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Abstract

We study a class of tenable, irreducible, nondegenerate zero-balanced Pólya urn schemes.
We give a full characterization of the class by sufficient and necessary conditions. Only
forms with a certain cyclic structure in their replacement matrix are admissible. The
scheme has a steady state into proportions governed by the principal (left) eigenvector of
the average replacement matrix. We study the gradual change for any such urn containing
n → ∞ balls from the initial condition to the steady state. We look at the status of an
urn starting with an asymptotically positive proportion of each color after jn draws. We
identify three phases of jn: the growing sublinear, the linear, and the superlinear. In the
growing sublinear phase the number of balls of different colors has an asymptotic joint
multivariate normal distribution, with mean and covariance structure that are influenced
by the initial conditions. In the linear phase a different multivariate normal distribution
kicks in, in which the influence of the initial conditions is attenuated. The steady state
is not a good approximation until a certain superlinear amount of time has elapsed. We
give interpretations for how the results in different phases conjoin at the ‘seam lines’.
In fact, these Gaussian phases are all manifestations of one master theorem. The results
are obtained via multivariate martingale theory. We conclude with some illustrating
examples.
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1. Introduction

A k-color Pólya urn is an urn containing balls of up to k different colors and some rules of
evolution in discrete time units. At each stage a ball is drawn uniformly at random from among
all the balls in the urn and its color is noted. If a ball of color r, r = 1, . . . , k, is drawn at
a stage, it is returned to the urn together with Ar,s (a random variable, possibly with support
including negative numbers) balls of color s, s = 1, . . . , k. It is customary to represent these
dynamics by the square replacement matrix

A =

⎛
⎜⎜⎜⎝

A1,1 A1,2 . . . A1,k

A2,1 A2,2 . . . A2,k

...
...

. . .
...

Ak,1 Ak,2 . . . Ak,k

⎞
⎟⎟⎟⎠ .
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The class of tenable zero-balanced Pólya urn schemes 703

The replacement matrix together with the initial conditions (the number of balls of each color
initially present) will be referred to as the Pólya urn scheme, or simply as the ‘scheme’.

Much research in the classic era was devoted to growing schemes, with deterministic
replacement matrix, where the sum of the rows of the replacement matrix is a constant called the
balance factor; see, for example, [4], [7], [8], [11], [12], [32], and [33]. In more recent years, the
tradition of investigating balanced urns continues on more sophisticated types of deterministic
urn schemes; see, for example, [2], [9], [10], [13]–[15], and [19]. Smythe [34] assumed
random matrix entries, with average balance. For growing urns, [1], [5], [17], and [34] give
the broadest theories to date. Surveys are provided in [23] and [28]. For textbook discussions,
see [20] and [29].

We wish to deal with the class of zero-balance tenable urns. In these urn schemes the balance
factor is 0, with the row sum equal to 0 on each row of the replacement matrix. Thus, in these
urns the number of balls never changes, it is only the proportion of balls of different colors that
does. We will refer to the number of balls in a zero-balanced urn by n. The zero-balance urn
might have negative entries in the replacement matrix. A myriad of applications, particularly
in the area of random trees, dictated that attention be paid to matrices with negative entries. To
name a few, we refer the reader to [18], [24]–[27], [30], and [31].

Let X
(n)
j,r be the number of balls in the urn of color r in a zero-balanced urn scheme, for

r = 1, . . . , k, after j draws, and set

X
(n)
j :=

⎛
⎜⎜⎜⎜⎜⎝

X
(n)
j,1

X
(n)
j,2
...

X
(n)
j,k

⎞
⎟⎟⎟⎟⎟⎠ .

So, a zero-balanced scheme is a pair (A, X
(n)
0 ) consisting of a replacement matrix and a vector

of initial values.
An instance of the class we investigate is the classic Ehrenfest scheme [8]. A class of urn

schemes is tenable if we can perpetuate the drawing following any stochastic path whatsoever.
Tenability is a proper combination of a certain matrix structure and initial conditions. For
instance, suppose that we have an urn of balls of two colors, say white and blue, with replacement
matrix

A =
(−2 2

2 −2

)
.

This matrix, together with an even initial number of white balls and an even initial number of
blue balls, forms a tenable scheme. The same matrix with other initial conditions may become
an untenable urn scheme. For instance, if we start with one white and three blue balls, the urn
gets ‘stuck’ if the first draw produces a white ball.

When n is large, we describe the initial conditions in terms of proportions, i.e. X
(n)
0 =

αnn + o(n), where the vector of proportions is

αn =

⎛
⎜⎜⎜⎝

α1(n)

α2(n)
...

αk(n)

⎞
⎟⎟⎟⎠ ,
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with each αr(n) ∈ [0, 1] for r = 1, . . . , k and

k∑
r=1

αr(n) = 1.

In this paper o(g(n)) and O(g(n)) are matrices or vectors, where each component is o(g(n))

and O(g(n)), respectively, in the usual sense. Toward convergence of a suitably normalized
version of X

(n)
jn

, we will only consider cases where we have componentwise convergence, i.e.

αn → α =

⎛
⎜⎜⎜⎝

α1
α2
...

αk

⎞
⎟⎟⎟⎠ ,

with each αr ∈ [0, 1] for r = 1, . . . , k and
∑k

r=1 αr = 1. Our interest is in the characterization
of the class of zero-balanced tenable urns, and in the short- and long-term behaviors. We will
see that there is a steady state with a multinomial distribution, which for large urns (n → ∞)
can be approximated by a multivariate normal distribution. We also explore the transition of
Gaussian phases along the way to that multivariate normal state.

2. Matrix notation

Many of the results are of multivariate nature, and can be compactly written in matrix
notation. Matrices and vectors are denoted using bold characters. As we deal with k-color
schemes, all matrices are k×k and all vectors have k components; we write them unindexed by k.
The transpose of a vector or a matrix W is denoted by W . We denote by Aj the realization of A

after j draws, and by λ1, λ2, . . . , λk the eigenvalues of its expectation E[A]. The eigenvalues
are ordered according to their decreasing real parts, that is, Re λ1 ≥ Re λ2 ≥ · · · ≥ Re λk . An
eigenvalue with largest real part will be called the principal eigenvalue, and the corresponding
left eigenvector will be called the principal eigenvector. Of the continuum of scales that
may be used for eigenvectors, we will use the scales that render the sum of the components
of the principal eigenvector equal to 1. For a vector or a matrix W , we will often need to
extract the dth row. For this, we introduce the operator Row(W , d), which we succinctly write
as W[d]. We will also use 0 to refer to a vector of zeros or a null matrix, and I for the identity
matrix. The matrix G(d) is the k × k diagonal matrix that has all entries equal to 0, except
for the (d, d)th entry which is equal to 1. To simplify the notation throughout, we use the
special matrices M = I + (1/n) E[A] and B = (1/n) E[A]. For real numbers y1, . . . , yk ,
the notation diag(y1, . . . , yk) stands for a diagonal matrix of all zeros, except for the diagonal
elements, with the rth diagonal element equal to yr . A matrix W with distinct eigenvalues
can be diagonalized in terms of its modal matrix and a diagonal matrix of eigenvalues. (The
modal matrix of W is a matrix in which each column is an eigenvector of W .) A matrix W with
distinct eigenvalues can be written as Hdiag(λ1, . . . , λk)H

−1, where H is its modal matrix.

3. The results

Tenability is the property of being able to draw balls and execute the rules forever, no matter
which stochastic path is traced. Irreducibility means that all the colors are essential and feed
into each other. Nondegeneracy means that no two colors are tied together to be basically one
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combined color. These verbose definitions will be made formally precise in the sequel. We
will denote the class of tenable, irreducible, nondegenerate zero-balanced k-color Pólya urn
schemes by Ck . We will first characterize the class Ck . It will turn out that the nontrivial forms
have matrices that are a certain positive multiple of dependent Bernoulli random variables.

Theorem 1. An urn scheme (A, X
(n)
0 ) is in the class Ck if and only if

A = cÃ = c

⎛
⎜⎜⎜⎝

−B1,1 B1,2 . . . B1,k

B2,1 −B2,2 . . . B2,k

...
...

. . .
...

Bk,1 Bk,2 . . . −Bk,k

⎞
⎟⎟⎟⎠ (1)

for an integer c ≥ 1, and the scheme satisfies the following conditions.

(a) The entries of row r of Ã are Bernoulli random variables, where Br,r is a Ber(pr) random
variable for some pr ∈ (0, 1].

(b) The off-diagonal random variables of row r are Bernoulli random variables with condi-
tional distribution that has mass 1 at 0 if Br,r = 0, and a conditional distribution on the
(k − 1)th unit simplex if Br,r = 1.

(c) There is a positive probability of having a cyclic structure in the form of a cyclic
permutation {s1, . . . , sk} of {1, . . . , k} such that B1,s1 = 1, Bs1,s2 = 1, . . . , Bsk−1,sk = 1,
and Bsk,1 = 1.

(d) Every component of X
(n)
0 is a multiple of c.

Each admissible replacement matrix in Theorem 1 has an average with a certain eigenvalue
structure that has a unique principal eigenvalue 0 (as will be shown). Let v = (v1, v2, . . . , vk)

be the corresponding (principal) left eigenvector.

Theorem 2. Let X
(n)
j be the vector of the number of balls of different colors in a Pólya urn

scheme (A, X
(n)
0 ) in the class Ck with n ≥ 1 (fixed) balls. Then X

(n)
j is a Markov chain with a

stationary multinomial distribution on n/c trials and probabilities v1, . . . , vk .

When the number of balls n is very large, the multinomial distribution of Theorem 2 becomes
asymptotically multivariate normal. We will further identify rates of convergence. Let jn be
the number of draws. There are three phases of jn.

(a) The growing sublinear phase, when jn → ∞ and jn = o(n).

(b) The linear phase, when jn ∼ βnn for some βn > 0 of a magnitude bounded from above
and below.

(c) The superlinear phase, when n = o(jn).

At the very low end of the sublinear phase, when jn = O(1) as n → ∞, there is not much
change in the content of the urn, only a finite perturbation on the initial composition appears,
which is negligible. Changes begin to happen when jn grows to ∞. In what follows, we
denote by Nk(0, �) the normally distributed k-component random vector with mean vector 0
(of k components) and k × k covariance matrix �, and by ‘

d−→’ convergence in distribution.
We develop multivariate central limit theorems in the phases, when we do not have an initially
dominant proper subset of colors, that is, when there is no proper subset of colors with total
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initial ball counts adding asymptotically to n. In other words, we assume that 0 < αr < 1
for r = 1, . . . , k. In this investigation the multivariate normal distributions refer to what
some books call singular multivariate normal distributions, where � is a singular matrix, but
a number of linear combinations together define a proper multivariate normal distribution of
lower dimension. In the absence of an initially dominant proper subset of colors, a proper
multivariate central limit theorem holds among the counts of any k − 1 colors, and the count of
the remaining color is, of course, normally distributed as it is the total number of balls n minus
the sum of the k − 1 ball counts.

Theorem 3. Let X
(n)
j be the vector of the number of balls of different colors in an urn scheme

(A, X
(n)
0 ) in Ck with n balls. The mean and covariance are given by

E[X(n)
j ] = MjX

(n)
0 ,

cov[X(n)
j ] =

j∑
i=1

(
j

i

)
Mj−iX

(n)
0 X

(n)

0
1

ni
(E[A])i

+ 1

n

j∑
i=1

i−1∑
r=0

k∑
d=1

(
i − 1

r

)
M i−1−rM

(j−i)
[d] X

(n)
0 E[A[d]A[d]] 1

nr
(E[A])r

− MjX
(n)
0 X

(n)

0 M
j
.

Furthermore, after jn draws from the urn with n, n → ∞, balls, where jn → ∞, in a sublinear
(when there is no initially dominant proper subset of colors), linear, or superlinear fashion,

X
(n)
jn

− (I + E[A]/n)jnX
(n)
0

ξn

d−→ Nk(0, �phase),

where ξn = √
jn in the sublinear phase, ξn = √

n in the linear and superlinear phases, and
�phase is a constant covariance matrix depending on the phase.

Remark. In the presence of an initially dominant proper subset of colors, either a proper subset
of k − 2 or less colors have a proper multivariate central limit theorem under the scaling

√
jn

in the sublinear phase, or in critical cases a different scale factor is needed for all k different
colors to follow Gaussian laws, starting at ranges differing from those found in this paper. We
give results on this topic in a companion paper [22].

Theorem 3 has the following manifestations in various phases. When jn grows sublinearly
to ∞, the initial conditions persist, and the asymptotic normal result in this case contains the
vector α. The Gaussian law in Theorem 3 takes the form

X
(n)
jn

− (I + E[A]/n)jnX
(n)
0√

jn

d−→ Nk(0, �sub);

we specify �sub in the sequel (the covariance matrix �sub involves α).
Normality continues to hold in the linear and superlinear phases. However, in each phase

we obtain a different normal distribution. The mean and scale factors are essentially different.
In the linear phase a different normal distribution (with the usual

√
n scaling of central limit

theorems) is in effect, and the parameters of the distribution depend on both α and the coefficient
of linearity.
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Deep in the linear phase (with large linearity coefficient), when jn ∼ βnn, the Gaussian law
in Theorem 3 takes the form

X
(n)
jn

− µnn√
n

d−→ Nk(0, �lin);

we specify µn and �lin in the sequel. The vector µn contains a fixed component and an
exponentially decaying part.

After a very long period of time, as in the superlinear phase, when n = o(jn), the distribution
approaches the multinomial (asymptotically normal) steady state. Deep in the superlinear phase
the Gaussian law in Theorem 3 takes the form

X
(n)
jn

− vn√
n

d−→ Nk(0, �sup);

we specify �sup in the sequel (the covariance matrix �sup does not involve α).
Note how the effect of any initial conditions is eventually obliterated. Though we have

one master theorem for all the phases, certain aspects of the proof are different in each phase.
Basically, a different approximation technique is used in each of the three phases.

4. Organization

The rest of this paper has the following organization. In Section 5 we set up a basic stochastic
recurrence. In Section 6 we characterize the class Ck by necessary and sufficient conditions
(proof of Theorem 1). Subsections 6.1 and 6.2 are devoted to defining the notions of irreducibil-
ity and nondegeneracy, respectively. Sufficient conditions are discussed in Subsection 6.3;
necessary conditions are discussed in Subsection 6.4. In Section 7 we derive the steady-state
multinomial distribution (proof of Theorem 2). In Section 8 we present the mean and variance
of X

(n)
j . In Section 9 we derive the underlying martingale. In Section 10 we discuss the three

phases, the growing sublinear, the linear, and the superlinear, with a subsection devoted to each
phase. In each subsection we prove the master theorem in one phase. We conclude in Section 11
with some examples.

5. Basic stochastic recurrence

In a tenable, zero-balanced scheme a stochastic path of j steps corresponds to a history of
nonhalting replacements up to j − 1 steps, a determination of the color of the j th drawn ball,
and an independent realization of A. Let 1(n)

j,r be an indicator of the event that a ball of color
r is sampled in the j th draw. (The indicators 1(n)

j,1, 1(n)
j,2, . . . , 1(n)

j,k are mutually exclusive: only
one can be 1 while all others are 0.) Each indicator, when it realizes the value 1, takes the urn
along a different stochastic path. By tenability, X(n)

j−1 is a vector with nonnegative components.
Let Aj = [A(j)

r,s ] be a realization of A in the j th step. For each color r , we have

X
(n)
j,r = X

(n)
j−1,r + A

(j)
1,r1(n)

j,1 + A
(j)
2,r1(n)

j,2 + · · · + A
(j)
k,r1(n)

j,k. (2)

When we write these components (for r = 1, . . . , k) in matrix form, we obtain the stochastic
recursive formula

X
(n)
j = X

(n)
j−1 + AjJ

(n)
j , (3)

where J
(n)

j = (1(n)
j,1, 1(n)

j,2, . . . , 1(n)
j,k).
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6. Characterization

In this section we prove Theorem 1. It is helpful to get rid of redundant situations. We go
over the concepts of irreducibility and nondegeneracy first. At the core of these concepts is the
idea that every color is essential in some nonartificial way.

6.1. Irreducibility

Color r is said to be essential if there is probability 1 of finding balls of that color after some
number of draws from an urn for every monochromatic starting condition void of that color (that
is, whenever all the balls at the start are of one color, which is not r). A scheme is irreducible if
all its colors are essential. If a scheme is not irreducible, it is said to be reducible. For example,
the Pólya–Eggenberger scheme is irreducible. An example of a reducible scheme is

A =

⎛
⎜⎜⎝

−1 1 0 0
1 −1 0 0
0 0 −1 1
0 0 1 −1

⎞
⎟⎟⎠ ;

we cannot ever find balls of color 3 in the urn if we start with five balls of color 2. Color 3, and
in fact all the colors, are not essential.

Lemma 1. In the replacement matrix A of a tenable, irreducible, zero-balanced scheme, entry
Ai,i for i = 1, . . . , k is nonnegative, and cannot be identically 0.

Proof. Assume that the diagonal element Ar,r of A has a positive realization. The zero-
balance condition necessitates that some entry on the same row, say Ar,s , realizes a negative
value. The irreducibility condition ensures that, sooner or later, a ball of color r appears (with
probability 1), and subsequent draws of color-r balls will deplete color-s balls, while increasing
color-r balls. So, we can follow one such stochastic path, then realize a positive value of Ar,r

and a negative value for Ar,s , with the scheme coming to a halt after one extra draw of a color-r
ball, contradicting its tenability. Entry Ar,r is nonpositive.

Next, assume that Ar,r ≡ 0, and that we start with a monochromatic urn, in which all the
balls are of color r . The entire rth row must be 0, otherwise, by the zero balance condition
we have positive and negative entries. Then we can deplete some other color by repeatedly
drawing color-r balls (while keeping the number of color-r balls unchanged), and drive the
process to a halt, contradicting tenability. However, if the entire rth row is 0, no other color
will ever appear, contradicting irreducibility.

6.2. Nondegeneracy

When two colors, say r and r ′, are tied together (that is, when the number of balls of one
color is always the same multiple of the number of balls of the other color), we consider the
situation a degeneracy. More precisely, we say that a tenable, zero-balanced urn scheme is
degenerate if, for a positive constant m ≥ 1, X

(n)
j,r = mX(n)

j,r ′ for all j ≥ 0. In this case, we can
reduce the dimensionality of the problem from k to k − 1 by combining the two colors. That is,
we can study a (k−1)th scheme in which colors r and r ′ are replaced with a new color. Without
loss of generality, we can assume that the two colors tied together are the colors k−1 (crimson)
and k (pink). We construct a new equivalent urn scheme in which the two colors are replaced
by a new color (simply très chic red). The new scheme has a (k − 1) × (k − 1) replacement
matrix, in which simply très chic red corresponds to a new (k − 1)th row. All the entries of the
new replacement matrix remain the same as those in the old 1, . . . , k − 2 columns. In the new
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(k − 1)th column all the entries are replaced with the new entries A′
r,k−1 = Ar,k−1 + Ar,k for

r = 1, . . . , k − 1. In the starting vector we also combine the (k − 1)th and kth components
into one component at position k − 1, given by X̃

(n)
0,k−1 = X

(n)
0,k−1 + X

(n)
0,k . Let X̃

(n)
j,k−1 be the

number of balls of the simply très chic red color after j draws. We can develop all the results
for the simply très chic red color, then recover the behavior of the crimson and pink colors
from their proportionality relations: X

(n)
j,k−1 = mX̃

(n)
j,k−1/(m + 1) and X

(n)
j,k = X̃

(n)
j,k−1/(m + 1).

Subsequently, if we analyze the class Ck , we can still say a definite word about a tenable,
irreducible, degenerate zero-balanced k-color urn scheme. We illustrate this with an example
in Subsection 11.4.

Lemma 2. A tenable, irreducible, zero-balanced scheme is degenerate if and only if there is
one column of its replacement matrix that is proportional (in all its components) to another.

Proof. Suppose that the scheme is degenerate. There are two distinct colors, say r and s

(with r 
= s), that are tied together—for some integer m ≥ 1 and all j ≥ 0, X
(n)
j,r = mX(n)

j,s .
Drawing a ball of any color keeps this proportionality. Thus, if we draw a ball of color i for
any i = 1, . . . , k, we obtain

X
(n)
j,r = X

(n)
j−1,r + A

(j)
i,r , X

(n)
j,s = X

(n)
j−1,s + A

(j)
i,s .

But then X
(n)
j−1,r = mX(n)

j−1,s and X
(n)
j,r = mX(n)

j,s . Solving these equations for A
(j)
i,r and A

(j)
i,s , we

find (for any i) that A
(j)
i,r = mA(j)

i,s ; column s of the replacement matrix is proportional (in all
its components) to column r .

The converse is obviously true (note that if two colors are tied and one disappears, the other
must also disappear).

6.3. Sufficient conditions for the class Ck

We will show that a Pólya urn scheme is in the class Ck if its replacement matrix has the
form (1), provided that the components of the initial vector X

(n)
0 are nonnegative multiples of

c (which we call the initial divisibility condition). By virtue of its construction, the form (1) is
zero balanced and, by Lemma 2, it is also nondegenerate.

Lemma 3. Under the form (1) and the initial divisibility condition, each component of X
(n)
j is

a nonnegative multiple of c (that is, the scheme is tenable), with at least one being a positive
multiple of c.

Proof. We prove the lemma by induction on j . The initial divisibility condition (Theo-
rem 1(d)) guarantees this for j = 0, providing a basis for induction. Assume that the hypothesis
is true for X

(n)
j−1. Suppose that 1(n)

j,s = 1 (with all other indicators equal to 0), and write (2) as

X
(n)
j,r = X

(n)
j−1,r + A

(j)
s,r .

By hypothesis, X
(n)
j−1,r is a nonnegative multiple of c, and, according to the form of the

replacement matrix, A
(j)
s,r is a nonnegative multiple of c for r 
= s. Hence, X

(n)
j,r is a multiple

of c for r 
= s. As for the component X
(n)
j,s , we have

X
(n)
j,s = X

(n)
j−1,s − cBs,s .

By induction, X
(n)
j−1,s is a nonnegative multiple of c. This multiple cannot be 0 as the sth

indicator is 1, which ensures that there are balls of color s at the j th draw; thus, X
(n)
j−1,s is a
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positive multiple of c, and X
(n)
j,s is also a multiple of c, regardless of whether the realization of

the Bernoulli random variable Bs,s is 0 or 1. The induction is complete. It is evident that not all
these multiples are 0 simultaneously; at least one must be positive, as we have a total of n balls.

Lemma 4. A scheme with replacement matrix of the form (1) and starting values satisfying the
initial divisibility condition is irreducible.

Proof. A scheme in the form (1) has a cyclic structure. Let Ej,si be the event that, starting
at some j th draw, we successively go through the permutation of all colors starting with a j th
draw of color si . That is, Ej,si is the event that 1(n)

j,si
= 1, 1(n)

j+1,si+1
= 1, . . . , 1(n)

j+k−1,si+k−1
= 1

(interpret the index of s to wrap around into 1 if it exceeds k), and p = P(Ej,si ) > 0. (By
Lemma 3, drawing forever is ensured, and Ej,si is well defined.)

The sequence {Ejk+1,si }∞j=0 comprises independent events, and

∞∑
j=0

P(Ejk+1,si ) =
∞∑

j=0

p = ∞.

By the Borel–Cantelli lemma, P(Ejk+1,si infinitely often) = 1, and, consequently, P(Ej,si

infinitely often) = 1. So, any color has probability 1 of appearing infinitely often, if we
start monochromatically with balls of color si . This being true for si, i = 1, 2, . . . , k, shows
that all colors are essential; an urn scheme with replacement matrix of the form (1) and starting
values satisfying the initial divisibility is irreducible.

The zero-balance nature and nondegeneracy of (1) and Lemmas 3–4 assert that this choice of
replacement matrix with the initial divisibility condition are sufficient conditions for a scheme
to be in the class Ck . This proves the sufficiency part of Theorem 1.

6.4. Necessary conditions for the class Ck

We show here that the form (1) and the initial divisibility condition are necessary for a Pólya
urn scheme to qualify in Ck . Throughout this section, we assume that the scheme (A, X

(n)
0 ) is

in Ck . It was shown in Lemma 1 that the diagonal entries of A are nonpositive. It remains to
determine the ranges of these entries.

Lemma 5. For some positive integer cr and some pr ∈ (0, 1],
Ar,r = −crBer(pr).

Proof. We have established in Lemma 1 that, for a scheme to be tenable, irreducible, and
zero-balanced, a diagonal random variable such as Ar,r must have a nonpositive support (and
cannot be identically 0). Thus,

Ar,r ∈ {−n, −(n − 1), . . . , −2, −1, 0}.
Suppose (toward a contradiction) that realizations of Ar,r can assume two negative values, −y

and −z, with y < z. There is a stochastic path that brings the process to a halt. We describe
this path. If X

(n)
0,r > 0, we can draw balls of color r; otherwise, there are stochastic paths (with

probability 1) on which, sooner or later, there will be balls of color r by the irreducibility
condition. Let j be the smallest index on such a path, such that X

(n)
j,r > 0. Clearly, X

(n)
j,r must

be a multiple of both y and z. Now �X(n)
j,r /y� − 1 draws of color-r balls, each time having Ar,r

realize the value −y, leave a remainder of y balls of color r . One more draw of a color-r ball,
for which Ar,r realizes the value −z, will halt the process, as there are only y < z balls of
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color r to take out. In view of this contradiction, Ar,r can realize at most one negative value or
0 (but cannot be identically 0). That is, for some positive integer cr and some pr ∈ (0, 1], Ar,r

falls in {−cr , 0}.
Henceforth, we assume that Ar,r = −crBer(pr) for pr ∈ (0, 1].

Corollary 1. The off-diagonal entries of A are nonnegative random variables.

Proof. As the scheme is nondegenerate, colors r and s are not tied together and do not have
to disappear together. It is possible for the urn to have balls of color r but not s. Starting from
such a state, if Ar,s can realize a negative value, the drawing halts, contradicting tenability.

Lemma 6. The positive values c1, c2, . . . , ck are all the same.

Proof. Without loss of generality, assume that

c1 ≤ c2 ≤ · · · ≤ ck.

Suppose that, for some 1 ≤ q1, q2, . . . , qν ≤ k, c1 = · · · = cq1 < cq1+1 = cq1+2 = · · · =
cq1+q2 < cq1+q2+1 = · · · < cq1 + · · · + cqν−1+1 = cq1 + · · · + cqν−1+2 = · · · = ck . We
argue that the submatrix in rows 1 to q1 + · · · + qν−1 and columns q1 + · · · + qν−1 + 1 to k is
a block of zeros. Let Ar,s be a variable from that submatrix. By tenability, it must be a multiple
of ck . However, in view of the zero-balance condition and the sign structure determined by
Lemma 1 and Corollary 1, Ar,s should not exceed cr < ck . The only possible such multiple
is 0. But then the scheme is not irreducible (as can be seen from starting void of the colors
q1 + · · · + qν−1 + 1, . . . , k). This is a contradiction.

Corollary 2. The off-diagonal entries of A are nonnegative random variables that are multiples
of c.

Corollary 3. The initial value X
(n)
0,r is a nonnegative multiple of c.

Corollary 4. The entries of row r are random variables that are of the form cBr,1, cBr,2, . . . ,

cBr,r−1, −cBr,r , cBr,r+1, . . . , cBr,k , where the diagonal element is −cBer(pr) for some pr ∈
(0, 1], and the off-diagonal random variables are c-times Bernoulli random variables with
conditional distribution that has mass 1 at 0 if Br,r = 0, and a conditional distribution on the
(k − 1)th unit simplex if Br,r = 1.

Proof. If Br,r realizes the value 0, all other (nonnegative) random variables on the same
row must be 0, by the zero-balance condition and the sign structure determined by Lemma 1
and Corollary 1. If, alternatively, Br,r realizes the value 1, by the zero-balance condition, the
(nonnegative integer-valued) off-diagonal random variables on the same row must add up to 1.
One and only one assumes the value 1, the rest are 0.

Finally, we argue the cyclic structure.

Corollary 5. For any given realization of A, there is a cyclic permutation {s1, . . . , sk} of
{1, . . . , k} such that B1,s1 = 1, Bs1,s2 = 1, . . . , Bsk−1,sk = 1, and Bsk,1 = 1.

Proof. Suppose that, for every possible realization of A, there is no such cyclic permu-
tation. So, any cycle has length shorter than k. In other words, for any given sequence of k

realizations of A, there is only a cyclic permutation of {s1, . . . , s�} such that Bs1,s2 = 1, Bs2,s3 =
1, . . . , Bs�−1,s� = 1, and Bs�,s1 = 1 for some � < k. Starting with only balls of colors s1, . . . , s�,
the other k − � colors never appear, contradicting irreducibility.

https://doi.org/10.1239/aap/1346955261 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1346955261


712 S. KHOLFI AND H. M. MAHMOUD

Lemmas 5–6 and their corollaries demonstrate that, indeed, the replacement matrices of the
form (1) in addition to the initial divisibility conditions are the only admissible schemes for the
class Ck .

7. The Markov chain and its stationary distribution

For a k-color scheme in the class Ck , the vector X
(n)
j alternates in value between vectors

of the form x = c(x1, x2, . . . , xk), where the components of x are nonnegative solutions in
nonnegative integers to the equation

x1 + · · · + xk = n

c
=: N;

we call such a solution a feasible partition. Given any particular feasible partition of colors
in the urn, the change of composition after one drawing depends only on the color of the ball
sampled from the given feasible partition and the realization of A at that step. The process
X

(n)
j is therefore a Markov chain on

(
N+k−1

k−1

)
states, each of which corresponds to one feasible

partition. The irreducibility aspect of the scheme makes at least k states of the Markov chain
nontransient.

Let pr,s be the probability that As,r = 1 and As,s = −1. The diagonal elements of the
Markov transition matrix are given by

P(X
(n)

j = (x1, . . . , xk) | X
(n)

j−1 = (x1, . . . , xk)) =
k∑

r=1

xr

N
(1 − pr),

and the off-diagonal elements are given by

P(X
(n)

j = (x1, . . . , xk) | X
(n)

j−1 = (x1, x2, . . . , xr−1, xr − 1, xr+1, . . . ,

xs−1, xs + 1, xs+1, . . . , xk))

= xs + 1

N
pr,s .

Let π(x1, . . . , xk) be the stationary probability that the process is in state (x1, . . . , xk), and
let π be the

(
N+k−1

k−1

)
-component vector of stationary probabilities. We solve the equation

π = πQ, where Q is the Markov transition matrix as follows.

Lemma 7. The stationary distribution is Multinomial(N; v1, . . . , vk), where (v1, v2, . . . ,

vk) = v is the left row eigenvector corresponding to the eigenvalue 0 of A.

Proof. Writing the relation π = πQ component by component we obtain the
(
N+k−1

k−1

)
equations

π(x1, . . . , xk) = π(x1, . . . , xk)

k∑
r=1

xr

N
(1 − pr)

+
k∑

s=1

xs + 1

N

∑
r 
=s

pr,sπ(x1, x2, . . . , xr−1, xr − 1, xr+1, . . . ,

xs−1, xs + 1, xs+1, . . . , xk) (4)
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(one equation for every feasible partition). Let a = (a1, a2, . . . , ak) be a vector of positive
numbers (probabilities) in (0, 1] such that

∑k
j=1 ak = 1. If we substitute the multinomial

probabilities

π(x1, . . . , xk) =
(

N

x1, x2, . . . , xk

)
a

x1
1 a

x2
2 · · · axk

k

on the right-hand side of (4), we obtain

(
N

x1, x2, . . . , xk

)
a

x1
1 a

x2
2 · · · axk

k

k∑
r=1

xr

N
(1 − pr)

+
k∑

s=1

xs + 1

N

∑
r 
=s

pr,sa
x1
1 · · · axr−1

r−1 axr−1
r a

xr+1
r+1 · · · axs−1

s−1 axs+1
s a

xs+1
s+1 · · · axk

k

×
(

N

x1, . . . , xr−1, xr − 1, xr+1, . . . , xs−1, xs + 1, xs+1, . . . , xk

)

=
(

N

x1, x2, . . . , xk

)
a

x1
1 a

x2
2 · · · axk

k

( k∑
r=1

xr

N
(1 − pr) +

k∑
s=1

xs + 1

N

∑
r 
=s

pr,sas

xr

ar (xs + 1)

)
.

Indeed, π(x1, . . . , xk) = (
N

x1,x2,...,xk

)
a

x1
1 a

x2
2 · · · axk

k is a solution to the system of equations (4),
if the numbers a1, . . . , ak satisfy the equations

N =
k∑

r=1

xr(1 − pr) +
k∑

s=1

∑
r 
=s

pr,sas

xr

ar

for every feasible partition of x. There are
(
N+k−1

k−1

)
such partitions. So, as equations in the k

variables a1, . . . , ak , this is an over-determined system. We also need to satisfy
∑k

j=1 aj = 1.
We can solve any independent k of these combined equations and verify that such a solution
is unique, and consistent with the rest of the equations in the over-determined system. Let us
solve the k equations where only one xr is N and all the remaining shares in the partition are 0.
This gives us the linear system of equations

(a1, a2, . . . , ak)

⎛
⎜⎜⎜⎝

−p1 p2,1 . . . pk,1
p1,2 −p2 . . . pk,2

...
...

...
. . .

p1,k p2,k . . . −pk,k

⎞
⎟⎟⎟⎠ = (0, 0, . . . , 0).

A solution to this equation is an eigenvector of E[A] corresponding to the eigenvalue 0. The
constraint

∑k
j=1 aj = 1 further determines the scale as already chosen.

8. Exact and asymptotic mean and variance

In this section we obtain explicit expressions for the mean and the covariance matrix of X
(n)
j ,

and describe the asymptotic behavior of this random vector after j = jn draws, for functions jn

of various growth rates. In what follows, Fj is the sigma-field generated by the first j draws.
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Lemma 8. We have

E[X(n)
j ] = MjX

(n)
0 ,

cov[X(n)
j ] =

j∑
i=1

(
j

i

)
Mj−iX

(n)
0 X

(n)

0
1

ni
(E[A])i

+ 1

n

j∑
i=1

i−1∑
r=0

k∑
d=1

(
i − 1

r

)
M i−1−rM

(j−i)
[d] X

(n)
0 E[A[d]A[d]] 1

nr
(E[A])r

− MjX
(n)
0 X

(n)

0 M
j
.

Proof. The expectation of (3) is

E[X(n)
j ] = E[X(n)

j−1] + E[AJ
(n)
j ]

= E[X(n)
j−1] + E[A] E[E[J (n)

j | Fj−1]]

= E[X(n)
j−1] + E[A] E

[
1

n
X

(n)
j−1

]

= MjX
(n)
0 .

A recurrence for the covariance follows from the expectation of the product of (3) and its
transpose:

cov[X(n)
j ] = E[X(n)

j X
(n)

j ] − E[X(n)
j ] E[X(n)

j ] = E[X(n)
j X

(n)

j ] − MjX
(n)
0 X

(n)

0 M
j
. (5)

We need to only evaluate the first term E[X(n)
j X

(n)

j ]. From (3) we have

E[X(n)
j X

(n)

j ] = E[X(n)
j−1X

(n)

j−1] + E[AJ
(n)
j X

(n)

j−1] + E[X(n)
j−1J

(n)

j A] + E[AJ
(n)
j J

(n)

j A]. (6)

We now consider the last three components on the right-hand of (6). We have

E[AJ
(n)
j X

(n)

j−1] = E[X(n)
j−1J

(n)

j A] = 1

n
E[A] E[X(n)

j−1X
(n)

j−1], (7)

the transpose of which is

E[X(n)
j−1J

(n)

j A] = 1

n
E[X(n)

j−1X
(n)

j−1] E[A]. (8)

We also have

E[AJ
(n)
j J

(n)

j A] = E[Adiag(1(n)
j,1, . . . , 1(n)

j,k)A]

=
k∑

d=1

E[1(n)
j,d ] E[AG(d)A]

=
k∑

d=1

E[1(n)
j,d ] E[A[d]A[d]]

= 1

n

k∑
d=1

E[A[d]A[d]]M(j−1)
[d] X

(n)
0 . (9)
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We substitute (7), (8), and (9) into (6) to obtain

E[X(n)
j X

(n)

j ] = M E[X(n)
j−1X

(n)

j−1] + 1

n
E[X(n)

j−1X
(n)

j−1] E[A]

+ 1

n

k∑
d=1

E[A[d]A[d]]M(j−1)
[d] X

(n)
0 . (10)

To simplify the notation of the above equation, we introduce

Sj = E[X(n)
j X

(n)

j ], Cj = 1

n

k∑
d=1

E[A[d]A[d]]M(j−1)
[d] X

(n)
0 ,

so that (10) takes the recursive form Sj = MSj−1 + Sj−1B + Cj . It can be easily shown by
induction that the solution is

Sj =
j∑

i=0

(
j

i

)
Mj−iS0B

i +
j∑

i=1

i−1∑
r=0

(
i − 1

r

)
M i−1−rCjB

r .

Hence, we have

E[X(n)
j X

(n)

j ] =
j∑

i=0

(
j

i

)
Mj−iX

(n)
0 X

(n)

0
1

ni
(E[A])i

+ 1

n

j∑
i=1

i−1∑
r=0

k∑
d=1

(
i − 1

r

)
M i−1−r E[A[d]A[d]]M(j−i)

[d] X
(n)
0

1

nr
(E[A])r .

Substituting this into (5), the covariance follows in the form stated.

The following corollaries provide the mean and covariance asymptotics for the growing
sublinear, linear, and superlinear phases.

Corollary 6. We have

E[X(n)
jn

] =

⎧⎪⎨
⎪⎩

αn + o(n) for jn = o(n),

Hdiag(eβnλ1 , . . . , eβnλk )H−1αn + o(n) for jn ∼ βnn,

vn + o(n) for n = o(jn).

Proof. From Lemma 8 we have

E[X(n)
jn

] =
(

I + 1

n
E[A]

)jn

X
(n)
0

= Hdiag

((
1 + 1

n
λ1

)jn

, . . . ,

(
1 + 1

n
λk

)jn
)

H−1X
(n)
0 . (11)

We have

(
1 + 1

n
λr

)jn

=
⎧⎨
⎩1 + O

(
jn

n

)
in the sublinear phase,

eβnλr + o(1) in the linear phase, when jn ∼ βnn.
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Thus, in the sublinear phase (11) asymptotically becomes

E[X(n)
jn

] =
(

1 + O

(
jn

n

))
Hdiag(1, . . . , 1)H−1X

(n)
0 =

(
1 + O

(
jn

n

))
X

(n)
0 = αn + o(n).

The argument for the linear phase is similar.
Note that if there are positive eigenvalues, one or more of the expressions (1 + λr/n)jn

would grow exponentially in the superlinear phase, and the sum of the components of E[X(n)
jn

]
(i.e. the total number of balls) would exceed n. This contradiction shows that the eigenvalues
are all nonpositive. As E[A] is singular, 0 is an eigenvalue, so it is the principal eigenvalue.
The nondegeneracy of Ck renders all the eigenvalues distinct; the real parts of the eigenvalues
form a decreasing sequence. Whence, in the superlinear phase(

1 + 1

n
λi

)jn

→
{

1 if i = 1,

0 if 2 ≤ i ≤ k.

In the superlinear phase (11) asymptotically becomes

E[X(n)
jn

] = HG(1)H−1X
(n)
0 + o(n).

Let H−1 = [hr,s]1≤r,s≤k . Multiplying out, we obtain

E[X(n)
jn

] = v

k∑
r=1

αrh1,rn + o(n).

According to the chosen scale for the principal eigenvector, h1,r = 1 for r = 1, . . . , k, and we
have

∑k
r=1 αr = 1, so

E[X(n)
jn

] = vn + o(n).

Corollary 7. (a) For the growing sublinear phase, when jn → ∞ and jn = o(n),

cov[X(n)
jn

] = jn

( k∑
d=1

αd E[A[d]A[d]] − E[A]αα E[A]
)

+ o(jn).

(b) For the linear phase, when jn ∼ βnn for some βn > 0 of a magnitude bounded from above
and below,

cov[X(n)
jn

] = n

(
−

k∑
d=2

λdeβnλd HG(d)H−1ααH
−1

diag(0, . . . , βnλkeβnλk )H

+
k∑

r=2

k∑
d=1

HG(r)H−1(HG(r)H−1)[d]α E[A[d]A[d]]H−1
eβnλr

× diag

(
βn, . . . ,

1 − eβnλk

λ1 − λk

)
H

+
k∑

r=1

k∑
s=2,s 
=r

k∑
d=1

HG(s)H−1(HG(r)H−1)[d]α E[A[d]A[d]]H−1

× diag

(
eβnλr − eβn(λs+λ1)

λr − λs − λ1
, . . . ,

eβnλr − eβn(λs+λk)

λr − λs − λk

)
H

)
+ o(n).
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(c) For the superlinear phase, when n = o(jn),

cov[X(n)
jn

] = −n

k∑
s=2

k∑
d=1

HG(s)H−1vd E[A[d]A[d]]H−1
diag

(
1

λs + λ1
, . . . ,

1

λs + λk

)
H

+ o(n).

Proof. The proof follows similarly to the arguments based on asymptotic expansions used
in the proof of Corollary 6, and is thus omitted.

Note that the mean and variance in the three phases coincide at the phase boundary. The
linear phase with βn = 0 gives the result in the growing sublinear phase, and the linear phase
with βn = ∞ gives the result in the superlinear phase.

9. The underlying multivariate martingale

We use a multivariate martingale approach to derive the master central limit theorem. Other
approaches may also work here, such as analytic techniques based on moment generating
functions and the method of moments tailored to random combinatorial structures [6]. These
methods may tend to be more computationally intensive than this presentation.

Conditioning recurrence (3) on the content of the sigma-field Fj−1, we obtain

E[X(n)
j | Fj−1] = E[(X(n)

j−1 + AjJ
(n)
j ) | Fj−1] = X

(n)
j−1 + 1

n
E[Aj ]X(n)

j−1 = MX
(n)
j−1.

So, it is evident that
Ỹ

(n)
j = MjnY

(n)
j − MjnY

(n)
0

is a centered martingale (with mean 0). For any nonzero scalar sequence ξn, ξ−1
n Ỹ

(n)
j is

a martingale difference sequence. It is sufficient for our purpose to check the conditional
Lindeberg condition and the conditional variance condition (see [16, p. 58]). The former
condition requires that, for all ε > 0,

Un :=
jn∑

i=1

E

[∥∥∥∥ 1

ξn

∇Ỹ
(n)
i

∥∥∥∥
2

1{‖∇Ỹ
(n)
i /ξn‖>ε}

∣∣∣∣ Fi−1

]
p−→ 0,

where the indicator 1E is the function (of a sample space) that assumes the value 1 if E occurs,
and the value 0 otherwise, ‘

p−→’ denotes convergence in probability, and ‖ · ‖ is the usual norm
of a matrix. The matrix norm is defined as the root of the sum of the squares of its matrix
components, or, equivalently, the root of the sum of the squares of its eigenvalues.

A �-conditional variance condition requires that

Vn :=
jn∑

i=1

cov

[
1

ξn

∇Ỹ
(n)
i

∣∣∣∣ Fi−1

]
p−→ �

for a covariance matrix �, where the convergence takes place component by component.
When both conditions hold, the sum

∑jn

i=1 ξ−1
n ∇Ỹ

(n)
i = ξ−1

n (MjnY
(n)
jn

− Mjn Y
(n)
0 ) =

ξ−1
n (X

(n)
jn

− E[X(n)
jn

]) converges to the multinormally distributed random vector Nk(0, �phase).
In the sublinear phase we take ξn = √

jn, and in the linear and superlinear phases we take
ξn = √

n. To check the conditional Lindeberg condition, the following uniform bound is helpful
in all the phases.

https://doi.org/10.1239/aap/1346955261 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1346955261


718 S. KHOLFI AND H. M. MAHMOUD

Lemma 9. It holds that
‖∇Ỹ

(n)
j ‖ ≤ 2ck2.

Proof. In view of (3) we have

‖∇Ỹ
(n)
j ‖ = ‖MjnY

(n)
j − MjnY

(n)
j−1‖

≤ ‖Mjn−j‖‖X(n)
j − MX

(n)
j−1‖

= ‖Mjn−j‖‖X(n)
j−1 + AJ

(n)
j − MX

(n)
j−1‖

≤ ‖Mjn−j‖
(

‖AJ
(n)
j ‖ +

∥∥∥∥1

n
E[A]X(n)

j−1

∥∥∥∥
)

≤ ‖Mjn−j‖‖A‖‖J (n)
j ‖ + 1

n
‖Mjn−j‖‖E[A]‖‖X(n)

j−1‖. (12)

By the definition of the matrix norm we go further with

‖Mjn−j‖ ≤ √
k, ‖A‖ ≤ ck, ‖E[A]‖ ≤ ck, ‖J (n)

j ‖ = 1, ‖X(n)
j−1‖ ≤ n

√
k.

The lemma follows from these inequalities and (12).

Lemma 10. It holds that

Un :=
jn∑

i=1

E

[∥∥∥∥ 1

ξn

∇Ỹ
(n)
i

∥∥∥∥
2

1{‖∇Ỹ
(n)
i /ξn‖>ε}

∣∣∣∣ Fi−1

]
p−→ 0.

Proof. Recall that in the sublinear phase ξn = √
jn, and in the linear and superlinear phases

ξn = √
n. Therefore, in all the growing phases ξn grows with n. For any given ε > 0, the

uniform bound in Lemma 9 asserts that the sets {‖ξ−1
n ∇Ỹ

(n)
i ‖ > ε} are empty for all jn greater

than some positive integer n0(ε). For jn ≥ n0(ε), we have

Un =
n0(ε)∑
i=1

E

[∥∥∥∥ 1

ξn

∇Ỹ
(n)
i

∥∥∥∥
2

1{‖∇Ỹ
(n)
i /ξn‖>ε}

∣∣∣∣ Fi−1

]
.

According to Lemma 9, in all the growing phases we obtain

Un ≤
n0(ε)∑
i=1

E

[
4c2k4

ξ2
n

∣∣∣∣ Fi−1

]
≤ 4c2k4n0(ε)

ξ2
n

→ 0 as n → ∞.

This completes the proof.

To check the conditional variance condition, we need to determine cov[∇Ỹ
(n)
i | Fi−1], see

the definition of Vn in (9), which is given by

cov[∇Ỹ
(n)
i | Fi−1] = cov[MjnY

(n)
i − MjnY

(n)
i−1 | Fi−1]

= cov[MjnY
(n)
i | Fi−1]

= cov[Mjn−iX
(n)
i | Fi−1]

= Mjn−i cov[X(n)
i | Fi−1]Mjn−i

= Mjn−i cov[AJ
(n)
i | Fi−1]Mjn−i

. (13)
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We have

cov[AJ
(n)
i | Fi−1] = E[AJ

(n)
i J

(n)

i A | Fi−1] − E[AJ
(n)
i | Fi−1] E[J (n)

i A | Fi−1]

=
k∑

d=1

E[1(n)
i,d | Fi−1] E[AG(d)A] − 1

n2 E[A]X(n)
i−1X

(n)

i−1 E[A]

= 1

n

k∑
d=1

X
(n)
i−1,d E[A[d]A[d]] − 1

n2 E[A]X(n)
i−1X

(n)

i−1 E[A]

= 1

n

k∑
d=1

E[A[d]A[d]]I[d]X(n)
i−1 − 1

n2 E[A]X(n)
i−1X

(n)

i−1 E[A].

From (13) and the above equation, we obtain

cov[∇Ỹ
(n)
i | Fi−1] = 1

n
Mjn−i

k∑
d=1

E[A[d]A[d]]I[d]X(n)
i−1M

jn−i

− 1

n2 Mjn−i E[A]X(n)
i−1X

(n)

i−1 E[A]Mjn−i
.

Substituting this into (9) we obtain the explicit formula

Vn = 1

ξ2
n

jn∑
i=1

(
1

n
Mjn−i

k∑
d=1

E[A[d]A[d]]I[d]X(n)
i−1M

jn−i

− 1

n2 Mjn−i E[A]X(n)
i−1X

(n)

i−1 E[A]Mjn−i
)

. (14)

10. The inherent Gaussian phases

Suppose that the drawing process continues indefinitely. We will see that, as the balls
continue to be drawn from a Pólya scheme in the class Ck , the urn passes through different
phases.

10.1. The growing sublinear phase

Let jn be in the growing sublinear phase (jn grows to ∞ and jn = o(n)). In this phase we
have, for r = 1, . . . , k (as n → ∞), the bounds

αrn + o(n) − cjn ≤ X
(n)
jn,r ≤ αrn + o(n) + cjn.

In other words, we have
X

(n)
jn

= αn + o(n). (15)

Proof of Theorem 3 in the sublinear phase. In Lemma 10 the conditional Lindeberg condi-
tion was verified throughout the growing sublinear phase. We completed the proof by showing
that Vn converges to a constant covariance matrix in probability.

In (14) replace X
(n)
i−1 by the asymptotic equivalent in (15) to obtain

Vn = 1

jn

jn∑
i=1

(
Mjn−i

k∑
d=1

E[A[d]A[d]]αdM
jn−i − Mjn−i E[A]αα E[A]Mjn−i

)
+ o(1).
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In this phase, for all 0 ≤ i ≤ jn, we have Mjn−i = I + O(jn/n). It follows that

Vn → �sub :=
k∑

d=1

αd E[A[d]A[d]] − E[A]αα E[A].

We can show that in the sublinear phase the coefficient of jn in the covariance is not 0 if
there is no initially dominant proper subset of colors. In fact, in this case �sub is a covariance
matrix of rank k − 1. The extremal nuance with a proper subset of dominant color requires a
much more detailed asymptotic analysis [22].

The �sub-conditional variance condition has also been verified in the growing sublinear
phase. With both conditions checked, the martingale central limit theorem gives

jn∑
i=1

1√
jn

∇Ỹ
(n)
i = X

(n)
jn

− E[X(n)
jn

]√
jn

d−→ N (0, �sub).

After reorganization, this becomes the statement of the theorem.

10.2. The linear phase

In the linear phase jn ∼ βnn for some βn > 0 of a magnitude uniformly bounded from
above and below, that is, for two positive constants, S1 and S2, and all n,

S1 ≤ βn ≤ S2.

In Lemma 10 the conditional Lindeberg condition was verified throughout the linear phase.
The proof will be complete if we show that Vn converges to a constant covariance matrix
in probability. The calculation involves summing random variables. To carry out these
calculations, we approximate X

(n)
j . The simple bound X

(n)
jn,r ≤ n always holds. As we sum

from 1 to jn ∼ βnn, we can use this bound throughout the sublinear phase and for a small
portion of the linear phase. As we advance in the linear phase, we need a sharper bound for Vn

to converge. More precisely, for some small ε, 0 < ε < S1 ≤ βn, we break up the sum from 1
to jn into a sum from 1 to j ′

n = �εn� (in which we apply the bound X
(n)
jn,r ≤ n), and a sum from

j ′
n + 1 to n (in which we apply a sharper bound, valid for the linear phase).

Lemma 11. In the linear phase

X
(n)
jn

= µnn + oL1(n),

where
µn = Hdiag(eβnλ1 , . . . , eβnλk )H−1α.

Proof. Let µn(r) be the rth component of µn. From the asymptotics of the mean and
covariance in the linear phase, as given in Corollaries 6 and 7, for large n, we have

E[(X(n)
j,r − µn(r)n)2] = var[X(n)

j,r ] + (E[X(n)
j,r ] − µn(r)n)2 = O(n) + o(n2) = o(n2).

So, by Jensen’s inequality,

E[|X(n)
j,r − µn(r)n|] ≤

√
E[(X(n)

j,r − µn(r)n)2] = o(n),

implying that
X

(n)
jn

= µnn + oL1(n).
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The oL1(g(n)) term represents a vector or a matrix of random variables with each component
being o(g(n)) in the usual L1 sense.

Proof of Theorem 3 in the linear phase. We refer to (14). As discussed in the introductory
paragraph of this subsection, for some small ε, 0 < ε < S1 ≤ βn, we break up Vn at j ′

n = �εn�,
to obtain

Vn = 1

ξ2
n

( j ′
n∑

i=1

+
jn∑

i=j ′
n+1

)
.

Recall that in this phase ξn = √
n. In the first sum, replace X

(n)
i−1 by the obvious bound O(n),

and in the second sum replace X
(n)
i−1 by the asymptotic equivalent in (11) to obtain

Vn = O(ε) + 1

n

jn∑
i=1

(
Mjn−i

k∑
d=1

E[A[d]A[d]]I[d]µnM
jn−i

− Mjn−i E[A]µnµn E[A]Mjn−i
)

+ oL1(1).

The O(ε) term vanishes when we take the limit as ε → 0. With the help of Corollary 7, we
recognize what is left to be

Vn = −
k∑

d=2

λdeβnλd HG(d)H−1ααH
−1

diag(0, . . . , βnλkeβnλk )H

+
k∑

r=2

k∑
d=1

HG(r)H−1(HG(r)H−1)[d]α E[A[d]A[d]]H−1
eβnλr

× diag

(
βn, . . . ,

1 − eβnλk

−λk

)
H

+
k∑

r=1

k∑
s=2,s 
=r

k∑
d=1

HG(s)H−1(HG(r)H−1)[d]α E[A[d]A[d]]

× H
−1

diag

(
eβnλr − eβnλs

λr − λs

, . . . ,
eβnλr − eβn(λs+λk)

λr − λs − λk

)
H + oL1(1).

We have

I[d]µn = I[d]Hdiag(eβnλ1 , . . . , eβnλk )H−1α =
k∑

r=1

eβnλr (HG(r)H−1)[d]α.

Hence,

V ′
n :=

jn∑
i=1

Mjn−i
k∑

d=1

E[A[d]A[d]]I[d]µnM
jn−i

=
k∑

r=1

k∑
s=1

k∑
d=1

HG(s)H−1eβnλr (HG(r)H−1)[d]αE[A[d]A[d]]H−1

×
jn−1∑
i=0

diag

((
1 + λs

n

)i

, . . . ,

(
1 + λs

n

)i(
1 + λk

n

)i)
H

https://doi.org/10.1239/aap/1346955261 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1346955261


722 S. KHOLFI AND H. M. MAHMOUD

=
k∑

h=2

k∑
r=1

k∑
s=1

k∑
d=1

HG(s)H−1eβnλr (HG(r)H−1)[d]α E[A[d]A[d]]

× H
−1

G(h)H
1 − (1 + λs/n)jn(1 + λh/n)jn

−λs − λh − λsλh/n
.

Similarly, we have

V ′′
n :=

jn∑
i=1

Mjn−i E[A]µnµn E[A]Mjn−i

=
k∑

h=2

k∑
s=1

HG(s)H−1 E[A]µnµn E[A]H−1
G(h)H

× 1 − (1 + λs/n)jn(1 + λh/n)jn

−λs − λh − λsλh/n
.

Putting the two terms V ′
n and V ′′

n together, we obtain

Vn =
k∑

h=1

k∑
r=1

k∑
s=1

k∑
d=1

HG(s)H−1eβnλr (HG(r)H−1)[d]α E[A[d]A[d]]

× H
−1

G(h)H
1 − eβn(λs+λh)

−λs − λh

−
k∑

h=1

k∑
s=1

HG(s)H−1 E[A]µnµn E[A]H−1
G(h)H

1 − eβn(λs+λh)

−λs − λh

+ oL1(1).

Furthermore,

E[A]µnµn E[A] = Hdiag(λ1eβnλ1 , . . . , λkeβnλk )H−1ααH
−1

diag(λ1eβnλ1 , . . . , λkeβnλk )H

=
k∑

d=1

HG(d)H−1ααH
−1

λdeβnλd diag(λ1eβnλ1 , . . . , λkeβnλk )H .

Consequently,

Vn → �lin

:=
k∑

h=2

k∑
s=2

k∑
r=1

k∑
d=1

HG(s)H−1eβnλr (HG(r)H−1)[d]α E[A[d]A[d]]H−1
G(h)H

× 1 − eβn(λs+λh)

−λs − λh

−
k∑

h=2

k∑
s=2

HG(s)H−1ααH
−1

λsλheβn(λs+λh)G(h).

The �lin-conditional variance condition has been verified in the growing linear phase. With
both conditions checked, the martingale central limit theorem gives

jn∑
i=1

1√
n

∇Ỹ
(n)
i = X

(n)
jn

− E[X(n)
jn

]√
n

d−→ N (0, �lin),

which is the statement of the theorem.
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10.3. The superlinear phase

Suppose that the drawing continues for a superlinearly long period of time, namely, n =
o(jn). As in the linear phase, for the sum in the conditional variance condition, we apply
the bound X

(n)
j,r ≤ n until the superlinear phase. After that we apply sharper estimates. More

precisely, to asymptotically handle the sums in the conditional Lindeberg condition (going
from 1 to jn), we break up the sums in Vn into sums going from 1 to j ′

n, which is any superlinear
function of order less than jn (giving ignorable contribution), and sums starting at j ′

n + 1 and
ending at jn (most of the contribution occurs near jn). We can take j ′

n = �jn/ln(jn/n)�. Since
the proof structure is very similar to that in the linear phase, the argument is only sketched. We
approximate X

(n)
jn

by its average:

X
(n)
jn

= vn + oL1(n).

This statement is equivalent to Lemma 11, and the proof is essentially the same.

Proof of Theorem 3 in the superlinear phase. In Lemma 10 the conditional Lindeberg con-
dition was verified throughout the superlinear phase. The proof will be complete if we show
that Vn converges to a constant covariance matrix in probability.

Breaking up the sum as mentioned above, and keeping the essential contribution (as ε → 0),
we write

Vn = 1

n

jn∑
i=1

Mjn−i
k∑

d=1

E[A[d]A[d]]vdM
jn−i + oL1(1).

That is,

Vn = 1

n

k∑
s=2

k∑
d=1

HG(s)H−1vdE[A[d]A[d]]H−1

×
jn−1∑
i=0

diag

((
1 + λs

n

)i

, . . . ,

(
1 + λs

n

)i(
1 + λk

n

)i)
H + oP (1)

=
k∑

s=2

k∑
d=1

HG(s)H−1vd E[A[d]A[d]]H−1

× diag

(
1 − (1 + λs/n)jn

−λs − λ1 − λsλ1/n
, . . . ,

1 − (1 + λs/n)jn(1 + λk/n)jn

−λs − λk − λsλk/n

)
H

+ oL1(1).

Recalling that the nonprincipal eigenvalues have negative real parts for all r = 2, . . . , k, we
have (1 + λr/n)jn → 0. It follows that

Vn → �sup

:= −
k∑

s=2

k∑
d=1

HG(s)H−1vd E[A[d]A[d]]H−1
diag

(
1

λ1 + λs

, . . . ,
1

λs + λk

)
H .

The �sup-conditional variance condition has been verified in the superlinear phase. With
both conditions checked, the martingale central limit theorem gives

jn∑
i=1

1√
n

∇Ỹ
(n)
i = X

(n)
jn

− E[X(n)
jn

]√
n

d−→ N (0, �sup).
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11. Examples

In this section we give a few examples, including the classical Ehrenfest urn, schemes with
both deterministic and random replacement matrices, and degenerate schemes. The examples
elicit the asymptotic Gaussian distributions.

11.1. The Ehrenfest scheme

The Ehrenfest urn was first proposed as a model for the diffusion of nonreacting gases [8].
It is governed by the replacement matrix

A =
(−1 1

1 −1

)
.

Avogadro’s number, asserting that the number of particles of gas in a container of a common
size is very large, gives a real-world justification for an approximation with n → ∞.

Assume that the two colors are white and blue, and that their numbers after j draws are
respectively Wj and Bj . The case is dichromatic, and it is adequate to study only the number of
balls of one color. Starting out with X

(n)
0 = (� 1

3n�, � 2
3n�), in the sublinear phase the Gaussian

law in Theorem 3 takes the form

1√
jn

(
Wjn − n

(
1

2
− 1

6

(
n − 2

n

)jn
))

d−→ N

(
0,

8

9

)
.

So, after jn = �n3/4� draws, for instance, we have

1

n3/8

(
W�n3/4� − 1

3
n + 1

3

√
n − 1

3
n3/4

)
d−→ N

(
0,

8

9

)
.

A typical instance of the linear phase is when jn = 2n, in which case the Gaussian law in
Theorem 3 takes the form

1√
n

(
W2n −

(
1

2
− 1

6
e−4

)
n

)
d−→ N

(
0,

1

4
− 17

36
e−8

)
.

According to Theorem 2, the stationary distribution of this diffusion process is Multinomial(n,
1
2 , 1

2 ). This is a classic result [21]. Deep into the superlinear phase, the diffusion is nearly
complete. For instance, after jn = n2 draws, Theorem 3 takes the symmetric form

1√
n

(
Wn2 − 1

2
n

)
d−→ N

(
0,

1

4

)
,

which is the usual approximation of the stationary Multinomial(n, 1
2 , 1

2 ) distribution. For a
detailed discussion of the phases of the Ehrenfest urn, see [3].

11.2. A three-color scheme with deterministic replacements

Consider the scheme

A =
⎛
⎝−1 1 0

0 −1 1
1 0 −1

⎞
⎠ , X

(n)
0 =

⎛
⎜⎝

n − 2� 2
5n�

� 2
5n�

� 2
5n�

⎞
⎟⎠ .
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The principal row eigenvector is 1
3 (1, 1, 1). Therefore, the stationary distribution is Multino-

mial(n; 1
3 , 1

3 , 1
3 ); cf. Theorem 2. For very large n and an excessive number of draws, we have

a multivariate normal distribution that approximates this multinomial. Specifically, according
to Theorem 3, in the sublinear phase

1√
jn

⎛
⎜⎝X

(n)
jn

− 1

njn

⎛
⎝n − 1 1 0

0 n − 1 1
1 0 n − 1

⎞
⎠

jn
⎛
⎜⎝

n − 2� 2
5n�

� 2
5n�

� 2
5n�

⎞
⎟⎠

⎞
⎟⎠

d−→ N3

⎛
⎝0,

1

25

⎛
⎝ 14 −4 −10

−4 14 −10
−10 −10 20

⎞
⎠

⎞
⎠ ,

whereas in the linear phase, where βn = 2, we have the Gaussian law

X
(n)
2n − µlinn√

n

d−→ N3(0, �lin),

where

µlin ≈
⎛
⎝0.32

0.33
0.34

⎞
⎠ and �lin ≈

⎛
⎝ 0.223 −0.110 −0.112

−0.110 0.219 −0.109
−0.112 −0.109 0.222

⎞
⎠ .

In the superlinear phase we have the Gaussian law

1√
n

⎛
⎝X

(n)
jn

− 1

3

⎛
⎝1

1
1

⎞
⎠ n

⎞
⎠ d−→ N3

⎛
⎝0,

1

9

⎛
⎝ 2 −1 −1

−1 2 −1
−1 −1 2

⎞
⎠

⎞
⎠ .

11.3. A three-color scheme with random replacements

Let B be Ber( 2
3 ), and let B ′ be an independent Ber( 1

2 ). Consider the scheme

A = 2

⎛
⎝−B BB ′ B(1 − B ′)

0 −1 1
1 0 −1

⎞
⎠ , X

(n)
0 =

⎛
⎝18n

66n

0

⎞
⎠ .

This replacement matrix has average

E[A] = 2

⎛
⎝− 2

3
1
3

1
3

0 −1 1
1 0 −1

⎞
⎠ ,

with principal left eigenvector ( 1
2 , 1

6 , 1
3 ). Therefore, the stationary distribution is Multino-

mial(42n; 1
2 , 1

6 , 1
3 ); cf. Theorem 2. For very large n and an excessive number of draws, we have

a multivariate normal distribution that approximates this multinomial. Specifically, according
to Theorem 3, in the sublinear phase

1√
jn

⎛
⎜⎝X

(84n)
jn

− 1

(3n)jn

⎛
⎝3n − 4 2 2

0 3n − 2 2
2 0 3n − 2

⎞
⎠

jn
⎛
⎝18n

66n

0

⎞
⎠

⎞
⎟⎠

d−→ N3

⎛
⎝0,

1

49

⎛
⎝ 24 −34 −10

−34 68 −34
−10 −34 24

⎞
⎠

⎞
⎠ ,
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whereas in the linear phase, where βn = 2, we have the Gaussian law

X
(42n)
jn

− µlinn√
n

d−→ N3(0, �lin),

where

µlin ≈
⎛
⎝41.06

14.01
28.38

⎞
⎠ and �lin ≈

⎛
⎝ 41.99 −13.87 −28.12

−13.87 23.26 −9.38
−28.12 −9.38 37.50

⎞
⎠ .

In the superlinear phase we have the Gaussian law

1√
n

⎛
⎝X

(84n)
jn

−
⎛
⎝42

14
28

⎞
⎠ n

⎞
⎠ d−→ N3

⎛
⎝0,

1

3

⎛
⎝126 −42 −84

−42 70 −28
−84 −28 112

⎞
⎠

⎞
⎠ .

11.4. An example of a degenerate scheme

Consider the following tenable, irreducible, zero-balanced degenerate urn scheme:

A =
⎛
⎝−6 2 4

6 −2 −4
6 −2 −4

⎞
⎠ , X

(18n)
0 =

⎛
⎝12n

2n

4n

⎞
⎠ .

Colors 2 and 3 are tied together—at any point in time the number of balls of color 3 is twice
the number of balls of color 2.

To comprehend the behavior of this urn, we can simply study the following tenable,
irreducible, nondegenerate zero-balanced urn scheme:

A =
(−6 6

6 −6

)
, X

(18n)
0 =

(
12n

6n

)
.

Many of the results derived for the class Ck apply in an almost direct way. For example, with
X

(n)

n2 being the two-component partition vector associated with the dichromatic scheme, the
reduced scheme has the central limit behavior

1√
n

(
X

(n)

n2 −
(

9
9

)
n

)
d−→ N2

(
0,

(
9 −9

−9 9

))
,

which is a classic result for Ehrenfest urn models. As balls of colors 2 and 3 in the trivariate
scheme occur in proportion 1:2, we can then assert that

1√
n

⎛
⎝X

(n)

n2 −
⎛
⎝9

3
6

⎞
⎠ n

⎞
⎠ d−→ N3

⎛
⎝0,

⎛
⎝ 9 −3 −6

−3 1 2
−6 2 4

⎞
⎠

⎞
⎠ .
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