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ROTATIONAL INSTABILITIES AND STELLAR EVOLUTION 

JEAN-PAUL ZAHN 
Observatoire de Nice, Le Mont-Gros, 06300 - Nice, France 

Abstract. This review deals with the local instabilities arising when the effects of rotation are taken into 
account in the evolution of a non-magnetic star. 

The Rayleigh and shear instabilities will be examined under the conditions prevailing in radiative zones 
where the effect of density stratification, thermal diffusion, viscosity and varying chemical composition 
must be taken into account. The possible consequences on the evolution of a star are finally outlined. 

In the past decade, many authors have described in detail the evolution of stars of 
various masses and chemical composition, but the vast majority of the calculated 
models apply to non-rotating, non-magnetic, and hence spherical stars. To introduce 
rotation or a magnetic field into the stellar models is not an easy task: the one-
dimensional problem becomes at least two-dimensional, unless one settles for very 
drastic simplifications. More seriously, new dependent variables, namely the angular 
velocity and the components of the magnetic field, enter and one needs additional 
information, expressed by additional differential equations, about their behaviour in 
order to determine their distribution inside the star and their evolution with time. 

For the sake of simplicity, the effects of rotation and magnetic field are most often 
studied separately, although one should bear in mind that they may be coupled in 
many instances. As suggested in the title above, we will deal here only with the in­
stabilities which are triggered by the rotation of a non-magnetic star and which may 
influence its evolution. We shall narrow our field even further, and focus our attention 
on the local instabilities, as opposed to the large-scale Eddington-Sweet circulation 
or to the global instabilities arising when the rotational energy is an appreciable 
fraction of the total energy of the star. For these latter types of instabilities, we refer 
the reader to the reviews written by Mestel (1965, 1970) and by Ostriker (1970). 

As for the local instabilities, the subject has been reviewed in the recent past by 
several authors, who also discussed their relevance to stellar structure and evolution 
(Lebowitz, 1967; Strittmatter, 1969; Spiegel and Zahn, 1970; Fricke and Kippenhahn, 
1972; see also Ledoux, 1958). For the layman, such reviews may well appear as tire­
some enumerations of all presently known instabilities, yet there could hardly be an­
other approach to the problem since no criterion for stability has been found so far. 
In fact, a closer look at those seemingly impressive lists of local instabilities reveals 
that all derive from the well-known Rayleigh and shear instabilities, which are present 
even in an homogeneous incompressible fluid. Our purpose here will be to follow 
these classical instabilities under the conditions prevailing in the radiative zones of 
a star, taking into account such effects as density stratification, thermal diffusion, vis­
cosity and varying chemical composition. Having done this, we will conclude with a 
sketch of the possible consequences of the described rotational instabilities on the 
evolution of a star. 
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1. Dynamical Instabilities 

Dynamical instabilities occur at some place in the fluid if the equilibrium state is un­
stable towards an adiabatic inviscid perturbation. Such a dynamical instability has 
a local character and will settle the fluid into a new state of equilibrium. This new 
equilibrium state need not be a static one as it may display some motions, turbulent 
or not. If the equilibrium is dynamical, however, its description cannot be achieved 
in the adiabatic inviscid frame and one has to take into account both thermal diffu­
sion and viscous transport of momentum. 

What all dynamical instabilities have in common is their growth rate: they proceed 
on a dynamical time-scale which, in the case considered here, will be of the order of 
a rotation period. 

1.1. AXISYMMETRIC INSTABILITY 

The criterion for axisymmetric instability can be derived in many ways (see for in­
stance Goldreich and Schubert, 1967; Fricke, 1968; James and Kahn, 1970), but in 
most cases some assumption is made about the spatial behaviour of the perturbation 
and the criterion obtained in such a way is then no longer rigourously a local one. 
Here, we prefer to follow the method introduced by Fjortoft (Eliassen and Klein-
schmidt, 1957). 

Consider a non-magnetic inviscid star in static equilibrium, whose rotation law 
Q(w, z) depends both on the distance from the rotation axis, m, and on the distance 
from the equatorial plane, z. Let us perturb this equilibrium state by a small axisym­
metric and purely meridional displacement field 8r(m, z) and let us assume that the 
perturbation proceeds on a time scale short enough to keep it adiabatic. Since the 
fluid is in an equilibrium state, the first variation de of the total (gravitational + internal 
-I- kinetic) energy e is zero. Its second variation is given by the volume integral 

d2e--
i p /spy 
VQ\PJ. 

<?dT, (1) 

where 5P is the Eulerian pressure perturbation associated with the displacement 
8r; P, Q, y are the usual notations for pressure, density and the adiabatic exponent. 

If the characteristic time of the perturbation exceeds the travel time of a sound wave 
across the test domain, the second term of this integrand will be negligible compared 
with the first one, whose sign will determine that of 82e. If the quadratic form 8r • SR • 8r 
is positive definite, the stationary value of s is a minimum and the tested equilibrium 
state is a stable one. On the other hand, if this form is not definite positive, it is possible 
to choose a virtual displacement 8r which will decrease the total energy, thus proving 
that the equilibrium is then unstable. 

This provides a genuine local instability criterion since the virtual displacement 8r 
is entirely arbitrary - apart from the condition that it must vanish on the boundary 
of the integration domain and that it varies in a time scale which meets the require­
ments for both adiabaticy and pressure equilibrium to be achieved. 
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Now the tensor 9M can be split into two parts, one representing the effect of the 
density stratification, the other that of the stratification of angular momentum: 

Wl = Wli+Wl2= — gradS(-g) + ^grad(m2G)2gradm (2) 
Cp ™ 

Here g is the local gravity (including the centrifugal acceleration), and S is the specific 
entropy: 

— gradS=—- gradP— grade=- gradAD£ — gradg. 
Cp yP Q Q Q 

(Note also that, when g and gradS are cohifear or nearly so, 

1 \Q\ 
- g — gradS=-^(VAD-VRAD) 

with the usual notations, HP being the pressure scale-height). The discussion of the 
sign of the two quadratic terms Q1=8r-9M1-5r and Q2 = 6r'9Jl2Sr leads to a few 
well known instability criteria which we will review briefly. 

If the fluid has a neutral density stratification (gradS = 0), the first quadratic term 
is identically zero; instability occurs whenever Q2 is not positive definite, i.e. when 
either of the following conditions is met 

— (m2Q)2<0; — (m2G)V0. (3a, b) 
cm dz 

The first of those conditions is the Rayleigh criterion for instability in a homogeneous 
inviscid and non gravitating fluid; the second need not be considered for such a fluid 
since the rotation law would then violate the Taylor-Proudman theorem and no 
equilibrium state would be possible (see Greenspan, 1968). 

Let us now consider a star with a cylindrical rotation law Q(m) and ask if a stable 
density stratification may prevent the instability when the Rayleigh criterion predicts 
that it should occur. In such a star, the total body force (gravitational + centrifugal) 
derives from a potential and the surfaces of constant potential, pressure and density 
(and hence entropy in a homogeneous star) all coincide; the fluid is said to be baro-
tropic. The quadratic form Qx is positive definite and, except at the exact equator of 
the star, Q2 must also be positive definitive for the total quadratic form Qx + Q2 to be 
of the same character. In other words, if the Rayleigh discriminant is negative, 
(d/dm) (m2Q)2<0, some displacements 8r will decrease the total energy so that the 
equilibrium state is proved to be unstable. The unstable displacements are those for 
which Qx = 0 or nearly vanishes i.e. those which do not feel the density stratification 
because they are parallel to the equipotentials. 

This result can be extended to more general rotation laws, for which Q is a function 
of both w and z. gradS and g are then no longer colinear and the angle between 
them is determined by the baroclinic condition 

— grad S x ( - g) H—j grad (m2Q)2 x grad w = 0 (4) 
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which is obtained by taking the curl of the equation of motion. The necessary and 
sufficient condition for the total quadratic form Qi+Q2 to be positive definite is 

1 
[cP 

grad5x^rgrad(w2Qf H - g x g r a d m ] > 0. (5) 
w 

If this condition is violated, one can always choose a virtual displacement in such a 
way that it will decrease the total energy. The configuration is thus unstable and this 
is known asthe baroclinic instability. The vector condition (5), together with (4), shows 
that this instability arises whenever the specific angular momentum m2Q decreases 
towards the equator on a surface of constant specific entropy. This criterion is more 
general than the Rayleigh criterion, which, of course, it includes. It shows also that a 
stable density stratification permits certain rotation laws which depend on the z 
coordinate, thereby violating the Taylor-Proudman theorem. 

1.2. SHEAR INSTABILITY 

Unfortunately, it has not yet been possible to extend the stability criterion given above 
to more general, non-axisymmetric, virtual displacements. However, the instability 
which is likely to be most prominent in a fluid which is not in solid body rotation when 
perturbed by non-axisymmetric disturbances, is the so-called shear instability. 

In a plane parallel shear flow, a sufficient condition for stability is that the velocity 
profile present no inflection point. This theorem has also been established by Rayleigh, 
and its counterpart for a cylindrical flow is that the expression 

d f i d 
A I A > 2 ° > l 
dm \_w dm J does not change sign in the domain considered. What happens when this expression 

vanishes is not clear, although it is likely that dynamical instability will appear for a 
large variety of velocity profiles. But this is of rather academic interest since laboratory 
experiments and some theoretical investigations have shown that the viscosity is able 
to destabilize any flow, even if it is claimed to be stable according to Rayleigh's 
theorem above, provided that the Reynolds number VL/v exceeds some critical value 
which is of order 103. (V and L are respectively typical values for the velocity and the 
dimension of the domain and v is the kinematic viscosity). 

Here again the flow may be stabilized by a (stable) density stratification, provided 
that the Richardson number R( exceeds some critical value: 

o g dS IfdvV ' 

A similar condition probably applies also to differential rotation, the velocity 
gradient being replaced by w grad Q, and only the components of g and gradS 
parallel to the gradient of Q being retained in the criterion: 

cos2 a ~- — > J(tu gradO)2 (7) 
Op dr 

(here a is the angle between g and gradO). 
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2. Destabilization Through Thermal Diffusion 

As we have just seen, a suitable density stratification can stabilize flows which would 
otherwise be unstable. But this situation changes drastically, at least in a homoge­
neous fluid, if the perturbations are not constrained to be adiabatic. The reason for 
this is that thermal diffusion smoothes out the temperature fluctuations, and hence 
the density perturbations since on the time scale considered here the medium is in 
almost perfect pressure equilibrium. As a result, the stabilizing buoyancy forces are 
weakened and, in some cases, can no longer prevent the muted instability. 

2.1. AxisYMMETRIC INSTABILITY 

In a rotating star, the effect of smoothing the density perturbation is to decrease the 
quadratic term Qx in S2s (Equation (1)) to a point where it becomes negligible com­
pared to Q2. Instability then sets in whenever Q2 fails to be a definite positive quadratic 
form, and this happens, as we have already seen, when 

— (w2Q)2<0 or - ( m 2 G ) 2 # 0 . (3a, b) 
dm oz 

Goldreich and Schubert (1967) and Fricke (1968) were the first to describe this effect 
in the astrophysical context, but credit should also be given to Yih (1961) for having 
called attention to the destabilizing role of thermal conduction in a cylindrically 
rotating flow. The question of the growth rate of this instability has not yet been 
settled, although in the linear phase of its development it is tied to the thermal time 
scale. James and Kahn (1970) endeavoured to follow the perturbation into the non­
linear regime, where its behaviour must bear much resemblance with that of thermo-
haline convection. 

In thermohaline convection, an unstable salt gradient is stabilized by a stable 
temperature - (and thus density) - gradient. As Goldreich and Schubert pointed out, 
the situation is very similar to that of a rotating fluid of low Prandtl number * since, 
in both cases, the thermal diffusivity is much larger that either the molecular diffu-
sivity of salt or the viscous diffusivity of angular momentum. 

For a comprehensive account of thermohaline convection, we refer to Spiegel (1972). 
Laboratory experiments and numerical investigations show that the dominant 
unstable modes are of high horizontal wave number; they evolve in what is called 
the salt fingers. As those fingers reach an appreciable vertical size, they seem to 
become collectively unstable and turn into layers with discontinuities in concentra­
tion, such as those observed in the oceans. Finally, it is found that such layering can 
be destroyed by sufficiently strong turbulence. 

It is very likely that the Goldreich-Schubert-Fricke instability will also result in a 
similar layering of angular momentum, which in turn, will then become eligible for 
shear instability, if it has not been so before. 

* The Prandtl number is the ratio of the kinematic viscosity to the thermal diffusivity a = V/K. 
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2.2. SHEAR INSTABILITY 

Such a breakdown of the density stabilization is also expected in the shear flow. In 
the Earth's atmosphere, turbulent motions are observed in regions for which the 
Richardson criterion predicts strong stability. In order to explain this, Townsend 
(1958) took thermal diffusion into account in the energy balance of a turbulent shear 
flow. He showed that this effect lowers considerably the critical Richardson number 
if the radiative cooling time of the perturbations is small enough, so that 

dv\ 

Townsend introduces then a new non-dimensional number, the flux Richardson 
number, which must be larger than unity for the turbulence to be prevented by the 
density stratification: 

_g_dS 
CP dz > ~ 1 . (8) 

Moore and Spiegel (1964) have argued that one should take for tcooh the cooling 
time corresponding to the smallest scale which is optically thick in the medium. This 
length is of the order of a centimeter in stellar interiors and the application of Town-
send's criterion would then lead to critical rotation laws with exceedingly small 
gradients. 

In Townsend's treatment, the cooling time is that associated with the integer scale 
of the turbulence, which is probably much larger than the one centimeter above. 
Unfortunately, in the absence of direct observations one has to resort to some guess­
work about it. It seems however reasonable to take for it the shortest length / whose 
Reynolds number still remains supercritical: 

= *crit, (9) 

where Rcrit is the critical Reynolds number (~103) for the given velocity profile. 
Among all the scales present in the spectrum of the turbulence, this one is likely to 
stand out: it has the largest growth-rate on the source side of the spectrum, where 
energy is fed into the turbulence from the unstable laminar flow. 

Using the radiative cooling time corresponding to this scale, one finds that the 
critical Richardson number is increased to a value of the order {a Kcrit)~l (see foot­
note on p. 189), typically 103 or 104 in stellar interiors. This leads to the following 
estimation of the gradient of angular velocity which cannot be stabilized by a given 
density stratification: 

2 . , _ . . , . „ 2 . . « d S 
(t» grad Qf > (a Rcril) cos2 a — — 
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(w grad log Qf > (a Rcrit) cos2 a \^jf) (^AD - VRAD) (10) 

with the usual notations. 
A perturbation of the scale assumed above has a growth time of order t = l2/v = 

= RCTii \w grad Q\~\ only three or four orders of magnitude larger than the dynamical 
time scale. We may thus conclude that gradients of angular velocity which are larger 
than those indicated by condition (10) will be wiped out in time which is short com­
pared to any time characterizing the thermal or nuclear evolution of the star. 

3. Stabilization Through Chemical Composition Gradients 

We have just seen how efficiently thermal diffusion suppresses the stabilizing effect 
of a density stratification. But this is true only as long as the fluid is homogeneous. If 
the density gradient is sustained by a stable gradient of chemical composition, the 
density fluctuations cannot be cancelled completely by thermal diffusion and the 
remaining buoyancy forces may still be strong enough to prevent the instability. 

3.1 . AXISYMMETRIC INSTABILITY 

In the case of axisymmetric disturbances, this can be seen by deriving the correspon­
ding second variation 82& of the total energy, as in the case of adiabatic perturbations. 
The star is assumed to be in overall secular stability, so that the first variation Ss is 
again zero. One has to assume also that the perturbation evolves slowly enough so 
that the Eulerian variations of pressure and temperature can be neglected. The varia­
tion of density is then due only to the advection of matter of varying molecular 
weights 

SQ/Q = — 8r • grad log \i 

and the quadratic term Qx becomes: 

e1=5r(-gradlog/i)(-g)-5r . 
It is not possible to derive a general secular stability criterion, as was done previously 

for the dynamical stability, since the four vectors involved in the tensor SER are no 
longer related by an equation similar to the baroclinic one (4). (For a perfect gas, 
grad log fi/T is still related to the three other vectors, but grad log \i is not). However, 
one can proceed along the following lines. 

Since the stabilization comes from the quadratic term Ql9 let us take the most 
favorable case, for which the vectors g and grad log \x are colinear: Qx is then positive 
definite, i.e. positive except for 8r perpendicular to those vectors where it vanishes. In 
this case, it is easy to show that the total quadratic form 8r*9W-6r is definite positive 
if and only if: 

I — grad(tn2&)2 x gradm 1 
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/ d \ / 1 \ ( 1 ^ 
< 4 ( - M —log/ i ) [ l c x —grad(tz72^)2 j( l cxgradm), 

where lc is the unit vector in the vertical direction, i.e. l c = —g/\g\. If the angular 
velocity is a function of the vertical coordinate £ only, or if the horizontal variation 
of Q can be neglected compared to the vertical variation, this awkward condition 
takes a much simpler form : 

d , / dQ\2 

-\g\-iog»>i(*-y as) 
One may therefore conclude, as did Goldreich and Schubert, that a sufficiently strong 
gradient of molecular weight is capable of suppressing the instability named after 
these authors. 

3.2. SHEAR INSTABILITY 

Such a //-gradient will also inhibit the shear instability; if, in the derivation of the 
Richardson criterion, one assumes the perturbations to be isothermal instead of 
adiabatic, the gradient of molecular weight takes the place of the density gradient. 
Transposed to a rotating fluid, the Richardson criterion for stability then be­
comes : 

-cos2a\g\ — logfi>i(w gradO)2 (14) 
dC 

which is identical to condition (13) above, but with no restrictive assumption about 
the rotation law (a is again the angle between grad Q and g; the /^-gradient is supposed 
to be purely vertical). 

4. The Evolution of Rotating Stars 

Few attempts have been made so far to follow the detailed history of a rotating star 
(see e.g., Kippenhahn etai, 1970), although it has been known at least since Eddington's 
work that rotation can play an important role in the evolution of a star. True, it is 
only very recently that the destabilizing role of thermal diffusion has been recognized 
and this explains why most evolutionary calculations take the rotational instabilities 
into account only very crudely, and why some neglect them completely (e.g. Sakurai, 
1972). 

In the absence of more detailed calculations, one can hardly do better than sketch 
roughly what, with some likelihood, appears to be the evolution of a rotating star. 

If the star, when it first reaches the main sequence, is homogeneous as the result 
of convective mixing during the Hayashi phase, it will settle into a cylindrical rotation 
state due to the interplay between the two instabilities described above (Goldreich-
Schubert-Fricke's and shear). This adjustment takes only a very short time, of the 
order of 103 or 104 rotation periods. 

In the case of a late-type star, the rotation law is then entirely determined by the 
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boundary conditions at the bottom of the outer convection zone*. If, as it is now 
believed after Schatzman (1962), the rotation of the convection zone is slowed down 
by a stellar wind sustained by strong magnetic fields, the rotation of the radiative 
interior will adjust to it in the short time already mentioned. It is only after this braking 
mechanism has become very weak, probably when its (negative) ^-folding time has 
become comparable with the nuclear evolution time, that the motions in the radiative 
core of the star have damped sufficiently so that a gradient of molecular weight can be 
established. After this time, the star evolves inhomogeneously and its core is shielded 
from further rotational instability. After the main-sequence phase, the contracting 
core will conserve its angular momentum and will spin much faster than the ex­
panding envelope. 

In this scheme, the present Sun would have a core rotating with the angular velocity 
determined by the angular momentum it had at the beginning of its inhomogeneous 
phase. Since the Sun has probably not slowed down subsequently by more than a 
factor of two or three, it is not likely that it possesses the fast spinning core needed 
to support Dicke's theory (1964), or to lower the calculated neutrino flux to the 
presently observed level (see Demarque's contribution at this symposium). 

In an early type star, the rotation law Q(m) is similarly determined by the convective 
core, but only inside the cylinder tangent to it at its equator. Outside this region, the 
situation is more complex; it is probably the Eddington-Sweet circulation which 
plays the main role in redistributing angular momentum, within the limit fixed by 
condition (10) which does not tolerate departures from solid rotation much larger 
than a few per cent. The gradients of molecular weight built by this circulation (Mes-
tel's /^-barriers, 1953) and those later left behind by the receding convective core are 
probably strong enough to shield the central regions from the rotational instabilities 
as in the case of a low mass star. 

All this has clearly to be checked by detailed evolutionary calculations. The only 
excuse for the present speculations is that they may stimulate such much needed 
investigations. 
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DISCUSSION 
(Note: Several questions have been raised in the discussion by Drs Demarque, Schatzman and Tayler 
concerning the rotational evolution of the Sun. Dr Zahn has preferred to include his answers in the paper 
itself, whose last paragraph has been rewritten for this purpose.) 

Tayler: Could I make a comment on a problem that Dr Zahn has not actually spoken about. That 
is the interference of rotation with convection, which of course is buried in his criteria somewhere. If 
one wants a simple sentence to bear on this, rotation will interfere with convection, if the rotation time 
is short compared to the lifetime of the convective element. 

Zahn: According to the criterion (2) you have always some displacement which should be unstable, 
even if you have a stabilizing rotation. 

Tayler: There will always be some unstable perturbation. I said it will interfere with convection, I did 
not say it would suppress it. 

Zahn: Yes. 
Rodgers: It seems to me that the only objects I can think of straight away which are regarded as purely 

radial pulsators and which may have relatively high observed rotational velocities are the stars which get 
into the instability zone through the McCray mechanism, as blue stragglers. We are talking, if we want 
to be specific, about one star called HD 6870, where we have Vsini typically around 120 km per second. 
Prof. Eggen has observed it as a low amplitude variable of the order of a few hundredths of a magnitude 
but with typical S Scuti characteristics. What I want to know is what do you say about the effects of rotation 
on radial pulsation? 

Zahn: This was a part of Prof. Ledoux's topic. As he has mentioned the radial oscillation will also 
be affected by rotation, there will be a shift in frequency, a slight one, but that is all. 

Ledoux: It is difficult to define a purely radial oscillation in something that is rotating pretty fast, but 
you still have some kind of pseudo radial mode which is usually not too different in period from the radial 
mode. 

Zahn: But the blue stragglers raise another question. How do they occur at all? You remember that 
Prof. Mestel found that the /^-gradients will prevent mixing in the star. It may well be that if there is a 
stronger rotation present those ^-gradients will be broken or something like that happens. Has someone 
looked in detail at that? 

Cox: Let me ask the same question as Dr Rodgers. Is it true that rotation will decrease the amplitude 
of purely radial pulsation? 

Zahn: To tell something about the amplitude you have to do nonlinear calculations. The amplitude 
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may be reduced because the Coriolis force will try to make the oscillation more horizontal. But you 
would have to look in detail, I have no real answer. 

Vardya: This is similar to what Dr Demarque asked earlier. A //-gradient will be built up also as you 
go to the core because of ionisation. How much of a //-gradient do you want? This will occur when the 
star is homogeneous. 

Zahn: The //-gradient which enters in the instability criteria (13) and (14) is that caused by a genuine 
variation of chemical composition. The state of ionisation adjusts too fast to a change in pressure or 
temperature to play here any role. Moreover, the resulting //-gradient would be destabilizing (//-increasing 
outwards). 
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