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Abstract In this paper we explore the possibility of defining p-local finite groups in terms of transfer
properties of their classifying spaces. More precisely, we consider the question, posed by Haynes Miller,
of whether an equivalent theory can be obtained by studying triples (f, t, X), where X is a p-complete,
nilpotent space with a finite fundamental group, f : BS → X is a map from the classifying space of
a finite p-group, and t is a stable retraction of f satisfying Frobenius reciprocity at the level of stable
homotopy. We refer to t as a retractive transfer of f and to (f, t, X) as a retractive transfer triple over S.

In the case where S is elementary abelian, we answer this question in the affirmative by showing that
a retractive transfer triple (f, t, X) over S does indeed induce a p-local finite group over S with X as its
classifying space.

Using previous results obtained by the author, we show that the converse is true for general finite
p-groups. That is, for a p-local finite group (S, F , L), the natural inclusion θ : BS → X has a retractive
transfer t, making (θ, t, |L|∧p ) a retractive transfer triple over S. This also requires a proof, obtained
jointly with Ran Levi, that |L|∧p is a nilpotent space, which is of independent interest.
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1. Introduction

Defined in [6], p-local finite groups are the culmination of a programme initiated by
Puig [23] to find a formal framework for the p-local structure of a finite group. With a
finite group G, one associates a fusion system (at a prime p) consisting of all p-subgroups
of G and the homomorphims between them induced by conjugation in G. Puig formalized
fusion systems and identified an important subclass of fusion systems, which we now call
saturated fusion systems. Fusion systems of finite groups are contained in this class, but
saturated fusion systems also arise in other important contexts, most notably in modular
representation theory through Brauer subpairs of blocks of group algebras, and more
recently as Chevalley groups of p-compact groups [4].

The fusion system of a group G can be considered as an algebraic interpretation of the
p-local structure of the group. One can also take a topological approach, and think of
the p-local structure of G as being the p-completed classifying space BG∧

p . By Oliver’s
solution [21,22] of the Martino–Priddy conjecture [18], these approaches are the same.
That is, two groups induce the same fusion system if and only if their p-completed
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classifying spaces are homotopy equivalent. In fact, the fusion system can be recovered
from the classifying space via a homotopy theoretic construction, which is presented
in § 2.3. Therefore, one can in some sense regard BG∧

p as a classifying space of the fusion
system. This suggests that, more generally, each saturated fusion system may have a
unique classifying space.

A p-local finite group consists of a saturated fusion system and an associated centric
linking system, a category which contains just enough information to construct a clas-
sifying space associated with the fusion system. Thus, one can think of a p-local finite
group as a saturated fusion system with a chosen classifying space.

The definition of p-local finite groups is rather complicated and has the drawback that
there is no straightforward concept of morphisms between p-local finite groups, so they
have not yet been made to form a category in any sensible way. In this paper, we adopt
the approach used by Dwyer and Wilkerson for p-compact groups [9], and try to develop
the theory of p-local finite groups in terms of classifying spaces.

Specifically, we consider a homotopy monomorphism f : BS → X from the classifying
space of a finite p-group S to a p-complete, nilpotent space X with a finite fundamental
group, which is endowed with a stable retraction t satisfying Frobenius reciprocity at
the level of stable homotopy. We refer to such a triple (f, t,X) as a retractive transfer
triple over S. For a retractive transfer triple (f, t,X), we ask whether X is the classifying
space of a p-local finite group. This question is addressed in §§ 4 and 5, where we answer
the question in the affirmative in the case where S is elementary abelian (Theorem 3.4).
Conversely, we ask whether a p-local finite group (S,F ,L) gives rise to a Frobenius
transfer triple. This is indeed the case for any finite p-group S, as we show in § 6. This
involves joint work with Ran Levi, in which we show that the classifying space of a
p-local finite group is a torsion space and (since its fundamental group is a finite p-group)
consequently a nilpotent space.

The homotopy theory of classifying spaces of elementary abelian p-groups was studied
intensively in the 1990s and is now well understood through contributions by various
authors, the most important being Miller’s solution of the Sullivan conjecture [19] and
Lannes’s T -functor technology [16]. Other contributions that are related to the results
and methods in this paper are the work of Goerss et al . [12], Harris and Kuhn [13], Henn
et al . [14,15] and Dwyer and Wilkerson [8]. The work in § 5 of this paper mimics the
methods used by Dwyer et al . in [10], replacing inclusions of maximal tori in compact
Lie groups with the inclusion of elementary abelian p-groups in finite groups.

2. A quick review of p-local finite groups

In this section we give a brief overview of the theory of p-local finite groups. Most of this
material is found in [6]. In this section and throughout the paper, p is a fixed prime.

2.1. Some definitions and terminology

We begin by recalling some terminology regarding p-local finite groups.
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Definition 2.1. A fusion system F over a finite p-group S is a category whose objects
are the subgroups of S, and whose morphism sets homF (P,Q) satisfy the following
conditions:

(i) homS(P,Q) ⊆ homF (P,Q) ⊆ inj(P,Q) for all P,Q � S;

(ii) every morphism in F factors as an isomorphism in F followed by an inclusion.

Here homS(P,Q) is the set of group homomorphims induced by conjugation by ele-
ments in S.

Before stating the next definition, we need to introduce some additional terminol-
ogy and notation. We say that two subgroups P, P ′ � S are F-conjugate if they are
isomorphic in F . A subgroup P � S is fully centralized in F if |CS(P )| � |CS(P ′)|
for every P ′ � S which is F-conjugate to P . Similarly, P is fully normalized in F if
|NS(P )| � |NS(P ′)| for every P ′ � S which is F-conjugate to P .

Definition 2.2. A fusion system F over a p-group S is saturated if the following two
conditions hold:

(i) if P � S is fully normalized in F , then P is also fully centralized, and autS(P ) is
a Sylow subgroup of autF (P );

(ii) if P � S and ϕ ∈ homF (P, S) are such that ϕ(P ) is fully centralized, then ϕ

extends to ϕ̄ ∈ homF (Nϕ, S), where

Nϕ = {g ∈ NS(P ) | ϕ ◦ cg ◦ϕ−1 ∈ autS(ϕ(P ))}.

There is a class of subgroups of S of special interest to us, defined as follows.

Definition 2.3. Let F be a fusion system over a p-group S. A subgroup P � S is
F-centric if CS(P ′) � P ′ for every P ′ that is F-conjugate to P . Let Fc denote the full
subcategory of F whose objects are the F-centric subgroups of S.

Remark 2.4. The condition CS(P ′) � P ′ in the previous definition is equivalent to
the condition CS(P ′) = Z(P ′).

Definition 2.5. Let F be a fusion system over the p-group S. A centric linking system
associated with F is a category L whose objects are the F-centric subgroups of S, together
with a functor

π : L → Fc,

and distinguished monomorphisms P δP−−→ autL(P ), for each F-centric subgroup P � S,
which satisfy the following conditions.

(i) The functor π is the identity on objects and surjective on morphisms. More pre-
cisely, for each pair of objects P,Q ∈ L, the centre Z(P ) acts freely on morL(P,Q)
by composition (upon identifying Z(P ) with δP (Z(P )) � autL(P )), and π induces
a bijection

morL(P,Q)/Z(P )
∼=−→ homF (P,Q).
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(ii) For each F-centric subgroup P � S and each g ∈ P , π sends δP (g) ∈ autL(P ) to
cg ∈ autF (P ).

(iii) For each f ∈ morL(P,Q) and each g ∈ P , the following square commutes in L:

P
f ��

δP (g)

��

Q

δQ(π(f)(g))
��

P
f �� Q

We can now finally define our objects of study.

Definition 2.6. A p-local finite group is a triple (S,F ,L), where F is a saturated fusion
system over a finite p-group S and L is a centric linking system associated with F . The
classifying space of the p-local finite group is the p-completed geometric realization |L|∧p .

Note that a p-local finite group comes equipped with a natural inclusion

θ : BS → |L|∧p .

One of the main questions in the theory of p-local finite groups concerns the exis-
tence and uniqueness of a centric linking system associated with a given saturated fusion
system. In [6, § 3], Broto et al . have developed an obstruction theory to address this
question.

2.2. The fusion system of a group

In this section we will discuss the fusion system arising from a Sylow subgroup inclusion
S � G. This section serves as motivation for the discussion in the previous section as
well as being of independent interest.

Definition 2.7. Let G be a finite group. The fusion system of G is the category F(G),
whose objects are the p-subgroups of G and whose morphism sets are given by

homF(G)(P,Q) = homG(P,Q)

for all p-subgroups P,Q � G.
For a p-subgroup S � G, the fusion system of G over S is the full subcategory FS(G) ⊆

F(G), whose objects are the subgroups of S.

If S is a Sylow subgroup of G, then the inclusion of FS(G) in F(G) is an equivalence
of categories, since every p-subgroup of G is conjugate to a subgroup of S.

Proposition 2.8 (Broto et al . [6, Proposition 1.3]). Let G be a finite group and
let S be a p-subgroup. Then the fusion system FS(G) of G over S is saturated if and
only if S is a Sylow subgroup.
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The centric linking system of a finite group was initially introduced in [5] as a powerful
tool with which to study homotopy equivalences between p-completed classifying spaces
of finite groups. The p-centric subgroups of a finite group G are the p-subgroups P �
G whose centre Z(P ) is a p-Sylow subgroup of the centraliser CG(P ). This notion of
centricity is equivalent to that introduced in Definition 2.3 in the sense that if S � G is
a Sylow subgroup, then a subgroup P � S is p-centric if and only if it is FS(G)-centric.

For the following definition, we recall that if a group P � G is p-centric, then one can
write

CG(P ) = Z(P ) × C ′
G(P ),

where C ′
G(P ) � G has order prime to p. The notation C ′

G(P ) will be used in the definition.
In addition, for subgroups P,Q � G, NG(P,Q) denotes the transporter:

NG(P,Q) = {g ∈ G | gPg−1 � Q}.

Definition 2.9. LetG be a finite group. The centric linking system of G is the category
L(G), whose objects are the p-centric subgroups of G and whose morphism sets are given
by

morL(G)(P,Q) = NG(P,Q)/C ′
G(P )

for all p-subgroups P,Q � G.
For a p-subgroup S � G, the centric linking system of G over S is the full subcategory

LS(G) ⊆ L(G) whose objects are the subgroups of S that are p-centric in G.

In the case of a Sylow inclusion S � G, the centric linking system LS(G) is a centric
linking system associated with the saturated fusion system FS(G), and we have the
following proposition, which serves as a motivating example for the definition of a p-local
finite group.

Proposition 2.10. Let S be a Sylow subgroup of a finite group G. Then the triple
(S,FS(G),LS(G)) is a p-local finite group over S. Furthermore, the natural map

θ : BS → |LS(G)|∧p
is homotopy equivalent to the p-completed inclusion

BS → BG∧
p

as a space under BS.

2.3. Homotopy theoretic constructions of fusion systems

In this section we recall how a map f : BS → X, from the classifying space of a finite
p-group S to a space X, induces a fusion system FS,f (X) over S. In general this fusion
system is not saturated.

The following definition is motivated by the fact that two group homomorphisms
ϕ,ψ : G → H between finite groups are H-conjugate if and only if the induced maps of
classifying spaces are freely homotopic.
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Definition 2.11. For any space X, any p-group S, and any map f : BS → X, define
FS,f (X) to be the category whose objects are the subgroups of S, and whose morphisms
are given by

homFS,f
(P,Q) = {ϕ ∈ inj(P,Q) | f |BP � f |BQ ◦Bϕ}

for each P,Q � S.

It is easy to see that FS,f is indeed a fusion system, although it need not be saturated.
In the case where FS,f is saturated, however, one can obtain a candidate Lc

S,θ(|L|∧p )
for an associated centric linking system by retaining information about the homotopies
giving the equivalence f |BP � f |BQ ◦Bϕ in the definition above (see [6] for details).

Theorem 2.12 (Broto et al . [6, Theorems 7.4 and 7.5]). For a p-local finite group
(S,F ,L), the fusion system FS,θ(|L|∧p ) is saturated and LS,θ(|L|∧p ) is a centric linking
system associated with FS,θ(|L|∧p ). Furthermore, the p-local finite groups (S,F ,L) and
(S,FS,θ(|L|∧p ),Lc

S,θ(|L|∧p )) are isomorphic.

2.4. p-local finite groups over abelian groups

We conclude this review by classifying the p-local finite groups over an abelian p-group
S. The resulting classification shows that the strict equivalence classes of p-local finite
groups over S are in a bijective correspondence with the subgroups W � aut(S) of order
prime to p, under the assignment

W �→ (S,FS(W � S),LS(W � S)),

where W � S is the semi-direct product. Here we say that two p-local finite groups are
strictly equivalent if they have the same fusion system and their linking systems are
isomorphic. In particular, there are no exotic p-local finite groups over abelian p-groups.

We begin with the following lemma, which describes precisely how the conditions
in Definition 2.2 are simplified under the assumption that S is abelian. As this result
is obvious to the experienced reader and proving it straight from the definition is an
excellent exercise for those new to p-local finite groups, the proof is left to the reader.

Lemma 2.13. Let F be a fusion system over a finite abelian p-group S. Then F is
saturated if and only if the following two conditions are satisfied:

(i) autF (S) has order prime to p;

(ii) every ϕ ∈ homF (P,Q) is the restriction of some ϕ̃ ∈ autF (S).

The following proposition follows easily.

Proposition 2.14. If S is an abelian finite p-group, then the assignment W �→
FS(W � S) gives a bijective correspondence between subgroups W � aut(S) of order
prime to p and saturated fusion systems over S.

Being the fusion system of a group, the fusion system FS(W � S) has an obvious
associated centric linking system Lc

S(W � S). This is in fact the only associated centric
linking system and we have the following classification result.
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Proposition 2.15. If S is an abelian finite p-group, then the assignment

W �→ (S,F(W � S),Lc
S(W � S))

gives a bijective correspondence between subgroups W � Aut(S) of order prime to p and
strict equivalence classes of p-local finite groups over S. In particular, there are no exotic
p-local finite groups over S.

Proof. When S is abelian, there are no proper centric subgroups. Therefore, the
obstruction to uniqueness of centric linking systems [6, § 3] simplifies to the cohomology
group H2(W ;S). Now use a transfer argument to show that H∗(W ;S) vanishes for
∗ > 0. �

3. Retractive transfer triples

In this section we introduce retractive transfer triples. First we make precise the set-
ting we are working in. Cohomology will always be taken to be with Fp-coefficients
unless otherwise specified. The following definition is a homotopy generalization of group
monomorphisms.

Definition 3.1. A map f : Y → X between two topological spaces is a homotopy
monomorphism at p if its induced map in cohomology makes H∗(Y ) a finitely generated
H∗(X)-module. In the special case where Y = BP is the classifying space of a finite
p-group, we say that f is a p-subgroup inclusion.

The analogy with group monomorphisms is that a group homomorphism ϕ : P → G

from a finite p-group P to a finite group G is a monomorphism if and only Bϕ is a
homotopy monomorphism at p. There are other definitions of homotopy monomorphisms
in the literature, but these are equivalent in the setting in which we are working. Since the
finite generation hypothesis is the only one we need, we avoid complication by considering
only this definition. As the prime p is fixed throughout, we will refer to these concepts
simply as ‘homotopy monomorphism’ and ‘subgroup inclusion’.

We will demand some additional structure on our subgroup inclusions, namely that
they allow a transfer with properties similar to that of the transfer of a Sylow subgroup
inclusion.

Definition 3.2. Let f : Y → X be a map of spaces. A retractive transfer of f is a
stable map t : Σ∞

+ X → Σ∞
+ Y such that Σ∞

+ f ◦ t � idΣ∞
+ X , and the following diagram

commutes up to homotopy:

Σ∞
+ X ∆ ��

t

��

Σ∞
+ X ∧Σ∞

+ X

1∧t

��
Σ∞

+ Y
(f∧1) ◦ ∆ �� Σ∞

+ X ∧Σ∞
+ Y

(3.1)

The objects that will be the focus of our attention are defined as follows.
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Definition 3.3. A retractive transfer triple over a finite p-group S is a triple (f, t,X),
where X is a connected, p-complete, nilpotent space with finite fundamental group, f is
a subgroup inclusion BS → X and t is a retractive transfer of f .

Since the space X in the above definition is p-complete with finite fundamental group,
it follows that π1(X) is a finite p-group [3,9].

For a retractive transfer triple (f, t,X) over a finite p-group S, we ask the following
questions.

• Is the fusion system FS,f (X) saturated?

• If so, does there exist an associated centric linking system L? Is it unique?

• If an associated centric linking system exists, then what is the relation between the
classifying space |L|∧p and X? Are they equivalent as objects under BS?

In the course of the following sections we will answer these questions affirmatively in
the case when S is an elementary abelian p-group, proving the following theorem.

Theorem 3.4. Let (f, t,X) be a retractive transfer triple over be a finite elementary
abelian p-group V , and set

W := autFV,f (X)(V ) = {ϕ ∈ aut(V ) | f ◦ϕ � f}.

The following then hold.

(i) W has order prime to p.

(ii) FV,f (X) is equal to the saturated fusion system FV (W � V ).

(iii) FV,f (X) has an associated centric linking system, which is unique up to isomor-
phism, with classifying space B(W � V )∧

p .

(iv) There is a homotopy equivalence h : B(W � V )∧
p

�−→ X making the following dia-
gram commute up to pointed homotopy:

B(W � V )∧
p

h�

��

BV

Bi

������������

f

�������������

X

Thus, the triple (f, t,X) induces a p-local finite group (V,FV,f (X),Lc
V,f (X∧

p )) over V
with classifying space X.
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Proof. The proof is by forward referencing. Lannes’s theorem [16] shows that W
is the group of automorphisms of V that act trivially on H∗(X) when regarded as a
subring of H∗(BV ) under f∗. By Proposition 4.11, W has order prime to p, proving (i).
By Corollary 4.12, X has the cohomology type of B(W � V ) as objects under BV . By
Proposition 5.1 there is a map B(W � V ) → X realizing that cohomology isomorphism
and making the uncompleted version of the diagram in (iv) commute up to pointed
homotopy. This map becomes a homotopy equivalence upon p-completion, proving (iv).
Part (ii) follows directly from (i) and (iv), and (iii) then follows from Proposition 2.15. �

4. Cohomology type of retractive transfer triples

In this section we discuss the cohomological structure of a retractive transfer triple
(f, t,X) over a finite p-group S. We first discuss general properties in § 4.1. We then
specialize to the case where S is elementary abelian in § 4.2 and show that in this case
H∗(X) is a ring of invariants of H∗(BS) under the action of a group of order prime to p.

4.1. The general case

Applying the cohomology functor H∗( · ; Fp) to (3.1), we get maps

H∗(X)
f∗
−→ H∗(BS) t∗

−→ H∗(X)

with the following properties:

(C1) t∗ ◦ f∗ = id;

(C2) t∗ is H∗(X)-linear (Frobenius reciprocity);

(C3) t∗ is a morphism of unstable modules over the Steenrod algebra;

(C4) f∗ is a morphism of unstable algebras over the Steenrod algebra.

Hence, H∗(X) is a direct summand of H∗(BS) as a H∗(X)-module and as a module
over the Steenrod algebra. (C1) allows us to regard H∗(X) as a subring of H∗(BS) and
we will often do so without further comment.

These properties are quite restrictive and the question of which unstable subalgebras
R∗ ⊂ H∗(BS) over the Steenrod algebra admit a splitting H∗(BS) → R∗ as R∗-modules
and unstable modules over the Steenrod algebra is interesting in itself. However, we focus
our attention on p-local finite groups.

The following finiteness properties of retractive transfer triples will be needed later.

Lemma 4.1. Let S be a finite p-group and let (f, t,X) be a Frobenius transfer triple
over S. Then H∗(X) is Noetherian and in particular X is of finite Fp-type.

Proof. By [9, Lemma 2.6], this follows from (C1), (C2) and the classical result that
H∗(BS) is Noetherian [11,26]. �
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Lemma 4.2. Let S be a finite p-group and let (f, t,X) be a Frobenius transfer triple
over S. Then X is of Z(p)-finite type.

Proof. By the universal coefficient theorem, it suffices to show that X is of finite
Fp-type and of finite Q-type. The former is Lemma 4.1, above. The latter is deduced
in a similar way: by a transfer argument, BS has trivial Q-cohomology. As in the Fp-
coefficient case, H∗(X; Q) is a direct summand of H∗(BS; Q). Hence, X also has trivial
Q-cohomology and we are done. �

4.2. The elementary abelian case

In this subsection, we restrict ourselves to the case where S is an elementary abelian
finite p-group V . In this case, we use a theorem of Goerss et al . [12], based on the
celebrated work of Adams and Wilkerson [2], to prove that if (f, t,X) is a retractive
transfer triple over V , then H∗(X) is a ring of invariants H∗(BV )W for a subgroup
W � aut(V ) of order prime to p. Furthermore, we show that the group W may be taken
to be the group of automorphisms of V that act trivially on H∗(X). We consider only the
case of an odd prime. The results still hold true at the prime 2 and the proofs proceed
in more or less the same way, but are simpler at times. As pointed out to the author by
Nick Kuhn, these results can also be obtained, possibly more directly, as a consequence
of [15].

In [2], Adams and Wilkerson study the following category.

Definition 4.3. Let AW be the category of evenly graded unstable algebras R over
the Steenrod algebra that are integral domains.

Adams and Wilkerson also make precise the notions of ‘algebraic extension’ and ‘alge-
braic closure’ in this setting and prove the following.

Proposition 4.4 (Adams and Wilkerson [2, Proposition 1.5]). Every object R
in AW has an algebraic closure H in AW. If R has finite transcendence degree, then so
does H.

Theorem 4.5 (Adams and Wilkerson [2, Theorem 1.6]). The objects H in
AW that are algebraically closed and of finite transcendence degree are precisely the
polynomial algebras Fp[x1, . . . , xn] on generators xi of degree 2.

Furthermore, in [2, Theorem 1.2] they show that an algebra in R of finite transcendence
degree is a ring of invariants in its algebraic closure if and only if it satisfies two conditions,
which can be interpreted as an integral closure condition and an inseparable closure
condition. Based on this work, Goerss et al . identified sufficient conditions for an unstable
algebra over the Steenrod algebra to be a ring of invariants. Before stating their result
we need some preparation.

Let A denote the mod p Steenrod algebra and let A′ be the subalgebra generated by
the power operations P i, i � 0. We then have a splitting of A′-modules,

A = A′ ⊕ A′′,
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where A′′ is the Fp-vector subspace of A generated by admissible sequences involving the
Bockstein operation. Let U denote the category of unstable A-modules and let K denote
the category of unstable A-algebras. In both cases, morphisms are of degree zero. Let U ′

and K′ denote the corresponding full subcategories whose objects are evenly graded.
By [17], the forgetful functor θ : U ′ → U has a right adjoint θ̃ : U → U ′, which sends an

unstable A-module M to the submodule of elements x of even degree satisfying α(x) = 0
for all α ∈ A′′, and morphisms to restrictions to these submodules. For unstable A-
algebras, the same construction gives a right adjoint θ̃ : K → K′ to the forgetful functor
θ : K′ → K, and we have a commutative diagram of functors

K′ θ ��

��

K θ̃ ��

��

K′

��
U ′ θ �� U θ̃ �� U ′

where the vertical functors are forgetful functors. As a consequence we obtain the fol-
lowing lemma.

Lemma 4.6. Properties (C1)–(C4) are preserved by θ̃.

Proof. This is mostly self-evident. The functor diagram is only needed to make sense
of (C2). �

We need to recall some things about reduced U-injectives.

Definition 4.7. An A-module M is a reduced U-injective if it is an injective object
in the category U , and

homU (ΣN,M) = 0,

for every A-module N , where Σ denotes the suspension functor. An unstable A-algebra
R is a reduced U-injective if it is a reduced U-injective when regarded as an A-module.

For an elementary abelian p-group V , the cohomology ring H∗(BV ) is a reduced U-
injective by [17]. If (f, t,X) is a retractive transfer triple over V , then H∗(X) is a direct
summand of H∗(BV ) as A-modules, and hence H∗(X) is also a reduced U-injective.
This allows us to apply the following theorem to show that H∗(X) is a ring of invariants
in H∗(BV ).

Theorem 4.8 (Goerss et al . [12, Theorem 1.3]). Let R be an unstable A-algebra
that is a reduced U-injective satisfying the following:

(i) θ̃R is a Noetherian integral domain;

(ii) θ̃R is integrally closed in its field of fractions.

There then exists an integer n and a subgroupW � GL(n,Z/p) such that R is isomorphic
to the ring of invariants H∗(B(Z/p)n; Fp)W . Furthermore, W has order prime to p.
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Remark 4.9. Looking closely at the proof of the theorem in [12] and the tools from [2]
used therein, one sees that θ̃H∗(B(Z/p)n; Fp) is in fact the algebraic closure of θ̃R∗ in
AW and W is the group of automorphisms of (Z/p)n acting trivially on R. The point
is that, in their proof, Goerss et al . apply [2, Theorem 1.2], which, as mentioned above,
really gives necessary and sufficient conditions for when the embedding of an algebra of
finite transcendence degree into its algebraic closure in AW is a Galois extension. This is
made clear in the introduction of [2], although the authors chose to make the statement
of the theorem less technical.

The following technical result is needed.

Lemma 4.10. Let R and H be unstable A-algebras that are reduced U-injectives
and suppose that f : R → H is a morphism of A-algebras making H finitely generated
over R. Then θ̃f makes θ̃H finitely generated over θ̃R.

Proof. Recall from [12] that there are unique A′-algebra homomorphisms

πR : R → θ̃R and πH : H → θ̃H

such that
πR ◦ iR = idθ̃R and πH ◦ iH = idθ̃H ,

where
iR : θ̃R → R and iH : θ̃H → H

denote the natural inclusions. (Strictly speaking this is an abuse of notation and we
should replace θ̃H and θ̃R by θθ̃H and θθ̃R, respectively.)

Now, suppose that {h1, . . . , hn} is a set of generators for H over R. Let h ∈ θ̃H. Then
we can write

iH(h) =
n∑

j=1

f(rj)hj ,

for some rj ∈ R. Consequently,

h = πH ◦ iH(h) = πH

( n∑
j=1

f(rj)hj

)

=
n∑

j=1

πH(f(rj))πH(hj).

Therefore, if we can show that
πH ◦ f = θ̃f ◦πR,

then we can deduce that {πH(h1), . . . , πH(hn)} is a set of generators for θ̃H over θ̃R and
we are done.

To prove this we first observe that by [12, Corollary 3.3 (i)] there is a unique morphism
of unstable A-algebras g : R → H such that

πH ◦ g = θ̃f ◦πR.
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Next we note that by construction of θ̃ we have

iH ◦ θ̃g = g ◦ iR,

from which it follows that

θ̃g = πH ◦ iH ◦ θ̃g = πH ◦ g ◦ iR = θ̃f ◦πR ◦ iR = θ̃f.

But, by [12, Corollary 3.3 (ii)], the map

θ̃ : homK(R,H) → homK′(θ̃R, θ̃H)

is a bijection, so g = f , and hence

πH ◦ f = πH ◦ g = θ̃f ◦πR.

�

Proposition 4.11. Let (f, t,X) be a retractive transfer triple over a finite elementary
abelian p-group V , and let W � aut(V ) be the subgroup of automorphisms of V acting
trivially on f∗(H∗(X)). The map induced by f in cohomology is a split monomorphism,

f∗ : H∗(X) ↪→ H∗(BV ),

with image the ring of invariants H∗(BV )W . Furthermore, W has order prime to p.

Proof. We already know that f∗ is a split monomorphism. Let us show that H∗(X)
satisfies the conditions of Theorem 4.8 above. By the remark after Definition 4.7, H∗(X)
is a reduced U-injective. By [17,29] we have

θ̃H∗(BV ) ∼= Fp[x1, . . . , xn], (4.1)

where n is the rank of V . In particular, θ̃H∗(BV ) is a Noetherian integral domain. A
similar argument to the proof of Lemma 4.1 shows that θ̃H∗(X) is also a Noetherian
integral domain. It remains only to show that θ̃H∗(X) is integrally closed in its field of
fractions.

For this we first recall from [2] that θ̃H∗(BV ) is integrally closed in its field of frac-
tions. Now, let x be in the field of fractions of θ̃H∗(X) and suppose that x is inte-
gral over θ̃H∗(X). Write x = a/b, with a, b ∈ θ̃H∗(X). Then θ̃f∗(x) = θ̃f∗(a)/θ̃f∗(b)
is also integral over θ̃H∗(BV ), and since θ̃H∗(BV ) is integrally closed, this implies
that θ̃f∗(x) ∈ θ̃H∗(BV ). We now have the equation θ̃f∗(a) = θ̃f∗(b)θ̃f∗(x) in θ̃H∗(BV ).
Applying θ̃t∗ and using θ̃H∗(X)-linearity (C2), we get

a = θ̃t∗(θ̃f∗(a)) = θ̃t∗(θ̃f∗(b)θ̃f∗(x)) = bθ̃t∗(θ̃f∗(x)).

Since θ̃H∗(BV ) is an integral domain, this implies that

x = a/b = θ̃t∗(θ̃f∗(x)) ∈ θ̃H∗(X).
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Before applying Theorem 4.8, we note that since H∗(BV ) is finitely generated over
H∗(X), Lemma 4.10 applies, showing that θ̃H∗(BV ) is finitely generated over θ̃H∗(X),
and hence θ̃H∗(BV ) is an algebraic extension of θ̃H∗(X). Since θ̃H∗(BV ) is algebraically
closed in AW, we conclude that θ̃H∗(BV ) is the algebraic closure of θ̃H∗(X) in AW.

Applying Theorem 4.8 along with Remark 4.9 and the observation in the preceding
paragraph now completes the proof. �

As an immediate corollary, a retractive transfer triple over an elementary abelian p-
group V has the cohomology type of a p-local finite group over V .

Corollary 4.12. Let (f, t,X), V and W be as in the previous proposition. Let G be
the semi-direct product G := W � V , and let i be the inclusion i : V ↪→ G. There is an
isomorphism of unstable A-algebras

h∗ : H∗(X)
∼=−→ H∗(BG)

making the following diagram commute:

H∗(X)
f∗

������������

h∗∼=

��

H∗(BV )

H∗(BG)

Bi∗
������������

Proof. By a well-known transfer argument, Bi∗ is a split monomorphism with image
H∗(BV )W . A H∗(BV )W -linear splitting map is given by (1/|W |) tr∗

V , where trV is the
transfer associated with the |W |-fold covering map Bi. For the map h∗ one can take the
composite (1/|W |) tr∗

V ◦ f∗. �

5. Homotopy type of retractive transfer triples

Having identified the cohomology type of a retractive transfer triple over an elementary
abelian p-group V as that of a p-local finite group over V in the preceding section, in
this section we carry that result over to homotopy. More precisely, we construct a map
of spaces realizing the map h∗ of Corollary 4.12. We follow the approach taken by Dwyer
et al . in [10], using Lannes technology [16] to pass from cohomology to homotopy.

Throughout this section, let (f, t,X) be a fixed retractive transfer triple over an ele-
mentary abelian group V , and let W be the group of automorphisms of V acting trivially
on f∗H∗(X) ⊆ H∗(BV ). Recall from Proposition 4.11 that W has order prime to p. Let
G := W � V be the semi-direct product, and let i : V ↪→ G be the inclusion.
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Proposition 5.1. There exists a map h : BG → X making the following diagram
commute up to pointed homotopy:

BG

h

��

BV

Bi

����������

f

����
��

��
��

X.

The rest of this section is dedicated to constructing the map h.
Replace BV

f−→ X with a homotopy equivalent fibration

BV f̃−→ X.

This can be done in such a way (by just using the standard construction) that there is
a homotopy equivalence s : BV → BV such that f = f̃ ◦ s and an (abusively denoted)
homotopy inverse s−1 : BV → BV such that s−1 ◦ s = idBV and s ◦ s−1 � idBV .

We have a fibration

Map(BV, BV)f̃

f̃ ◦ ·−−→ Map(BV, X)f̃ ,

where Map(BV, X)f̃ is the connected component of Map(BV, X) containing f̃ and
Map(BV, BV)f̃ is the subspace of Map(BV, BV) consisting of those components that
map to Map(BV, X)f̃ . We denote the fibre over f̃ by W. This is the space of self-maps
g of BV such that f̃ ◦ g = f̃ . Such a map g is necessarily a homotopy equivalence since
f̃ is a homotopy monomorphism.

The next lemma can be interpreted as saying that BV
f−→ X is centric.

Lemma 5.2. For g ∈ W, the map

Map(BV, BV)g
f̃ ◦ ·−−→ Map(BV, X)f̃ (5.1)

is a homotopy equivalence.

Proof. The map in question is adjoint to the bottom row of the commutative diagram

Map(BV,BV )id ×BV
ev ��

(g∗ ◦ cs)×s�
��

BV

g ◦ s�
��

Bi ��

f

����
��

��
��

� BG

Map(BV, BV)g ×BV ev �� BV f̃ �� X

where cs is the map sending a self-map u ∈ Map(BV,BV )id to its ‘conjugate’ s ◦u ◦ s−1 ∈
Map(BV, BV)id, and g∗ is composition with g. Applying the cohomology functor, we
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obtain the commutative diagram

H∗(X)
f̃∗

��

h∗∼=
��

f∗

		����������
H∗(BV)

(g ◦ s)∗∼=
��

ev∗
�� H∗(Map(BV, BV)g) ⊗H∗(BV)

(g∗ ◦ cs)∗⊗s∗∼=
��

H∗(BG) Bi∗
�� H∗(BV ) ev∗

�� H∗(Map(BV,BV )id) ⊗H∗(BV )

where h∗ is the isomorphism from Corollary 4.12. Taking adjoints and restricting to
components, we obtain the commutative diagram

TV
f̃

(H∗(X))
T V

g (f̃∗)
��

η∼=
��

TV
g (H∗(BV))

η∼=
��

λg �� H∗(Map(BV, BV)g)

(g∗ ◦ cs)∗∼=

��

TV
f (H∗(X))

T V
g ◦ s(f̃∗)

��

T V
Bi(h

∗)∼=

��

T V
id (f∗)

������������������������
TV

g ◦ s(H
∗(BV))

T V
id ((g ◦ s)∗)∼=

��
TV

Bi(H
∗(BG))

T V
id (Bi∗) �� TV

id (H∗(BV ))
λid �� H∗(Map(BV,BV )id)

(5.2)

where the Lannes functors TV and TV are the left adjoints to the functors − ⊗H∗(BV )
and −⊗H∗(BV), respectively, and η is the natural isomorphism of functors induced by the
isomorphism s∗. The subscript notation TV

f̃
denotes the component of TV corresponding

to the map f̃∗, and the maps λid and λg are appropriate restrictions of the adjoint to
the evaluation map. The reader is referred to [10, § 3] for further explanation of the
notation, to [25] for a good exposition on Lannes functor technology, and to [16], the
original paper by Lannes.

By Lannes’s comparison theorem, [16, Theorem 3.3.2], the map (5.1) is a homotopy
equivalence if and only if the composite of the top row in (5.2) is an isomorphism. (We
have used the fact that the spaces X and Map(BV, BV)g � BV are already p-complete
here.) The proof is completed by recalling from [16] that the maps in the bottom row
are both isomorphisms. �

The next proposition corresponds to [10, Theorem 2.9].

Proposition 5.3. The space W is homotopy discrete, and the cohomology functor
induces a natural monomorphism

H∗(−) : π0W → autK(H∗(BV))

with image W under the identification

autK(H∗(BV))
∼=−→ autK(H∗(BV )) ∼= aut(V )

induced by s : BV �−→ BV.
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Proof. The first claim follows from Lemma 5.2. Also from Lemma 5.2 and the long
exact sequence in homotopy induced by the fibre sequence

W incl−−−→ Map(BV, BV)f̃

f̃ ◦ ·−−−−→ Map(BV, X)f̃

we deduce that the map
π0W incl−−−→ π0 Map(BV, BV)f̃

is a bijection. In the commutative diagram

[BV, BV]
f̃ ◦ ·− ��

H∗(−)
��

[BV, X]

H∗(−)
��

autK(H∗(BV))
· ◦ f̃∗

�� homK(H∗(X), H∗(BV))

the left-hand vertical arrow is an isomorphism by Miller’s theorem [20] and the right-
hand vertical arrow is an isomorphism by Lannes’s theorem [16]. Consequently, a map
g : BV → BV belongs to Map(BV, BV)f̃ if and only if g∗ ◦ f̃∗ = f̃∗ in cohomology or,
equivalently, if and only if g∗ ∈ W (under the identification above). �

Observing that W is a group-like topological monoid, we have a contractible CW-com-
plex EW on which W acts freely, which allows us to form the classifying space BW =
EW/W and the Borel construction EW ×W BV. By construction, f̃ induces a map
h̃ : EW×WBV → X fitting into a commutative diagram

EW ×W BV

h̃

��

BV

Bι

������������

f

�������������

X

where Bι is the obvious map. Proposition 5.3 implies that EW ×W BV is homotopy
equivalent to BG. Using the fact that these are classifying spaces of finite groups, one sees
that this homotopy equivalence can in fact be realized by a map k : BG → EW ×W BV,
making the top rectangle in the following diagram commute up to pointed homotopy:

BV
Bi ��

s�
��

BG

k�
��

BV Bι ��

f̃



����������������� EW ×W BV
h̃

��
X

Since f̃ ◦ s = f , the composite h̃ ◦ k gives the desired map h in Proposition 5.1.
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6. p-local finite groups induce retractive transfer triples

In § 3 the notion of a retractive transfer triple over a finite p-group S was introduced
and in §§ 4 and 5 it was shown that, in the case where S is elementary abelian, such a
triple induces a p-local finite group. In this section we consider the reverse implication
and prove the following theorem.

Theorem 6.1. Let (S,F ,L) be a p-local finite group. Then the natural inclusion
θ : BS → |L|∧p has a retractive transfer t, and (θ, t, |L|∧p ) is a retractive transfer triple.

There are two parts to the proof. In § 6.1, which is joint work with Ran Levi, we show
that |L|∧p and the inclusion θ : BS → |L|∧p of the Sylow subgroup satisfy the technical
conditions of a retractive transfer triple. Most notably, we show that the classifying space
of a p-local finite group is both a torsion space and a nilpotent space, a result which is
of independent interest.

In § 6.2 we apply results from [24] to obtain a stable retraction t of the inclusion
θ : BS → |L|∧p , and show that it satisfies Frobenius reciprocity. These results combine to
complete the proof of Theorem 6.1.

6.1. Technical conditions

Let (S,F ,L) be a p-local finite group. In this subsection, which is joint work with Ran
Levi, we verify that the space |L|∧p and the natural map

θ : BS → |L|∧p
satisfy the technical conditions of retractive transfer triples. It has already been shown
in [6] that |L|∧p is p-complete, that the fundamental group of |L|∧p is finite and that θ is
a homotopy monomorphism. We proceed to show that |L|∧p is nilpotent.

Lemma 6.2. For a p-local finite group (S,F ,L), the groups Hk(|L|∧p ; Z) and
Hk(|L|∧p ; Z) are finite p-groups for all k � 1.

Proof. As is shown in [6], |L|∧p is a stable retract of BS. In particular, H∗(|L|∧p ; Z)
is a subring of H∗(BS; Z). Since Hk(BS; Z) is a finite p-group for k � 1 (a transfer
argument shows that Hk(BS; Z) is p-torsion and finite generation is evident from the
cell structure of BS), it follows that Hk(|L|∧p ; Z) is a finite p-group for k � 1.

The same argument works in homology. �

Proposition 6.3. For a p-local finite group (S,F ,L), the homotopy groups πk(|L|∧p )
are finite p-groups for all k � 1. In particular, |L|∧p is a torsion space.

Proof. We first reduce this to the case where |L|∧p is simply connected. It is shown
in [6] that π1(X) is a finite p-group. Letting X̃ be a universal cover of |L|∧p , it therefore
suffices to show that the homotopy groups of X̃ are all finite p-groups. However, it is
shown in [7] that X̃ is again the classifying space of a p-local finite group, so we can
reduce this to the simply connected case.

https://doi.org/10.1017/S0013091505001719 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091505001719


Retractive transfers and p-local finite groups 483

Assume therefore that |L|∧p is simply connected. By Lemma 6.2, Hk(|L|∧p ; Z) is a finite
p-group for all k � 1. Since |L|∧p is simply connected, we can apply the Hurewicz theorem
modulo the class of finite abelian p-groups, and deduce that the homotopy groups of |L|∧p
are all finite p-groups. �

Corollary 6.4. The classifying space of a p-local finite group is nilpotent.

Proof. This follows from Proposition 6.3, the fact that any finite p-group is nilpotent
and the fact that the action of any finite p-group on a finite abelian p-group is nilpotent.

�

6.2. The retractive transfer of a p-local finite group

In this subsection we show that the natural inclusion of a Sylow subgroup into the clas-
sifying space of a p-local finite group has a retractive transfer. We use results from [24],
which were actually originally developed for this purpose but have turned out to be per-
haps more interesting than their intended goal, and are therefore published separately.

Remark 6.5. There is a slight difference between the spectra appearing in this paper
and those in [24]. The difference arises because here we add a base point to our spaces
before forming suspension spectra. The effect at the level of stable homotopy is to add
a sphere wedge summand to all spectra in sight. It is easy to check that all the results
quoted from [24] carry over in the form stated in this section.

Let (S,F ,L) be a p-local finite group, and let ω̃ be the idempotent of Σ∞
+ BS induced

by the characteristic idempotent of F , as defined in [24]. We refer to ω̃ as the pointed
stable idempotent of F . It has the following properties, which determine ω̃ uniquely:

(a) ω̃ is a Z∧
p -linear combination of homotopy classes of maps of the form Σ∞

+ Bϕ ◦ trP ,
where P is a non-trivial subgroup of S, ϕ ∈ homF (P, S) and trP denotes the
transfer of the inclusion P � S;

(b) for each subgroup P � S and each ϕ ∈ homF (P, S), the restrictions ω̃ ◦Σ∞
+ BiP

and ω̃ ◦Σ∞
+ Bϕ are homotopic as maps Σ∞

+ BP → Σ∞
+ BS;

(c) ω̃ has augmentation 1.

The augmentation in (c) corresponds to an augmentation of the double Burnside ring.
As (c) is not used in this paper, the reader is referred to [24] for the details. We refer to
(b) as F-stability.

The pointed classifying spectrum of F is the stable summand B+F of Σ∞
+ BS induced

by ω̃. This is the infinite mapping telescope of ω̃:

B+F = HoColim(Σ∞
+ BS

ω̃−→ Σ∞
+ BS

ω̃−→ Σ∞
+ BS

ω̃−→ · · · ),

and as such it comes equipped with a pointed structure map, Σ∞
+ BS

σ−→ B+F , which
is the structure map of the homotopy colimit, and a unique (up to homotopy) map
B+F t−→ Σ∞

+ BS such that σ ◦ t � idB+F and t ◦σ � ω̃.
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Just as in [24], one can show that the pointed structure map Σ∞
+ BS

σ−→ B+F is equiv-
alent to the infinite pointed suspension

Σ∞
+ BS

Σ∞
+ θ−−−→ Σ∞

+ |L|∧p

of the natural inclusion BS θ−→ |L|∧p , as objects under Σ∞
+ BS. We may therefore replace

Σ∞
+ BS

σ−→ B+F by

Σ∞
+ BS

Σ∞
+ θ−−−→ Σ∞

+ |L|∧p
in the discussion above, and obtain a unique (up to homotopy) map

t : Σ∞
+ |L|∧p → Σ∞

+ BS,

such that

Σ∞
+ θ ◦ t � idΣ∞

+ |L|∧p and t ◦Σ∞
+ θ = ω̃.

We proceed to show that t satisfies the Frobenius reciprocity relation illustrated in (3.1),
and thus t is a retractive transfer for θ.

Proposition 6.6. The idempotent ω̃ satisfies the Frobenius reciprocity relation

(ω̃ ∧ ω̃) ◦∆ � (ω̃ ∧ 1) ◦∆ ◦ ω̃,

where ∆ : Σ∞
+ BS → Σ∞

+ BS ∧Σ∞
+ BS is the image of the diagonal of BS under the

infinite suspension functor Σ∞
+ .

Proof. Recall that we can write ω̃ as a linear combination with Z∧
p -coefficients of

maps Σ∞
+ Bϕ ◦ trP ∈ {BS+, BS+}, where P � S and ϕ ∈ homF (P, S). For such a map

Σ∞
+ Bϕ ◦ trP we have, by F-stability of ω̃,

ω̃ ◦Σ∞
+ Bϕ � ω̃ ◦Σ∞

+ BiP , (6.1)

where iP is the inclusion P � S. We will take advantage of this and the fact [1] that the
transfer trP of the inclusion iP satisfies the Frobenius relation

(1 ∧ trP ) ◦∆S � (Σ∞
+ BiP ∧ 1) ◦∆P ◦ trP , (6.2)

where ∆P and ∆S are the diagonals of Σ∞
+ BP and Σ∞

+ BS, respectively. We will also
use the fact that, since Σ∞

+ Bϕ has a desuspension, it commutes with the diagonals as
follows:

∆S ◦Σ∞
+ Bϕ � (Σ∞

+ Bϕ ∧Σ∞
+ Bϕ) ◦∆P . (6.3)
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Now,

(ω̃ ∧ 1) ◦∆S ◦Σ∞
+ Bϕ ◦ trP

(6.3)� (ω̃ ∧ 1) ◦(Σ∞
+ Bϕ ∧Σ∞

+ Bϕ) ◦∆P ◦ trP

� ((ω̃ ◦Σ∞
+ Bϕ) ∧Σ∞

+ Bϕ) ◦∆P ◦ trP

(6.1)� ((ω̃ ◦Σ∞
+ BiP ) ∧Σ∞

+ Bϕ) ◦∆P ◦ trP

� (ω̃ ∧Σ∞
+ Bϕ) ◦(Σ∞

+ BiP ∧ 1) ◦∆P ◦ trP

(6.2)� (ω̃ ∧Σ∞
+ Bϕ) ◦(1 ∧ trP ) ◦∆S

� (ω̃ ∧ (Σ∞
+ Bϕ ◦ trP )) ◦∆S .

By summing over the different Σ∞
+ Bϕ ◦ trP , we get the desired result. �

Corollary 6.7. Let (S,F ,L) be a p-local finite group and let t : Σ∞
+ |L|∧p → Σ∞

+ BS

be as constructed above. Then t is a retractive transfer of the inclusion θ : BS → |L|∧p .

Proof. We deduce the Frobenius reciprocity relation

(1 ∧ t) ◦∆|L|∧p � (Σ∞
+ θ ∧ 1) ◦∆S ◦ t

from
(ω̃ ∧ ω̃) ◦∆S � (ω̃ ∧ 1) ◦∆S ◦ ω̃ (6.4)

as follows. Applying (Σ∞
+ θ ∧ 1) ◦ · ◦ t to the left-hand side of (6.4) and rewriting, we get

(Σ∞
+ θ ∧ 1) ◦(ω̃ ∧ ω̃) ◦∆S ◦ t � (Σ∞

+ θ ∧ 1) ◦((t ◦Σ∞
+ θ) ∧ (t ◦Σ∞

+ θ)) ◦∆S ◦ t
� ((Σ∞

+ θ ◦ t) ∧ t) ◦(Σ∞
+ θ ∧Σ∞

+ θ) ◦∆S ◦ t
� (1 ∧ t) ◦∆|L|∧p ◦Σ∞

+ θ ◦ t
� (1 ∧ t) ◦∆|L|∧p .

Doing the same with the right-hand side yields

(Σ∞
+ θ ∧ 1) ◦(ω̃ ∧ 1) ◦∆S ◦ ω̃ ◦ t � ((Σ∞

+ θ ◦ t ◦Σ∞
+ θ) ∧ 1) ◦∆S ◦(t ◦Σ∞

+ θ ◦ t)
� (Σ∞

+ θ ∧ 1) ◦∆S ◦ t.
Combining these equivalences, we have

(1 ∧ t) ◦∆|L|∧p � (Σ∞
+ θ ∧ 1) ◦∆S ◦ t.

�
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Barcelona, 1986, Lecture Notes in Mathematics, Volume 1298, pp. 148–161 (Springer,
1987).

13. J. C. Harris and N. J. Kuhn, Stable decompositions of classifying spaces of finite
groups, Math. Proc. Camb. Phil. Soc. 103 (1988), 427–449.

14. H.-W. Henn, Classifying spaces with injective mod p cohomology, Comment. Math. Helv.
64 (1989), 200–206.

15. H.-W. Henn, J. Lannes and L. Schwartz, The categories of unstable modules and
unstable algebras over the Steenrod algebra modulo nilpotent objects, Am. J. Math. 115
(1993), 1053–1106.

16. J. Lannes, Sur les espaces fonctionnels dont la source est le classifiant d’un p-groupe
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University, Doctoral Thesis (1984).

https://doi.org/10.1017/S0013091505001719 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091505001719

