in N$ and $x_1, \ldots, x_n \in E$ we consider $Vol(x_1, \ldots, x_n) := \|x_1\| \cdot dist(x_2, [x_1]) \cdot dist(x_3, [x_1, x_2]) \cdots dist(x_n, [x_1, \ldots, x_{n-1}])$. For properties of this Volume Function (in particular, its symmetry), we refer to [10]. A linear continuous map $E \to F$, where F is a normed space, is said to be *compact* if it sends the unit ball of E into a compactoid set (see below).

3. Now let *E* be a Hausdorff locally convex space over *K*. A subset *X* of *E* is called *compactoid* if for every zero-neighbourhood *U* in *E* there exists a finite set *S* of *E* such that $X \subset co S + U$. *E* is said to be of *countable type* if for each continuous seminorm *p* the normed space E_p is of countable type (Recall that a normed space is called *of countable type* if it is the closed linear hull of a countable set). *E* is called *nuclear* if for every continuous seminorm *p* on *E* there exists a continuous seminorm *q* on *E* with $p \leq q$, and such that Φ_{pq} is compact, where Φ_{pq} is the unique map making the diagram

¹Research partially supported by the Spanish Dirección General de Investigación Científica y Técnica (DGICYT, PS87-0094).

Received by the editors September 18, 1991.

AMS subject classification: 46S10.

[©] Canadian Mathematical Society 1992.

commute. *E* is called *Montel* if it is polar, polarly barrelled and if each closed bounded subset is a complete compactoid. A Fréchet space which is Montel is called an FM-*space*.

The closure of a set $X \subset E$ is denoted by \overline{X} .

2. *t*-frames in *p*-adic Banach spaces. Throughout $\S 2 E$ is a normed space over *K*. We introduce a concept which generalizes the notion of *t*-orthogonality and it allows us to prove one of the main Theorems in the paper (Theorem 3.1).

DEFINITION 2.1. Let $t \in (0, 1]$, and let $X \subset E$ be a subset not containing 0. We call X a t-frame if for every $n \in N$ and distinct $x_1, \ldots, x_n \in X$ we have $Vol(x_1, \ldots, x_n) \ge t^{n-1} \cdot ||x_1|| \cdot \cdots \cdot ||x_n||$.

We make the following simple observations. Let $t \in (0, 1]$.

1. Any t-orthogonal set in E is a t-frame. (Let $\{e_i : i \in I\}$ be a t-orthogonal set in E, let i_1, \ldots, i_n be n distinct elements of I. Then, by the definition of the Volume Function and by t-orthogonality,

$$Vol(e_{i_1}, \dots, e_{1_n}) = ||e_{i_1}|| \cdot dist(e_{i_2}, [e_{i_1}]) \cdot \dots \cdot dist(e_{i_n}, [e_{i_1}, \dots, e_{i_{n-1}}])$$

$$\geq ||e_{i_1}|| \cdot t \cdot ||e_{i_2}|| \cdot \dots \cdot t \cdot ||e_{i_n}|| = t^{n-1} \cdot ||e_{i_1}|| \dots ||e_{i_n}||).$$

2. Every t-frame in E is a linearly independent set.

3. Every subset of a t-frame is itself a t-frame.

4. Every t-frame in E can be extended to a maximal t-frame.

By a *t*-frame sequence we shall mean a sequence $x_1, x_2, ...$ in *E* such that $\{x_1, x_2, ...\}$ is a *t*-frame.

PROPOSITION 2.2 (COMPARE [8], THEOREM 2). A bounded subset X of E is a compactoid if and only if for every $t \in (0, 1]$ every t-frame sequence in X tends to 0.

PROOF. Suppose X is a compactoid. Suppose, for some $t \in (0, 1]$, and some $\alpha > 0$, X contains a *t*-frame sequence x_1, x_2, \ldots for which $||x_n|| \ge \alpha$ for all *n*. Then, for each $n \in N$,

$$\operatorname{Vol}(x_1,\ldots,x_n) \geq t^{n-1} \cdot ||x_1|| \cdot \cdots \cdot ||x_n|| \geq \alpha^n t^{n-1}$$

implying $\lim_{n\to\infty} \inf \sqrt[n]{\operatorname{Vol}(x_1,\ldots,x_n)} \ge \alpha t > 0$ conflicting the compactoidity of X ([8], §2). This proves one half of the statement. The other half is obvious.

The following two Propositions are crucial for Theorem 2.5.

PROPOSITION 2.3. Let 0 < t < 1; let X be a maximal t-frame in E. Then $\overline{[X]} = E$.

PROOF. Let $D := \overline{[X]}$. If $D \neq E$ then we can find a nonzero $a \in E$ with dist $(a, D) \ge t \cdot ||a||$ ([11], Lemma 3.14, here we use that $t \neq 1$). So we shall prove that dist $(a, D) < t \cdot ||a||$ for every $a \in E - D$. By maximality $\{a\} \cup X$ is no longer a *t*-frame, yielding the existence of a $k \in N$ and distinct $x_1, \ldots, x_k \in X$ such that

$$\operatorname{Vol}(a, x_1, \ldots, x_k) < t^k \cdot ||a|| \cdot ||x_1|| \cdot \cdots \cdot ||x_k||.$$

On the other hand we have

$$\operatorname{Vol}(a, x_1, \dots, x_k) = \operatorname{dist}(a, [x_1, \dots, x_k]) \cdot \operatorname{Vol}(x_1, \dots, x_k)$$

>
$$\operatorname{dist}(a, D) \cdot t^{k-1} \cdot ||x_1|| \cdots ||x_k||.$$

So dist $(a, D) < t \cdot ||a||$.

REMARK. We now can easily find examples of *t*-frames *X* that are *s*-orthogonal for no $s \in (0, 1]$: Let 0 < t < 1, let *E* have no base, choose for *X* a maximal *t*-frame (Observe that the clause $t \neq 1$ is essential!).

PROPOSITION 2.4. Every uncountable subset of c_0 contains an infinite compactoid.

PROOF. Let X be an uncountable subset of c_0 ; it has a bounded uncountable subset Y. Let e_1, e_2, \ldots be the standard basis of c_0 . We have $B(0, 1) + [e_1, e_2, \ldots] = c_0$ so there exists an $n_1 \in N$ such that

$$Y_1 := Y \cap (B(0,1) + [e_1, e_2, \dots e_{n_1}])$$

is uncountable. In its turn, there exists an $n_2 \in N$ such that

$$Y_2 := Y_1 \cap (B(0, 1/2) + [e_1, e_2, \dots, e_{n_2}])$$

is uncountable. We obtain uncountable sets $Y_1 \supset Y_2 \supset \cdots$ such that $Y_n \subset B(0, 1/n) + D_n$ for each *n* where D_n is a finite-dimensional space. Choose distinct x_1, x_2, \ldots where $x_n \in Y_n$ for each *n*, and set $Z := \{x_1, x_2, \ldots\}$. Then *Z* is infinite, bounded, in *X*. Also, for each $n \in N$ we have

$$Z \subset \{x_1, \ldots, x_{n-1}\} \cup Y_n \subset [x_1, \ldots, x_{n-1}] + B(0, 1/n) + D_n \subset B(0, 1/n) + \hat{D}_n$$

where \hat{D}_n is a finite-dimensional space. It follows that Z is a compactoid.

THEOREM 2.5. The following assertions about the normed space E are equivalent.

- (i) E is of countable type.
- (ii) For every $t \in (0, 1)$, every t-frame in E is countable.
- (iii) For some $t \in (0, 1)$, every t-frame in E is countable.

PROOF. (i) \Rightarrow (ii). We may assume $E = c_0$. Let X be a t-frame in E. For each $n \in N$ set $X_n := \{x \in X : ||x|| \ge 1/n\}$. If, for some n, X_n were uncountable it would contain an infinite compactoid $\{x_1, x_2, \ldots\}$ by Proposition 2.4. Then from Proposition 2.2 $\lim_{k\to\infty} x_k = 0$, a contradiction.

(ii) \Rightarrow (iii) is obvious.

(iii) \Rightarrow (i). Let X be a maximal *t*-frame in E. By assumption X is countable. By Proposition 2.3, $E = \overline{[X]}$ is of countable type.

REMARK. The question if Theorem 2.5 remains true when we consider in (i) and (ii) *t*-orthogonal sets instead *t*-frames is an open problem in non-archimedean analysis ([11], p. 199).

478 N. DE GRANDE-DE KIMPE, C. PEREZ-GARCIA AND W. H. SCHIKHOF

3. Characterizations of FM-spaces among F-spaces. From now on in this paper E is a polar Hausdorff locally convex space over K.

It is proved in [6], Theorem 11.6.2, that a Fréchet Montel space over \mathbb{R} or \mathbb{C} is separable. It does not simply carry over the non-archimedean case because K may be not locally compact; so we have to deal with compactoids (§1.3) rather than compact sets. This modification is obstructing the classical proof which is essentially based upon separability. It is here where the *t*-frames of §2 come to the rescue as will be demonstrated in the following theorem (for other applications of *t*-frames in *p*-adic analysis, see [9], p. 51–57).

THEOREM 3.1. An FM-space is of countable type.

PROOF. Let the topology of the FM-space *E* be defined by the sequence of seminorms $p_1 \le p_2 \le \cdots$. Set $U_n = \{x \in E : p_n(x) \le 1\}$. Choose $\lambda \in K, |\lambda| > 1$.

It suffices to show that $E_1 := E_{p_1}$ is of countable type. Let X be a *t*-frame in $(E_1, \|\cdot\|_1)$ for some $t \in (0, 1)$; we show (Theorem 2.5) that X is countable. Suppose not. We may assume that $\inf\{\|x\|_1 : x \in X\} > 0$. Choose an $A_1 \subset E$ such that $\pi_{p_1}(A_1) = X$. Since $E = \bigcup_n \lambda^n U_2$ there exists an n_2 such that $A_2 := A_1 \cap \lambda^{n_2} U_2$ is uncountable. Inductively we arrive at uncountable sets $A_1 \supset A_2 \supset \cdots$ such that A_n is p_n -bounded for each $n \ge 2$. Choose distinct a_1, a_2, \ldots with $a_n \in A_n$ for each n. Then $\{a_1, a_2, \ldots\}$ is bounded in E. As E is Montel, it is a compactoid. By Proposition 2.2, $\lim_{n\to\infty} \pi_{p_1}(a_n) = 0$ conflicting $\inf\{\|x\|_1 : x \in X\} > 0$.

LEMMA 3.2. Every bounded subset B of a Fréchet space E, is compactoid for the topology of uniform convergence on the $\beta(E', E)$ -compactoid subsets of E' (where $\beta(E', E)$ denotes the strong topology on E' with respect to the dual pair $\langle E, E' \rangle$).

PROOF. Consider the canonical map $J_E: E \to E'' = (E', \beta(E', E))'$. It is easy to see that the set $J_E(B)$ is equicontinuous on $(E', \beta(E', E))$. By [7] Lemma 10.6 we have that on $J_E(B)$ the topology $\tau_{\beta c}$ (on E'') of the uniform convergence on the $\beta(E', E)$ -compactoid subsets of E', coincides with the weak topology $\sigma(E'', E')$. Hence $J_E(B)$ is $\tau_{\beta c}$ -compactoid in E''. Since J_E is an homeomorphism from E onto a subspace of E'' ([7], Lemmas 9.2, 9.3) we are done.

THEOREM 3.3. For a Fréchet space E, the following properties are equivalent.

- (i) E is an FM-space.
- (ii) Every bounded subset of E is compactoid.
- (iii) In E every weakly convergent sequence is convergent and $(E', \beta(E', E))$ is of countable type.
- (iv) In E' every $\sigma(E', E)$ -convergent sequence is $\beta(E', E)$ -convergent and E is of countable type.
- (v) Both E and $(E', \beta(E', E))$ are of countable type.
- (vi) $(E', \beta(E', E))$ is nuclear.
- (vii) $(E', \beta(E', E))$ is Montel.

(viii) Every $\sigma(E', E)$ -bounded subset of E' is $\beta(E', E)$ -compactoid.

PROOF. The implications (i) \Leftrightarrow (ii) \Leftrightarrow (iii), (i) \Rightarrow (vi) \Rightarrow (viii) and (i) \Rightarrow (vii) \Rightarrow (viii) are known (see [7]) or easy. Also, from Theorem 3.1 we can easily prove (i) \Rightarrow (iv) and (i) \Rightarrow (v).

Now we prove (viii) \Rightarrow (ii): Since *E* is a polar Fréchet space, its topology τ is the topology of uniform convergence on the $\sigma(E', E)$ -bounded subsets of *E'*. By (viii) these subsets are $\beta(E', E)$ -compactoid. Now apply Lemma 3.2.

The implication (v) \Rightarrow (iii) follows from [7] Proposition 4.11.

Finally, for the proof of (iv) \Rightarrow (ii) observe that the topology on a polar Fréchet space of countable type is the topology of uniform convergence on the $\sigma(E', E)$ -null sequences in E' (see [4], Theorem 3.2). By (iv) these sequences are $\beta(E', E)$ -convergent. Now apply Lemma 3.2.

REMARK. It is known that a Fréchet space E over \mathbb{R} over \mathbb{C} is nuclear if and only if $(E', \beta(E', E))$ is nuclear ([6], p. 491).

In the non-archimedean case the situation is essentially different. Indeed, in 4.1 we will give an example of an FM-space which is not nuclear (while its strong dual is by (i) \Leftrightarrow (vi)). To do that we need some preliminary concepts and results.

DEFINITION 3.4. Let $A = (a_i^k)$ be a matrix of strictly positive real numbers such that $a_i^{k+1} > a_i^k$ for all *i* and all *k*. Then the corresponding Köthe sequence space K(A) is defined by

$$K(A) = \{ \alpha = (\alpha_i) : \lim |\alpha_i| \cdot a_i^k = 0 \text{ for all } k \}.$$

On K(A) we consider the sequence of norms (p_k) , where

$$p_k(\alpha) = \max |\alpha_i| \cdot a_i^k, \quad k = 1, 2, \ldots; \quad \alpha \in K(A).$$

It is known that K(A) is a polar Fréchet space of countable type. For the importance of this class of spaces and for their further properties we refer to [3].

We then have:

PROPOSITION 3.5. Let $\Lambda = K(A)$ be a Köthe space and let Λ^* the corresponding Köthe dual space. Then the following properties are equivalent:

- (i) Λ is an FM-space.
- (ii) $(\Lambda^*, \beta(\Lambda^*, \Lambda))$ is of countable type.
- (iii) $(\Lambda^*, \beta(\Lambda^*, \Lambda))$ is nuclear.
- (iv) $(\Lambda^*, \beta(\Lambda^*, \Lambda))$ is Montel.
- (v) The unit vectors e_1, e_2, \ldots form a Schauder basis for $\Lambda^*, \beta(\Lambda^*, \Lambda)$.
- (vi) $n(\Lambda^*, \Lambda) = \beta(\Lambda^*, \Lambda)$ (where $n(\Lambda^*, \Lambda)$ is the natural topology on Λ^*).
- (vii) No subspace of Λ is isomorphic (linearly homeomorphic) to c_0 .
- (viii) The sequence of coordinate projections (P_i) , where $P_i: \Lambda \to \Lambda : \alpha = (\alpha_i) \to \alpha_i e_i$, converges to the zero-map uniformly on every bounded subset of Λ .

(ix) The sequence of sections-maps (S_n) , where $S_n: \Lambda \to \Lambda : \alpha = (\alpha_i) \to (\alpha_1, \alpha_2, \ldots, \alpha_n, 0, 0, \ldots)$ converges to the identity map Id uniformly on every bounded subset of Λ .

PROOF. We only have to prove (i) \Rightarrow (v) \Rightarrow (vi), (vii) \Rightarrow (viii) and (ix) \Rightarrow (i). The other implications are easy.

(i) \Rightarrow (v): The unit vectors e_1, e_2, \ldots form a Schauder basis for $(\Lambda^*, \sigma(\Lambda^*, \Lambda))$. Then, apply (i) \Rightarrow (iv) in 3.3.

 $(v) \Rightarrow (vi)$: By [4], p. 21 it suffices to prove that $\beta(\Lambda^*, \Lambda)$ is compatible with the duality (Λ^*, Λ) and this is done as in [1], Proposition 20.

(vii) \Rightarrow (viii): Suppose Λ contains a bounded subset D on which (P_i) does not converge uniformly to the zero-map. We show that Λ contains a subspace isomorphic to c_0 .

From the assumption it follows that there exist $\varepsilon > 0$, $k \in N$ and an increasing sequence of indices (i_n) such that, for all *n*, there exists $\alpha^n = (\alpha_i^n) \in D$ with $|\alpha_{i_n}^n| \cdot a_{i_n}^k > \varepsilon$, $n = 1, 2, \ldots$. We put $z_{i_n} = \alpha_{i_n}^n \cdot e_{i_n}$, $n = 1, 2, \ldots$. Then, the sequence (z_{i_n}) is bounded in Λ .

Now we can define a linear map

$$T: c_0 \to \Lambda: \sigma = (\sigma_n) \to \sum_n \sigma_n z_{i_n}.$$

We prove that T is an isomorphism from c_0 into A. It is easy to see that T is injective and continuous. Also, $T: c_0 \rightarrow \text{Im } T$ is open.

Indeed, for $\sigma = (\sigma_n) \in c_0$, we have $p_k(T(\sigma)) = \max_{n=1}^{\infty} |\sigma_n \alpha_{i_n}^n| \cdot a_{i_n}^k \ge \varepsilon \cdot ||\sigma||_{c_0}$.

(ix) \Rightarrow (i): We prove that Id: $\Lambda \rightarrow \Lambda$ transforms bounded subsets into compactoid subsets. Observe that (ix) means that $\lim_{n} S_{n} = \text{Id in } L_{\beta}(\Lambda, \Lambda)$. Then apply Proposition 4 in [2].

The next corollary is for later use.

COROLLARY 3.6. If for every $k \in N$ and every subsequence (i_n) of the indices there exists h > k such that the sequence $(a_{i_n}^h/a_{i_n}^k)_n$ is bounded, then K(A) is an FM-space.

PROOF. An analysis of the proof of (vii) \Rightarrow (viii) shows that if K(A) is not an FM-space, there exist a subsequence of the indices (i_n) and elements η_{i_n} in K, n = 1, 2, ... such that the linear map $T: c_0 \rightarrow \text{Im } T: (\sigma_n) \rightarrow (\sigma_n \eta_{i_n})$ is an isomorphism of c_0 into Λ .

Consider now in c_0 the subspace c_{00} generated by the unit vectors e_1, e_2, \ldots . Then c_{00} is isomorphic to the subspace F of K(A) generated by e_{i_1}, e_{i_2}, \ldots . Therefore the topology induced by K(A) on F is normable. This means that there exists k such that for all h > k there exists $t_h > 0$ with $p_h(\delta) \le t_h \cdot p_k(\delta)$ for all $\delta \in K(A)$. In particular, for $\delta = e_{i_n}$,

n = 1, 2, ..., we have that there is a k such that for all h > k, there exists $t_h > 0$ with $a_{i_n}^h \le t_h \cdot a_{i_n}^k$ for all n, and we are done.

4. Characterizations of nuclear spaces among FM-spaces. We start this section with the construction of an FM-space which is not nuclear.

EXAMPLE 4.1. For k = 1, 2, ..., consider the infinite matrix

$$A^{k} = (a_{ij}^{k}) = \begin{pmatrix} 1^{k} & \cdots & 2^{k} & \cdots & j^{k} & \cdots \\ 1^{k} & \cdots & 2^{k} & \cdots & j^{k} & \cdots \\ \vdots & \vdots & & & \cdots \\ (k+1)^{k} & \cdots & (k+1)^{k} & \cdots & (k+1)^{k} & \cdots \\ (k+2)^{k} & \cdots & (k+2)^{k} & \cdots & (k+2)^{k} & \cdots \\ \vdots & \vdots & & & \cdots \end{pmatrix} \longrightarrow (k+1)$$

We can think of A^k as a sequence for some order, k = 1, 2, ... (we fix the same order for all k). We then consider the Köthe space

$$K(A) = \{\beta = (\beta_{ij}) : \lim_{i,j} |\beta_{ij}| \cdot a_{ij}^k = 0, k = 1, 2, \ldots\}$$

equipped with the sequence of norms (p_k) where $p_k(\beta) = \max_{ij} |\beta_{ij}| \cdot a_{ij}^k$.

We first show that K(A) is not nuclear. If k > 1, then the sequence (a_{ij}^1/a_{ij}^k) contains a constant sequence. Then by [3] Proposition 3.5 the conclusion follows.

We now apply Corollary 3.6 in order to prove that K(A) is an FM-space.

Choose k and any subsequence of the indices $(i_n, j_m)_{n,m}$. We consider the corresponding elements a_{i_n,j_m}^k of A^k . There are several possibilities.

a) The subsequence $(a_{i_n,j_m}^k)_{n,m}$ contains an infinite number of elements of some row of A^k .

If this row is between the rows 1, ..., k, take h = k + 1. Then the sequence of the quotients $(a_{i_n,i_m}^h/a_{i_n,i_m}^k)_{n,m}$ is unbounded.

If this row is the (k + r)-th row for some $r \ge 1$, then take h = k + r.

b) The subsequence $(a_{i_n j_m}^k)_{n,m}$ consists of finitely many elements of an infinite number of rows. Consider then a subsequence with one element in an infinite number of rows below the *k*th row. Such a subsequence looks like

$$(k+l_1)^k, (k+l_2)^k, (k+l_3)^k, \dots$$

with $(l_n)_n$ increasing to infinity. Take now h = k + 1.

https://doi.org/10.4153/CMB-1992-062-4 Published online by Cambridge University Press

Finally we investigate what the situation exactly is.

DEFINITION 4.2. A locally convex space X is said to be *quasinormable* if for every zero-neighbourhood U in X there exists a zero-neighbourhood V in X, $V \subset U$, such that on U^o the topology $\beta(X', X)$ coincides with norm topology of X'_{V^o} .

DEFINITION 4.3. Let X be a locally convex space. A sequence $(a_n) \subset X'$ is said to be *locally convergent to zero* if there exists a zero-neighbourhood U in X such that $(a_n) \subset X'_{U^o}$ and $\lim_n ||a_n||_{U^o} = 0$.

THEOREM 4.4. For an FM-space E the following properties are equivalent.

- (i) E is nuclear.
- (ii) E is quasinormable.
- (iii) Every $\beta(E', E)$ -convergent sequence in E' is locally convergent.

PROOF. The implications (i) \Rightarrow (ii) and (ii) \Rightarrow (iii) follow by [2], Proposition 14 and [5], 5.2 respectively.

(iii) \Rightarrow (i) Since *E* is of countable type (Theorem 3.1) its topology can be described by the $\sigma(E', E)$ -null sequences on E' ([4], Theorem 3.2). By Theorem 3.3 (i) \Rightarrow (iv) these sequences are null-sequences in $\beta(E', E)$ and by (iii) they are locally convergent to zero. The conclusion then follows from [5], 4.6.i).

COROLLARY 4.5. The Köthe space in 4.1 is also an example of an FM-space which is not quasinormable.

REFERENCES

- 1. N. De Grande-De Kimpe, *Perfect locally K-convex sequence spaces*, Proc. Kon. Ned. Akad. v. Wet. A **74**(1971), 471–482.
- 2. _____, On spaces of operators between locally K-convex spaces, Proc. Kon. Ned. Akad. v. Wet. A 75(1972), 113–129.
- **3.**_____, *Non-archimedean Fréchet spaces generalizing spaces of analytic functions*, Proc. Kon. Ned. Akad. v. Wet. A **85**(1982), 423–439.
- **4.** _____, *Non-archimedean topologies of countable type and associated operators*, Proc. Kon. Ned. Akad. v. Wet. A **90**(1987), 15–28.
- 5. _____, Nuclear topologies on non-archimedean locally convex spaces, Proc. Kon. Ned. Akad. v. Wet. A 90(1987), 279–292.
- 6. H. Jarchow, Locally convex spaces, Teubner, Stuttgart, (1981).
- 7. W. H. Schikhof, *Locally convex spaces over non-spherically complete fields I-II*, Bull Soc. Math. Belgique, (B) **XXXVIII** (1986), 187–224.
- 8. _____, P-adic nonconvex compactoids, Proc. Kon Ned. Akad. v. Wet. A 92(1989), 339-342.
- 9. W. H. Schikhof and A. C. M. van Rooij, *Seven papers on p-adic analysis*, Report 9125, Math. Inst. Katholieke Universiteit, Nijmegen, (1991).

t-FRAMES AND FM-SPACES

10. A. C. M. Van Rooij, *Notes on p-adic Banach spaces*, Reports 7633 and 7725, Math. Inst. Katholieke Universiteit, Nijmegen (1976, 1977).

11. _____, Non-archimedean Functional Analysis, Marcel Dekker, New York, (1978).

Department of Mathematics Vrije Universiteit Brussel Pleinlaan 2 (10F7) B 1050 Brussels Belgium

Department of Mathematics Falcutad de Ciencias Universidad de Cantabria 39071 Santander Spain

Mathematisch Instituut Katholieke Universiteit Toernooiveld, 6525 ED Nijmegen The Netherlands