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Abstract

This study addresses the role of domain-general mechanisms in second-language learning and
knowledge using an individual differences approach. We examine the predictive validity of
implicit-statistical learning aptitude for implicit second-language knowledge. Participants
(n=131) completed a battery of four aptitude measures and nine grammar tests. Structural equation
modeling revealed that only the alternating serial reaction time task (a measure of implicit-statistical
learning aptitude) significantly predicted learners’ performance on timed, accuracy-based language
tests, but not their performance on reaction-time measures. These results inform ongoing debates
about the nature of implicit knowledge in SLA: they lend support to the validity of timed, accuracy-
based language tests as measures of implicit knowledge. Auditory and visual statistical learning
were correlated with medium strength, while the remaining implicit-statistical learning aptitude
measures were not correlated, highlighting the multicomponential nature of implicit-statistical
learning aptitude and the corresponding need for a multitest approach to assess its different facets.
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INTRODUCTION

Understanding the relationship between implicit (unconscious) learning and knowl-
edge is fundamental to second language acquisition (SLA) theory and pedagogy. In
recent years, researchers have turned to measures of language aptitude
(an individual’s ability to learn language) to better understand the nature of the
different types of linguistic knowledge. Results have shown that explicit aptitude
predicts the knowledge that results from explicit instruction (Li, 2015, 2016;
Skehan, 2015); however, evidence for the effects of implicit-statistical learning
aptitude on implicit knowledge has been limited in the field of SLA (compare
Granena, 2013; Suzuki & DeKeyser, 2017). In this project, we address two ques-
tions related to implicit-statistical learning aptitude and second language
(L2) knowledge: (1) whether implicit-statistical learning aptitude is a componential
mechanism (convergent validity) and (2) the extent to which different types of
implicit-statistical learning tasks predict implicit knowledge (predictive validity).
We expand the number of implicit-statistical learning aptitude measures beyond
serial reaction time to obtain a more comprehensive assessment of learners’ implicit-
statistical aptitude. Alongside, we will administer a battery of linguistic knowledge
tests designed to measure explicit and implicit L2 knowledge. By doing so, we are
able to examine how implicit-statistical learning aptitude predicts the development
of implicit L2 knowledge.

IMPLICIT-STATISTICAL LEARNING APTITUDE

Implicit-statistical learning denotes one’s ability to pick up regularities in the environment
(Frost et al., 2019).! Learners with greater implicit-statistical learning aptitude, for
instance, can segment word boundaries (statistical learning) and detect regularities in
artificial languages (implicit language learning) better than those with lower implicit-
statistical learning ability (for a comprehensive review of the unified framework of
implicit-statistical learning, see Christiansen, 2019; Conway & Christiansen, 2006;
Perruchet & Pacton, 2006; Rebuschat & Monaghan, 2019). This process of implicit-
statistical learning is presumed to take place incidentally, without instructions to learn or
the conscious intention on the part of the learner to do so.

Traditionally, implicit-statistical learning ability has been conceptualized as a unified
construct where learning from different modes, such as vision, audition, and sense of
touch, is interrelated and there is a common implicit-statistical learning mechanism
governing the extraction of patterns across different modes of input. Recently, however,
a growing body of research has evidenced that implicit-statistical learning may operate
differently in different modalities and stimuli, yet still be subserved by domain-general
computational principles (for reviews, see Arciuli, 2017; Frost et al., 2015; Siegelman
et al., 2017a). In this view, implicit-statistical learning is modality and stimulus
constrained (as the encoding of the information in different modalities relies on different
parts of our body and different cortices) but this modality specific information is subject
to domain-general processing principles that invoke shared brain regions. Implicit-
statistical learning is thus modality specific at the level of encoding while also obeying
domain-general computational principles at a more abstract level. If implicit-statistical
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learning is a componential ability, it follows that a more comprehensive approach to
measurement is needed that brings together different tasks tapping into different
components of implicit-statistical learning. Our first aim, accordingly, is to test the
convergent validity of implicit-statistical learning measures by assessing the interrela-
tionships between different measures of implicit-statistical learning. Doing so will
inform measurement and help illuminate the theoretical construct of implicit-statistical
learning.

In SLA, researchers have relied on different measures to capture implicit learning,
statistical learning, and the related construct of procedural memory (see Appendix S1 in
online Supplementary Materials).” For instance, implicit learning aptitude has been
measured with the LLAMA D test of phonemic coding ability (Granena, 2013, 2019;
Yi, 2018), the serial reaction time task (Granena, 2013, 2019; Hamrick, 2015; Linck et al.,
2013; Suzuki & DeKeyser, 2015, 2017; Tagarelli et al., 2016; Yi, 2018), and the
alternating serial reaction time (ASRT) task (Faretta-Stutenberg & Morgan-Short,
2018; Tagarelli et al., 2016). The ASRT task doubles as a measure of procedural memory
(Buffington & Morgan-Short, 2018; Buffington et al., 2021; Faretta-Stutenberg &
Morgan-Short, 2018; Hamrick, 2015). Other measures of procedural memory are the
Tower of London (TOL) (Antoniou et al., 2016; Ettlinger et al., 2014; Morgan-Short et al.,
2014, Pili-Moss et al., 2019; Suzuki, 2017) and the Weather Prediction Task (Faretta-
Stutenberg & Morgan-Short, 2018; Morgan-Short et al., 2014; Pili-Moss et al., 2019).
Lastly, statistical learning has only been measured in the auditory modality in L2 research
to date, with different tests of verbal auditory statistical learning (Brooks & Kempe, 2013;
McDonough & Trofimovich, 2016; Misyak & Christiansen, 2012).

These different measures can provide insight into the nature of the learning processes
that individuals draw on in different language learning tasks. Specifically, when perfor-
mance on the linguistic task and the aptitude measure share variance, acommon cognitive
process (i.e., implicit-statistical learning or procedural memory) can be assumed to guide
performance on both tasks. To illustrate, Yi (2018) found that native English speakers’
performance on a serial reaction time task predicted (i.e., shared variance with) their
phrasal acceptability judgment speed. A similar association for L2 speakers between their
explicit aptitude and phrasal acceptability judgment accuracy led the author to conclude
that L1 speakers process collocations implicitly and L2 speakers process them more
explicitly.

Although the use of implicit-statistical learning aptitude measures in L2 research is
rising, there is a need to justify the use of these measures from a theoretical and a
psychometric perspective more strongly. The possibility that implicit-statistical learning
may not be a unitary construct highlights the need to motivate the choice of specific
aptitude measure(s) and examine their construct validity, with due consideration of the
measures’ input modality (Frost et al., 2015). The questions of convergent validity
(correlation with related measures) and divergent validity (dissociation from unrelated
measures) have implications for measurement as well as SLA theory. Indeed, if implicit-
statistical learning aptitude is to fulfill its promise as a cognitive variable that can explain
the learning mechanisms that operate in different L2/foreign language contexts, for
different target structures, and for learners of different L2 proficiency levels, valid and
reliable measurement will be paramount.
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In recent years, some researchers have begun to examine the construct validity of
implicit-statistical learning aptitude measures by exploring their relationship to implicit
memory (Granena, 2019), procedural memory (Buffington et al., 2021; Buffington &
Morgan-Short, 2018), and working memory and explicit learning aptitude (Y1, 2018). For
measures of implicit learning aptitude, Granena (2019) found that the serial reaction time
task loaded onto a different factor than the LLAMA D in an exploratory factor analysis
(EFA), suggesting the two measures did not converge. Similarly, Yi (2018) reported that
the serial reaction time task and LLAMA D were uncorrelated and the reliability of
LLAMA D was low. In a study combining measures of implicit learning aptitude and
procedural memory, Buffington et al. (2021) also observed a lack of convergent validity
between the ASRT, the Weather Prediction Task, and the TOL. These results do not
support a unitary view of implicit-statistical learning aptitude or procedural memory.
Furthermore, this research is yet to include measures of statistical learning as another
approach to the same phenomenon (Christiansen, 2019; Conway & Christiansen, 2006;
Perruchet & Pacton, 2006; Reber, 2015; Rebuschat & Monaghan, 2019). More research is
needed to advance our understanding of these important issues.

With this study, we aim to advance this research agenda. We consider multiple
dimensions of implicit-statistical learning aptitude, their reliabilities, and interrelation-
ships (convergent validity). Of the various measures used as implicit-statistical learning
aptitude in SLA and cognitive psychology, we included measures that represent different
modes of input streams: visual statistical learning (VSL) for visual input, auditory
statistical learning (ASL) for aural input, and ASRT for motor and visual input. In
addition, we included the TOL task in recognition of its wide use in SLA research as a
measure of procedural memory along with the ASRT task.

IMPLICIT, AUTOMATIZED EXPLICIT, AND EXPLICIT KNOWLEDGE

It is widely believed that language users possess at least two types of linguistic knowl-
edge: explicit and implicit. Explicit knowledge is conscious and verbalizable knowledge
of forms and regularities in the language that can be acquired through instruction. Implicit
knowledge is tacit and unconscious linguistic knowledge that is gained mainly through
exposure to rich input, and therefore cannot be easily taught. A third type of knowledge,
automatized explicit knowledge, denotes explicit knowledge that language users are able
to use rapidly, in time-pressured contexts, as a result of their extensive practice with the
language. While the use of (nonautomatized) explicit knowledge tends to be slow and
effortful, both implicit and automatized explicit knowledge can be deployed rapidly, with
little or no conscious effort, during spontaneous communication (DeKeyser, 2003; Ellis,
2005). Consequently, it has been argued that implicit and automatized explicit knowledge
are “functionally equivalent” (DeKeyser, 2003), in that it may be impossible to discern
between the two in practice.

In a landmark study, Ellis (2005) proposed a set of criteria to guide the design of tests
that could provide relatively separate measures of explicit and implicit knowledge. Using
principal component analysis, Ellis showed that time-pressured grammar tests that invite a
focus on meaning (content creation) or form (linguistic accuracy) loaded onto one
component (i.e., an oral production [OP] task, elicited imitation [EI], and a timed
grammaticality judgment test [GJT]), which Ellis termed implicit knowledge. Untimed
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grammar tests that focus learners’ attention on form (i.e., ungrammatical items on an
untimed GJT and a metalinguistic knowledge test [MKT]) loaded onto a different
component, which Ellis labeled explicit knowledge (see Ellis & Loewen, 2007, for a
replication of these findings with confirmatory factor analysis). Subsequent studies using
factor analysis on similar batteries of language tests also uncovered at least two dimen-
sions of linguistic knowledge, termed explicit and implicit, which was largely consistent
with Ellis’s initial results (e.g., Bowles, 2011; Kim & Nam, 2017; Spada et al., 2015;
Zhang, 2015; but see Gutiérrez, 2013).

The advent of reaction-time measures, however, invited new scrutiny of the construct
validity of traditional measures of implicit knowledge such as the EI task and the timed
written GJT (compare Ellis, 2005; Suzuki & DeKeyser, 2015, 2017; Vafaee et al., 2017).
The theoretical debate surrounding this issue was the distinction between implicit and
automatized explicit knowledge, described previously, and whether, aside from differ-
ences in neural representation, the two types of knowledge can be differentiated behav-
iorally, in L2 learners’ language use. Departing from Ellis (2005), researchers have
hypothesized that timed, accuracy-based tests (e.g., EI) may be more suited to tap into
learners’ automatized explicit knowledge because timed tests do not preclude learners
from accessing their explicit knowledge, but merely make it more difficult for learners to
do so (DeKeyser, 2003; Suzuki & DeKeyser, 2015). Reaction-time tests such as self-
paced reading (SPR), however, require participants to process language in real time, as it
unfolds, and could therefore hypothetically be more appropriate to capture learners’
implicit knowledge (Godfroid, 2020; Suzuki & DeKeyser, 2015; Vafaee et al., 2017).
In the implicit-statistical learning literature, Christiansen (2019) similarly argued for the
use of processing-based measures (e.g., reaction time tasks) over reflection-based tests
(e.g., judgment tasks) to measure the effects of implicit-statistical learning. He did not,
however, attribute differences in construct validity to them (i.e., both types of tests are
assumed to measure largely implicit knowledge, but at different levels of sensitivity or
completeness).

Using confirmatory factor analysis, Suzuki (2017) and Vafaee et al. (2017) confirmed
that timed, accuracy-based tests and reaction-time tests represent different latent vari-
ables, which they interpreted as automatized explicit knowledge and implicit knowledge,
respectively. The researchers did not include measures of (nonautomatized) explicit
knowledge, however, which leaves the results open to alternative explanations. Specif-
ically, for automatized explicit knowledge to be a practically meaningful construct, it
needs to be distinguishable from implicit knowledge and (nonautomatized) explicit
knowledge simultaneously, within the same statistical analysis. Doing so requires a more
comprehensive approach to measurement, with tests of linguistic knowledge being
sampled from across the whole explicit/automatized explicit/implicit knowledge spec-
trum. Hence, current evidence for the construct validity of reaction-time tasks as measures
of implicit knowledge is still preliminary.

More generally, all the previous validation studies have included only a subset of
commonly used explicit/implicit knowledge tests in SLA, which limits the generalizabil-
ity of findings. Differences in test batteries may explain the conflicting findings for tests
such as the timed written GJT (see Godfroid et al., 2015). This is because the results of
confirmatory factor analysis are based on variance-covariance patterns for the tests
included in the analysis and hence different test combinations may give rise to different
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statistical solutions. To obtain a more comprehensive picture, Godfroid et al. (2018)
synthesized 12 years of test validation research since Ellis (2005) by including all
previously used measures in one study—the word monitoring test (WMT), SPR, EI,
OP, timed/untimed GJTs in the aural and written modes, and the MKT. The results
suggested that both a three-factor model (EI and timed written GJT as “automatized
explicit knowledge”; Suzuki & DeKeyser, 2015, 2017) and a two-factor model (EI and
timed written GJT as “implicit knowledge”; Ellis, 2005) provided a good fit for the data
and that the two models did not differ significantly. These results support the viability of a
three-way distinction between explicit, automatized explicit, and implicit knowledge. As
with all factor analytic research, however, the nature of the latent constructs was left to the
researchers’ interpretation. Other sources of validity evidence, such as different patterns
of aptitude-knowledge associations, examined here, could support the proposed inter-
pretation and bolster the case for the distinction between implicit and automatized explicit
knowledge.

CONTRIBUTIONS OF IMPLICIT-STATISTICAL LEARNING APTITUDE TO IMPLICIT
KNOWLEDGE

Three studies to date have examined aptitude-knowledge associations in advanced L2
speakers, with a focus on measurement validity. We will review each study in detail
because of their relevance to the current research. Granena (2013) compared Spanish L1
and Chinese-Spanish bilinguals’ performance on measures of explicit and implicit
knowledge, using both agreement and nonagreement structures in Spanish. The partic-
ipants had acquired Spanish either from birth, early in life, or postpuberty. Granena
wanted to know whether the participants’ starting age impacted the cognitive processes
they drew on for language learning. She found that early and late bilinguals’ performance
on agreement structures correlated with their implicit-statistical learning aptitude, as
measured by a serial reaction time task (early learners) or LLAMA D (late learners).
These results suggested that bilinguals who do not acquire the language from birth may
still draw on implicit-statistical learning mechanisms, albeit to a lesser extent than native
speakers do; hence, the bilinguals’ greater sensitivity to individual differences in implicit-
statistical learning aptitude compared to native speakers.

Suzuki and DeKeyser (2015) compared the construct validity of EI and the WMT as
measures of implicit knowledge. L1 Chinese-L2 Japanese participants performed an EI
test with a built-in monitoring task. They were asked to listen to and repeat sentences, as is
commonly done in an EI test, but in addition, they were asked to monitor the spoken
sentences for a given target word (i.e., built-in word monitoring). The researchers found
that performance on the two test components correlated with different criterion variables;
specifically, EI correlated with performance on a MKT (a measure of explicit knowledge),
whereas the WMT correlated with performance on the serial reaction time task (a measure
of implicit-statistical learning aptitude), albeit only in a subgroup of participants who had
lived in Japan for at least 2.5 years. Based on these results, the authors concluded that the
WMT is a measure of implicit linguistic knowledge, whereas the EI test (traditionally
considered a measure of implicit knowledge as well) is best considered a measure of
automatized explicit knowledge.
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In a follow-up study, Suzuki and DeKeyser (2017) examined the relationships among
implicit knowledge, automatized explicit knowledge, implicit-statistical learning apti-
tude, explicit learning aptitude, and short-term memory. Different from Granena (2013)
and Suzuki and DeKeyser (2015), the researchers found no significant association
between serial reaction time (a measure of implicit-statistical learning aptitude) and either
implicit or automatized explicit knowledge. Rather, they found that advanced Japanese
L2 students’ performance on LLAMA F (a measure of explicit learning aptitude)
predicted their automatized explicit knowledge. The authors also tested the explanatory
value of adding a knowledge interface (i.e., a directional path) between automatized
explicit and implicit knowledge in the structural equation model (SEM). This path was
indeed significant, meaning automatized explicit knowledge predicted implicit knowl-
edge, but the interface model as a whole was not significantly different from a noninter-
face model that did not include such a path. The researchers interpreted their results as
evidence that automatized explicit knowledge directly impacts the acquisition of implicit
knowledge (through the interface), and that explicit learning aptitude indirectly facilitated
the development of implicit knowledge. Thus, in their study no direct predictors of
implicit knowledge were found.

Taken together, Granena (2013) and Suzuki and DeKeyser (2015) found a positive
correlation between implicit knowledge test scores (i.e., sensitivity on a WMT) and
implicit-statistical learning aptitude, in line with the view that the WMT, a reaction-time
measure, may index implicit knowledge. In Suzuki and DeKeyser’s (2017) SEM,
however, the same implicit-statistical learning aptitude test had no association with the
implicit knowledge construct, which was composed of three reaction-time measures,
including a WMT (incidentally, none of the three reaction-time measures loaded onto the
implicit knowledge factor significantly, which may have signaled a problem with these
measures or with the assumption that they were measuring implicit knowledge). Criti-
cally, the three studies have only used a very limited set of implicit-statistical learning
aptitude measures (serial reaction time and, in Granena’s study, LLAMA D) that examine
implicit-statistical motor learning and phonetic coding ability, respectively. Given that the
implicit-statistical learning construct is modality specific (i.e., implicit-statistical learning
can occur in visual, aural, and motor modes), the limited range of implicit-statistical
learning aptitude tests in these studies limits the generalizability of the results to the tests
with which they were obtained. Another issue concerns the low reliability of aptitude and
knowledge measures obtained from reaction time data (Draheim et al., 2019; Rouder &
Haaf, 2019), which may obscure any aptitude—knowledge relationships. In recognition of
these gaps, we included a battery of four implicit-statistical learning aptitude tests (VSL,
ASL, ASRT, and TOL) in order to examine the predictive validity of implicit-statistical
learning aptitude for implicit, automatized explicit, and explicit L2 knowledge.

RESEARCH QUESTIONS

In this study, we triangulate performance on a battery of nine linguistic knowledge tests
with data from four measures of implicit-statistical learning aptitude with an aim to
validate a new and extended set of measures of implicit, automatized explicit, and explicit
knowledge. The following research questions guided the study:
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1. Convergent validity of implicit-statistical learning aptitude:
To what extent do different measures of implicit-statistical learning aptitude interrelate?

2. Predictive validity of implicit-statistical learning aptitude:
To what extent do measures of implicit-statistical learning aptitude predict three distinct
dimensions of linguistic knowledge, referred to as explicit knowledge, automatized explicit
knowledge, and implicit knowledge?

METHOD
PARTICIPANTS

Participants were 131 nonnative English speakers (Female = 69, Male = 51, Not
reported = 11) who were pursuing academic degrees at a large Midwestern university
in the United States. The final sample was obtained after excluding 26 participants who
completed only one out of the four aptitude tests. Nearly half of the participants were
native speakers of Chinese (n = 66). The remaining participants’ L1s included Korean,
Spanish, Arabic, Russian, Urdu, Malay, Turkish, and French, among others. The partic-
ipants’ average length of residence in an English-speaking country was 41 months
(SD = 27.21, range 2-200 months). The participants were highly proficient English
speakers with an average TOEFL score of 96.00 (SD = 8.80). Their mean age was
24 years (SD = 4.64) and their average age of arrival in the United States was 20 years
old (SD = 5.68). They received $50 as compensation for their time.

TARGET STRUCTURES

The target structures included six grammatical features: (1) third-person singular -s,
(2) mass/count nouns, (3) comparatives, (4) embedded questions, (5) be passive, and
(6) verb complement. We selected these three syntactic (4—6) and three morphological (1—
3) structures to measure a range of English grammar knowledge (see Table 1 for
examples). These structures emerge in different stages of L2 acquisition (e.g., Ellis,
2009) and thus were deemed appropriate to represent English morphosyntax.

TABLE 1. Six grammatical structures and examples of ungrammatical sentences for

each.

Morphological Syntactical

Third person -s Embedded questions

* The old woman enjoy reading many different famous  * He wanted to know why had he studied for the
novels. exam.

Mass/count nouns Be passive

* The boy had rices in his dinner bowl. * The flowers were pick last winter for the festival.

Comparatives (double marking) Verb Complement (ask, have, need, want)

* It is more harder to learn Japanese than to learn * Jim is told his parents want buying a new house.
Spanish.

Note: Critical region in boldface and underlined.
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TABLE 2.

Summary of measures.

Test constructs: two

Test constructs:

No. of items No. of items

knowledge factors three knowledge factors Test (total) (critical) Grammaticality Dependent variable
Implicit knowledge Implicit knowledge =~ Word monitoring 126 96 48 grammatical, 48 ungrammatical ~Grammatical sensitivity (ms):
RTungmmmatical - RTgrammalical
Self-paced reading 126 96 48 grammatical, 48 ungrammatical ~Grammatical sensitivity (ms):
RTungrammatical - RTgrammalica]
Automatized explicit  Timed aural GIT 40 24 12 grammatical, 12 ungrammatical ~ Accuracy: proportion
knowledge Timed written GIT 40 24 12 grammatical, 12 ungrammatical ~ Accuracy: proportion
Elicited imitation = 32 24 12 grammatical, 12 ungrammatical ~ Accuracy: correct usage in
obligatory contexts
Oral production 250-word  250-word Grammatical sentences only Accuracy: correct usage in
story story obligatory contexts
Explicit knowledge Explicit knowledge = Untimed written 40 24 12 grammatical, 12 ungrammatical ~ Accuracy: proportion
GIT
Untimed aural GJIT 40 24 12 grammatical, 12 ungrammatical ~ Accuracy: proportion
Metalinguistic 12 12 12 ungrammatical Accuracy: error correction and
knowledge test error explanation
Implicit-statistical learning aptitude Alternating serial 10 blocks of 10 blocks of 20 pattern, 20 random RT difference (correct responses
reaction time 40 trials 40 trials only): (RT of block 1 — RT of
block 10 pattern trials) — (RT of
block 1 — RT of block 10
random trials)
Auditory statistical 42 42 NA Accuracy: proportion
learning
Visual statistical 42 42 NA Accuracy: proportion
learning
Tower of London 28 28 four 3-move, eight 4-move, eight Overall solution time: (RT on the

5-move, eight 6-move trials

first trial — RT on the final trial)/
RT on the first trial

wy oK[uIN Kypvy puv pro4pon auny 19
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INSTRUMENTS

We administered nine linguistic tests of L2 grammar knowledge: WMT, SPR, OP, Timed
Aural Grammaticality Judgment Test (TAGJT), Timed Written Grammaticality Judg-
ment Test (TWGIT), EI, Untimed Aural Grammaticality Judgment Test (UAGIT),
Untimed Written Grammaticality Judgment Test (UWGIT), and MKT. Based on previ-
ous literature, it was hypothesized that these tests represented either the (1) implicit,
automatized explicit, and explicit knowledge constructs (i.e., an extension of the Suzuki
and DeKeyser [2017] model) or the (2) implicit and explicit knowledge constructs
(i.e., the Ellis [2005] model). We also administered four implicit-statistical learning
aptitude tests: VSL, ASL, ASRT, and TOL. Table 2 summarizes the characteristics of
the nine linguistic and four aptitude tests.

LINGUISTIC TESTS

Word Monitoring Task

The WMT is a dual processing task that combines listening comprehension and word-
monitoring task demands. Participants first saw a content word (e.g., reading), designated
as the target for word monitoring. They were instructed to press a button immediately as
they heard the word in a spoken sentence (e.g., The old woman enjoys reading many
different famous novels). Importantly, the monitor word was always preceded by one of
the six linguistic structures in either a grammatical (e.g., enjoys) or ungrammatical (e.g.,
enjoy) form. Exhibiting grammatical sensitivity—that is, slower reaction times on content
words when the prior word is ungrammatical than when it is grammatical—indicated
knowledge of the grammatical target structure.

Self-Paced Reading

In the SPR task, participants read a sentence word-by-word in a self-paced fashion. They
progressed to the next word in a sentence by pressing a button. As with the WMT,
participants read grammatical and ungrammatical sentences. Evidence for linguistic
knowledge was based on grammatical sensitivity—that is, slower reaction times to the
ungrammatical version than the matched, grammatical version of the same sentence. In
particular, we analyzed reaction times for the spillover region (i.e., the word or words
immediately following the critical region) for each sentence and created a difference score
for the ungrammatical and grammatical sentences.

Oral Production

The OP task was a speaking test where participants had to retell a picture-cued short story
that contained multiple tokens of the six target structures. After reading the story two
times without a time limit, participants had to retell the story in as much detail as possible
in two and a half minutes. The percentage of correct usage of each target structure in all
obligatory occasions of use (i.e., obligatory contexts) was used as a dependent variable.
Obligatory contexts were defined relative to the participants’ own production. Two coders
independently coded OP. The reliability of interrater coding (Pearson r) was .96.
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Elicited Imitation

Similar to the OP task, the EI was a speaking test where participants were asked to listen to
a sentence, judge the semantic plausibility of the sentence, and repeat the sentence in
correct English. No explicit instructions directed participants to correct the erroneous part
of the sentence. Following Erlam’s (2006) scoring system, correct usage in obligatory
context was used for analysis.

Grammaticality Judgment Tests

In the GJTs, participants either read or listened to a sentence in a timed or an untimed test
condition. The participants were instructed to determine the grammaticality of the
sentence. The time limit for each sentence in the timed written and the timed aural GIT
was set based on the length of the audio stimuli in the aural GIT. We computed the median
audio length of sentences with the same number of words and added 50%. This resulted in
atime limit of 4.12 seconds for a seven-word sentence and up to 5.7 seconds for a 14-word
sentence for the timed GJTs. Two sets of sentences were created and counterbalanced for
grammaticality and each set was rotated between the four tests, resulting in eight sets of
sentences in total. In each of the four GJTs (timed written, untimed written, timed aural,
untimed aural), one point was given per accurate judgment.

Metalinguistic Knowledge Test

The MKT required participants to read 12 sentences that contained a grammatical error.
Their task was to (1) identify the error, (2) correct the error, and (3) explain in as much
detail as possible why it was ungrammatical. We only scored the error correction and
explanation parts of the test; as such, a total of two points were given per question. The
maximum score was 24 and the total score was converted to a percentage. See Appendix
S2 in online Supplementary Materials for the scoring rubric.

IMPLICIT-STATISTICAL LEARNING APTITUDE TESTS

ASRT

The ASRT (Howard & Howard, 1997) was used to measure implicit-statistical learning
aptitude. In the ASRT, participants viewed four empty circles in the middle of a computer
screen that would fill as a black circle one at a time. The sequence of the filled circles
followed a pattern that alternated with random (nonpatterned) trials, creating a second-
order relationship (e.g., 2r4r3rlr, where r denotes a random position). Participants were
instructed to press the corresponding key on a keyboard that mirrored the position of the
filled circle as quickly and accurately as possible. To capture learning, we calculated the
change in reaction time to pattern trials from block 1 to block 10 and subtracted the change
in reaction time to random trials from block 1 to block 10. Positive values indicate a
greater improvement in sequence learning over the course of the task.
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Auditory Statistical Learning

The ASL (Siegelman et al., 2018, experiment 1b) served as another implicit-statistical
learning task. In the ASL test, participants heard 16 nonverbal, familiar sounds that were
randomly organized into eight triplets (sequences of three sounds). Four triplets had a
transitional probability of one (i.e., they were fixed) and four triplets had a transitional
probability of .33 (i.e., every sound was followed by one of three other sounds, with equal
likelihood). Each triplet was repeated 24 times during a continuous familiarization stream.
Participants were asked to listen to the input very carefully as they would be tested on it
after the training. The test consisted of 42 trials: 34 four-alternative forced-choice
questions measuring recognition of triplets and eight pattern completion trials measuring
recall. Performance on the test yielded an accuracy percentage score.

Visual Statistical Learning

The VSL (Siegelman et al., 2017b) was used to measure learners’ ability to learn visual
patterns implicitly. As the visual counterpart of the ASL, the VSL presented participants
with 16 complex visual shapes that were difficult to describe verbally and were randomly
organized into eight triplets (sequences of three shapes). The triplets had a transitional
probability of one. Each triplet was repeated 24 times during the familiarization phase. In
the testing phase, participants completed 42 trials: 34 four-alternative forced-choice items
measuring recognition of triplets and eight pattern completion trials measuring recall.
Performance on the test yielded an accuracy percentage score.

Tower of London

The TOL (Kaller et al., 201 1) was administered to measure learners’ implicit-statistical
learning ability during nonroutine planning tasks. Participants were presented with two
spatial configurations that consisted of three pegs with colored balls on them. These
configurations were labeled as “Start” or “Goal.” The participants’ task was to move the
colored balls on the pegs in the “Start” configuration to match the “Goal” configuration in
the given number of moves. There was a block of four 3-move trials, eight 4-move trials,
eight 5-move trials, and eight 6-move trials (Morgan-Short et al., 2014). We will present
the results for overall solution time in what follows, which is the sum of initial thinking
time and movement execution time. All three measures yielded similar results. To capture
learning, we calculated a proportional change score for each block of trials (i.e., 3-move,
4-move, 5-move, and 6-move separately) for each participant using the following
computation: (RT on the first trial — RT on the final trial)/RT on the first trial. Positive
values indicate a greater improvement in planning ability from the beginning to the end of
each block in the experiment.

PROCEDURE

Participants met with a trained research assistant for three separate sessions. As seen in
Table 3, the first session included the WMT, SPR, timed aural GJT, and untimed aural
GIJT; the second session started with OP followed by EI, the timed written GJT, untimed
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TABLE 3. The sequencing of linguistic and aptitude tests.

Session 1 Session 2 Session 3

Word monitoring Oral production Visual statistical learning
Self-paced reading Elicited imitation Auditory statistical learning
Timed aural GJT Timed written GJT Alternating serial reaction time
Untimed aural GJT Untimed written GJT Tower of London

Metalinguistic knowledge test

written GJT, and MKT; in the last session, participants completed all aptitude tests
starting with VSL, and ended with the MLAT 5 (which is not discussed in this article).
Sessions 1 and 2 started with the more implicit knowledge measures to minimize the
possibility of participants becoming aware of the target features in the implicit tasks.

DATA ANALYSIS

Descriptive Statistics and Correlations

Overall, 6% of the data were missing and they were missing completely at random
(Little’s MCAR test: y2 = 1642.159, df = 1744, p = .960). To explore the associations
among measures of implicit-statistical learning aptitude and between implicit-statistical
learning aptitude and linguistic knowledge, respectively, we calculated descriptive
statistics and Spearman correlations (abbreviated as rs in what follows) for all measures
of L2 morphosyntactic knowledge and cognitive aptitude. All such analyses were carried
out in R version 1.2.1335 (R Core Team, 2018).

Factor Analysis

To address research question 1, “to what extent do different measures of implicit-
statistical learning aptitude interrelate (convergent validity)?,” we conducted an EFA to
explore the association between the four implicit-statistical learning aptitude measures.
The EFA was performed with an oblique rotation (oblimin) that permits factors to
correlate with each other. The model was computed using weighted least squares to
account for the violation of multivariate normality assumption for the four tests (Mardia’s
skewness coefficient was 36.93 with a p-value of 0.012; Mardia’s kurtosis coefficient was
2.28 with a p-value of 0.023). Finally, we used a factor loading cutoff criterion of .40 to
interpret the factor loadings.

To address research question 2, “to what extent do measures of implicit-statistical
learning aptitude predict three distinct dimensions of linguistic knowledge (i.e., explicit
knowledge, automatized explicit knowledge, and implicit knowledge (predictive
validity)?,” we built confirmatory factor analysis (CFA) and SEM models using the
lavaan package in R. To examine the psychometric dimensions underlying the nine
linguistic tests, we constructed two CFA models, a two-factor and a three-factor model.
These models were specified based on theory and previous empirical findings from CFA
studies by Ellis (2005) and Suzuki and DeKeyser (2017). To evaluate the CFA models, we
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used a model test statistic (chi-square test), standardized residuals (<I1.96l) and three
model fit indices (Hu & Bentler, 1999): the comparative fit index (CFI => .96), the root
mean square error of approximation (root mean square error of association
[RMSEA] =< .06), and the standardized root mean square residual (standardized root
mean square [SRMR] =<.09). We then built a SEM. In combination with a measurement
model (CFA), SEM estimates the directional effects of independent variables (measures
of implicit-statistical learning aptitude) on the latent dependent variables (the knowledge
type constructs). Full-information maximum likelihood estimation was used to evaluate
different models and Robust Maximum Likelihood was adopted as an estimation method
for both the CFA and SEM analyses to account for the violation of multivariate normality
assumption.

RESULTS
DESCRIPTIVE STATISTICS

Table 4 shows the descriptive statistics for all linguistic and aptitude measures. Partici-
pants showed a wide range of abilities in their performance on the linguistic knowledge
measures. Reliabilities of the individual differences measures ranged from satisfactory to
high and were generally on a par with those reported in previous studies: ASRT intraclass
correlation coefficient (ICC) = .96 (this study) and ASRT ICC = .99 (Buffington &
Morgan-Short, 2018), VSL a.=.75 (this study) and VSL a = .88 (Siegelman et al., 2017b),
ASL a = .68 (this study) and ASL o = .73 (Siegelman et al., 2018, Experiment 1b), and
TOL ICC = .78 (this study) and TOL split-half reliability = .59 (Buffington & Morgan-
Short, 2018).

RESEARCH QUESTION 1: CONVERGENT VALIDITY OF IMPLICIT-STATISTICAL
LEARNING APTITUDE: TO WHAT EXTENT DO DIFFERENT MEASURES OF IMPLICIT-
STATISTICAL LEARNING APTITUDE INTERRELATE?

Correlational Analysis Among Aptitude Measures

To examine the unidimensionality of implicit-statistical learning aptitude and the inter-
relationships between different aptitude measures, we ran a correlation matrix between
the four implicit-statistical learning aptitude measures. Table 5 presents the Spearman
correlation matrix of ASRT, VSL, ASL, and TOL. We note a medium correlation between
the VSL and ASL tasks (rs = .492, p <.001). At the same time, correlations of the ASRT
and TOL with other tasks are low (—.146 < rs <.054). These results suggest that ASL and
VSL may tap into a common underlying ability, statistical learning, whereas performance
on other measures of implicit-statistical learning aptitude was essentially unrelated. In
sum, the correlation analysis provides initial evidence for the lack of convergent validity
of measures of implicit-statistical learning aptitude.

Exploratory Factor Analysis

As the second and final step in answering research question 1, we conducted an EFA with
the same four measures. The Kaiser—-Meyer—Olkin (KMO) measure suggested that, at the
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TABLE 4. Descriptive statistics of all measures of L2 morphosyntactic knowledge and
all cognitive measures.

n Mean SD Min Max  Skewness Kurtosis k Reliability

SPR (z, A 110  0.06 0.30 —-0.60 0.92 0.13 —0.21 96 a=.66
msec)

WMT (z, A 101 0.06 0.25 —0.67 0.67 —0.22 0.07 96 a=.62
msec)

OP (%) 115 081 0.15 0.38 1.00 —0.68 —0.15  250-word story a=.96°

EI (total 101 151 0.31 0.70  2.10 —0.11 —0.70 24 a=.73"
correct)"

TAGIT (%) 124 056 0.15 0.21 1.00 0.29 0.42 24 a=.67°

TWGIT (%) 113 0.60 0.14 0.13 092 —0.30 0.29 24 a=.51°

UAGIT (%) 124 045 0.22 0.00 1.00 0.41 —-0.21 24 a=.59°

UWGIT (%) 113 0.62 0.24 0.00 1.00 —0.47 —0.61 24 a=.65°

MKT (%) 120 0.64 0.17 0.21 1.00 —0.42 —0.28 12 a=.78

ASRT (A 109 —1.15 27.78 —115.13 105.64 —0.61 4.08 10 blocks of 40 ICC = .96°
msec) trials

VSL (total 112 24.02 6.30 9.00 39.00 0.40 —0.64 42 a=.75
correct)

ASL (total 108 20.75 5.36 9.00 33.00 0.24 —-0.59 42 a=.68"
correct)

TOL (A msec) 121  0.02 0.30 —-0.86 0.62 —0.36 —0.25 28 sets ICC=.78

Abbreviations: ASL, Auditory Statistical Learning; ASRT, Alternating Serial Reaction Time; EI, elicited
imitation; MKT, metalinguistic knowledge test; OP, oral production; SPR, self-paced reading; TAGJT, Timed
Aural Grammaticality Judgment Test; TWGIT, Timed Written Grammaticality Judgment Test; TOL, Tower of
London; UAGJT, Untimed Aural Grammaticality Judgment Test; UWGJT, Untimed Written Grammaticality
Judgment Test; VSL, Visual Statistical Learning; WMT, word monitoring test.

Notes: z, standardized score; A, difference score; msec, milliseconds.

“Four items with negative item-total correlation were excluded from reliability analysis and from the final
dataset.

"The reliability was computed separately for Random and Pattern trials and both were above .957.

“Pearson r intercoder correlation.

IThe reliability of EI is an average score of two versions.

“The reliability scores of the four GJTs are an average score of the structure-level reliability of eight versions.
Total correct on the EI was rescaled by a factor of .10, yielding a total score out of 2.4.

TABLE 5. Intercorrelation between four cognitive aptitude measures.

ASRT VSL ASL TOL
ASRT 1
VSL 0.054 1
ASL 0.038 0.4927%%% 1
TOL —0.146 0.040 —0.070 1

Abbreviations: ASL, Auditory Statistical Learning; ASRT, Alternating Serial Reaction Time; TOL, Tower of
London; VSL, Visual Statistical Learning.
Note: ***¥p < .001.
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TABLE 6. Summary of EFA.

Factor 1 Factor 2 Factor 3
ASRT 1.00 0.00 0.00
VSL 0.00 0.05 0.71
ASL 0.00 —0.08 0.63
TOL 0.00 0.98 0.00
Eigenvalues 1.46 1.08 0.92
% of variance 0.25 0.24 0.22
Cumulative variance 0.25 0.49 0.72

Abbreviations: ASL, Auditory Statistical Learning; ASRT, Alternating Serial Reaction Time; TOL, Tower of
London; VSL, Visual Statistical Learning.
Note: Bold values indicate loadings above 0.40.

group-level, the sampling for the analysis was close to the minimum KMO of .50
(KMO = .49). At an individual test level, most tests were near the .50 cutoff point
(ASRT =.52; VSL = .49; ASL = .49) with TOL reaching a bit short (.43). Despite the low
KMO, we decided to keep all measures in the analysis because they were theoretically
motivated. Bartlett’s test of sphericity, y%(6) = 31.367, p < .001, indicated that the
correlations between tests were sufficiently large for an EFA. Using an eigenvalue cutoff
of 1.0, there were three factors that explained a cumulative variance of 72% (the third
factor accounted for a substantial increase in the explained variance, that is, 22%, and was
thus included even though the eigenvalue was slightly short of 1.0). Table 6 details the
factor loadings post rotation using a factor criterion of .40. As can be seen in Table 6,
factor 1 represents motor sequence learning (ASRT), factor 2 represents procedural
memory (TOL), and the last factor represents statistical learning, with VSL and ASL
loading together.

RESEARCH QUESTION 2: PREDICTIVE VALIDITY OF IMPLICIT-STATISTICAL
LEARNING APTITUDE: TO WHAT EXTENT DO MEASURES OF IMPLICIT-STATISTICAL
LEARNING APTITUDE PREDICT EXPLICIT, AUTOMATIZED EXPLICIT, AND IMPLICIT
KNOWLEDGE?

Confirmatory Factor Analysis

To address the second research question, we first constructed measurement models as a
part of SEM to examine the number of dimensions in the nine linguistic tests. As seen in
Table 2, we specified two CFA models based on SLA theory: a two-factor model
distinguishing implicit versus explicit knowledge (Ellis, 2005) and a three-factor model
distinguishing implicit versus automatized explicit versus explicit knowledge
(an extension of Suzuki & DeKeyser, 2017). The models differed critically with regard
to whether the reaction-time tasks (WMT, SPR) and the timed, accuracy-based measures
(OP, EIL, TAGJT, TWGIJT) loaded onto the same factor, “implicit knowledge,” in the two-
factor solution, or different factors, “implicit knowledge” and “automatized explicit
knowledge,” in the three-factor solution (see Table 2).
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TABLE 7. Summary of fit indices for the measurement models (n = 131).

Va df CFI SRMR RMSEA [lower, upper] BIC
Criterion Nonsignificant >.96 <.09 Lower bound: <.06
Two-factor 0.56 27 1.00 0.07 0.00 [0.00, 0.06] 1659.36
Three-factor 0.67 26 1.00 0.07 0.00 [0.00, 0.06] 1661.19

Abbreviations: CFI, comparative fit index; RMSEA, root mean square error of approximation, SRMR,
standardized root mean square.

The summary of the fit indices for the measurement models in Table 7 suggests that
both models fit the data well, meeting general guidelines by Hu and Bentler (1999). At the
same time, the two-factor model demonstrates a better fit than the three-factor model with
a Bayesian information criterion value smaller than the three-factor model (ABIC ranging
between 2 and 6 denotes a positive difference in favor of the model with the lower BIC;
see Kass & Raftery, 1995).

Correlational Analysis of Aptitude Measures and Knowledge Measures

Before running the SEM, we first explored the correlations between implicit-statistical
learning aptitude and linguistic knowledge measures. Figure | contains Spearman
correlation coefficients (above the diagonal) of the 13 variables, scatterplots for variable
pairs (below the diagonal), and density plots for each variable (on the diagonal). The
results suggest that ASRT correlated significantly and positively with the WMT (rs=.335,
p=.002) and the TWGIT (rs=.229, p=.024). In contrast, VSL (rs = —.341, p=.001) and,
to a lesser extent, ASL (rs = —.184, p = .095) correlated negatively with the WMT. TOL
did not correlate significantly with any of the linguistic knowledge measures
(—.128 < rs £.069).

Structural Equation Model

As the final step in answering research question 2, we fitted the structural model to the
measurement model to examine aptitude-knowledge relationships. In light of the EFA
findings where VSL and ASL clustered into a single factor, we built a latent predictor
variable called statistical learning (SL), which combined the ASL and VSL. Conse-
quently, we retained three measures of implicit-statistical learning aptitude (SL, TOL, and
ASRT) and treated these as predictor variables of different knowledge constructs to
examine the aptitude-knowledge relationships. In the measurement model, we allowed
for the different knowledge constructs (i.e., explicit, automatized explicit, and implicit
knowledge) to correlate because they represent different subcomponents of language
proficiency and thus we assumed that they would be related. Figures 2 and 3 show the
results of the analyses.?

Table 8 details model fit indices for the two-factor and three-factor SEM models. Two
out of the four global fitindices, namely the chi-square test and CFI, fell short of the cutoff
points proposed by Hu and Bentler (1999); the SRMR was slightly above the .09
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FIGURE 1. Relationships among implicit-statistical aptitude measures and linguistic tests.

threshold. To diagnose any sources of model misspecification, we inspected the modifi-
cation indices and standardized residuals. In the two-factor SEM model, two modification
indices were larger than 3.84, signaling localized areas of potential ill fits. Both modifi-
cation indices concerned the WMT, which had a low factor loading onto implicit
knowledge. The modifications were not implemented, however, as they lacked theoretical
justifications (i.e., one recommended WMT as an explicit measure [MI = 4.89] and
another suggested WMT as a SL measure [MI = 4.65]). No standardized residual for any
of the indicators was greater than |1.96| (largest = 1.73). In the three-factor model,
12 modification indices were larger than 3.84. Based on this information, we modified
the model by adding a method effect (error covariance) between EI and OP to account for
the fact that EI and OP are both production tasks. Other modification indices lacked a
theoretical or methodological underpinning and, hence, were not pursued further. As
detailed in Table 8, adding the error covariance changed the global fit of the modified
three-factor model mostly positively (i.e., chi-square p value: 0.02 — 0.03; CFL
.843 — .863; lower bound RMSEA: 0.028 — 0.019) but also negatively (i.e., SRMR:
0.094 — 0.095). No standardized residual for any of the variables was greater than |1.96l;
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however, the standardized residual for the WMT-ASRT covariance was slightly above the
threshold (Std. residual = 1.97), indicating an area of local strain.

Taken together, the two-factor model exhibited a better local fit than the three-factor
model, which suggested that it represented our data best. Global fit indices were somewhat
low, possibly due to sample size limitations, but importantly, the underlying measurement
models (CFA) demonstrated a good fit (see Table 7). As such, we proceeded to interpret

the parameter estimates of the two-factor model.
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TABLE 8. Summary of fit indices for the SEM models (n = 131).

b df CFI SRMR RMSEA [lower, upper]
Criterion Nonsignificant >.96 <.09 Lower bound: <.06
Two-factor 0.01 60 811 .099 0.069 [0.036, 0.097]
Three-factor 0.02 56 .843 094 0.065 [0.028, 0.095]
Modified three-factor 0.03 55 .863 .095 0.061 [0.020, 0.092]

Abbreviations: CFI, comparative fit index; RMSEA, root mean square error of approximation; SRMR,
standardized root mean square.

TABLE 9. Two-factor SEM model parameter estimates.

Path Estimate SE 4 Standardized est.
ASRT —
Implicit 0.002 0.001 0.007 0.258
Explicit 0.000 0.001 0.656 0.039
SL —
Implicit —0.015 0.061 0.805 —0.040
Explicit 0.147 0.129 0.255 0.270
TOL —
Implicit —0.036 0.070 0.609 —0.064
Explicit 0.005 0.094 0.957 0.006

Abbreviations: ASRT, alternating serial reaction time; SL, statistical learning; TOL, Tower of London.

Table 9 and Figure 2 detail parameter estimates for the two-factor SEM model. As seen
in Table 9, the regression path from ASRT to implicit knowledge was significant, r = .258,
p = .007. None of the other aptitude measures were significantly predicting ability in
implicit or explicit knowledge in the model.

DISCUSSION
SUMMARY OF RESULTS

We aimed to contribute to the theorization of implicit-statistical learning aptitude as an
individual differences variable that may be of special importance for attaining an
advanced L2 proficiency (Linck et al., 2013). To measure implicit-statistical learning
aptitude more comprehensively, we included two new measures—ASL and VSL
(Siegelman et al., 2017b, 2018)—to the better-known measures of ASRT and TOL.
Overall, only ASL and VSL showed a medium-strong correlation (» = .49) and loaded
onto the same factor, whereas the remaining measures were not correlated (RQ1). This
underlines that implicit-statistical learning aptitude is a multidimensional, multifaceted
construct and that input modality is an important facet of the construct. A multitest
approach, measuring aptitude in different input streams and task conditions, is best suited
to ensure its predictive validity for language learning.

Given the theoretical importance of implicit-statistical learning aptitude, we also
examined its predictive validity for implicit language knowledge, using a battery of nine
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L2 grammar tests. The final SEM consisted of three aptitude measures regressed on a two-
factor measurement model—explicit and implicit knowledge. We found that only ASRT
predicted implicit knowledge, which was a latent variable composed of timed, accuracy-
based measures and reaction-time tasks. These results inform ongoing debates about the
nature of implicit knowledge in SLA (Ellis, 2005; Suzuki & DeKeyser, 2017) and do not
lend support to the view that reaction time measures are inherently superior for measuring
L2 speakers’ implicit knowledge (Suzuki & DeKeyser, 2015; Vafaee et al., 2017).

MULTIDIMENSIONAL NATURE OF IMPLICIT-STATISTICAL LEARNING APTITUDE
(ROI)

Research on implicit-statistical learning aptitude can be traced back to different research
traditions within cognitive and developmental psychology (Christiansen, 2019). The
domain-general mechanisms that enable implicit-statistical learning have been linked
to a range of different linguistic behaviors—from speech segmentation and vocabulary
acquisition, to syntactic processing and literacy development (see Armstrong et al., 2017;
Monaghan & Rebuschat, 2019, for recent theoretical discussions). Given the explanatory
power of implicit-statistical learning aptitude in language research, we first examined the
convergent validity of different measures used to assess learners’ aptitude.

The results of our EFA did not support the unidimensionality of the different implicit-
statistical learning aptitude measures (see Table 6). At a descriptive level, bivariate
correlations between the different aptitude measures were close to 0, with the exception
of ASL and VSL, which showed a .49 correlation. Correspondingly, in the EFA, the three-
factor solution indicated that the battery of aptitude tests does not represent a unitary
construct of implicit-statistical learning aptitude. Three factors were extracted: Factor
1 [ASRT] = .25; Factor 2 [TOL] = .24; Factor 3 [ASL and VSL] = .22, which together
accounted for 72% of the total variance.

The medium strength correlation between the measures of statistical learning replicated
Siegelman et al. (2018, experiment 2), who reported a .55 correlation between the ASL
and VSL. The ASL and VSL are similar in terms of the nature of the embedded statistical
regularity, length of training, and the way statistical learning is assessed (Siegelman et al.,
2017a, 2018). Given that the tests are similar other than with regard to their input
modality, these measures jointly offer a relatively pure test of the role of input modality
in statistical learning. The results of the EFA showed that a common underlying ability,
statistical learning, accounted for approximately 22% of the variance in participants’ ASL
and VSL performance, while differences in input modality accounted for some portion of
the remaining 78% of variance. Input modality is therefore likely to be an important
source of individual differences in statistical learning (Frost et al., 2015). These modality-
based differences in statistical learning aptitude are relevant to adult L2 learners insofar as
learners experience a mix of written and spoken input that may shift according to their
instructed or naturalistic learning environments. For instance, Kim and Godfroid (2019,
experiment 2) reported an advantage for visual over auditory input in the L2 acquisition of
implicit knowledge of syntax by college-educated adults. While results of correlation
research are best interpreted cumulatively, across different research studies, the medium-
strong ASL-VSL correlation in the present study is consistent with the view (Arciuli,
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2017; Frost et al., 2015; Siegelman et al., 2017b) that statistical learning is a domain-
general process that is not uniform across modalities.

Seen in this light, it is interesting that the other assessment of statistical learning in the
visual modality, the ASRT, showed no correlation with the VSL (see Table 5). Both tests
use nonverbal material to assess an individual’s ability to extract transitional probabilities
from visual input. The ASRT has an added motor component, which may have contrib-
uted to the lack of convergence between the two measures. Additionally, VSL and ASRT
may not have correlated because of when learning was assessed. Learning on the ASRT
was tracked online, during the task, as a reaction time improvement (speed up) over
training. In the ASL and VSL, however, assessment of learning took place offline, in a
separate multiple-choice test that came after the training phase. It has been argued that the
conscious reflection involved in offline tasks may confound the largely implicit learning
that characterizes statistical learning (Christiansen, 2019). Online measures of implicit-
statistical learning such as the ASRT, however, may be able to capture learning with a
higher resolution (Siegelman et al., 2017b) and a better signal-to-noise ratio. Although
more research is needed to evaluate these claims, our results support the superiority of
online measurement. Using structural equation modeling, we confirmed the predictive
validity of the ASRT for predicting implicit grammar knowledge in a sample of advanced
L2 speakers (see the next section on RQ2 for further discussion). Conversely, the VSL or
ASL did not have predictive validity for L2 implicit grammar knowledge in this study,
potentially because the two measures of statistical learning allowed for participants’
conscious involvement on the posttests. To investigate this result in more depth,
researchers could reexamine the predictive validity of the ASL and VSL for specific
grammar structures in our test battery such as embedded questions or third-person -s,
which contain a clear, patterned regularity that lends itself well to statistical learning.

Lastly, the ASL, VSL, and ASRT were unrelated to the TOL. The TOL task finds its
origin in research on planning and executive function (Shallice, 1982) and was used in a
modified form, as a measure of cognitive skill learning, in Ouellet et al. (2004). Because
TOL measures the effects of practice, it can be regarded as a measure of skill acquisition
(Ouellet et al., 2004) and is assumed to reflect procedural learning (Ouellet et al., 2004)
and provide a measure of individual differences in procedural memory ability (e.g.,
Antoniou et al., 2016; Buffington & Morgan-Short, 2018; Buffington et al., 2021;
Ettlinger etal., 2014; Morgan-Short et al., 2014). The contributions of procedural memory
to implicit-statistical learning are complex (Batterink et al., 2019; Williams, 2020).
Batterink et al. (2019) reported that “a common theme that emerges across implicit
learning and statistical learning paradigms is that there is frequently interaction or
competition between the declarative and nondeclarative [e.g., procedural] memory
systems of the brain.... Even in paradigms that have been specifically designed to isolate
‘implicit learning’ per se, healthy learners completing these tasks may show behavioral
evidence of having acquired both declarative and nondeclarative memory” (p. 485, our
addition in brackets). This interaction between declarative and nondeclarative memory in
implicit learning tasks could explain the lack of convergent validity between TOL and the
other measures of implicit-statistical learning aptitude; that is, measures of implicit-
statistical learning may draw on multiple memory systems including, but not limited
to, procedural memory. Our results are consistent with Buffington and Morgan-Short
(2018) and Buffington et al. (2021), who also reported a lack of correlation between the
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ASRT and TOL in two samples of university-level research participants (r = —.03, n =27
and r = .03, n = 99).

The TOL does not involve patterned stimuli like the other three measures in this study,
but focuses instead on an individual’s improvement (accuracy gains or speed up) in
solving spatial problems as a result of practice. The lack of predictive validity for implicit
knowledge in advanced L2 speakers creates a need for further research into the learning
processes and memory systems engaged by the TOL. TOL is indeed measuring practice,
but our results, in addition to those of Buffington and colleagues (2021), do not support
the claim that such practice effects reflect an individual’s procedural memory learning
ability. Further research into the construct validity of the TOL will be necessary. To
facilitate future validation efforts, it would be helpful to standardize the use of the TOL
task in L2 research. Multiple task versions, with and without repeating trials, as well as
with accuracy scores versus with reaction times, are currently used in parallel in SLA,
which renders comparisons of results across studies difficult (compare Antoniou et al.,
2016; Buffington & Morgan-Short, 2018; Ettlinger et al., 2014, who used a task version
with repeating trials, with Morgan-Short et al., 2014; Pili-Moss et al., 2019; Suzuki, 2017,
who used a non-repeating version of the task). To this point, Kaller and colleagues (2016)
published the TOL-F, an accuracy-based version of the TOL with improved psychometric
properties that is still new in L2 research but could be of great value to achieve greater
standardization in the field.

On balance, our results suggest that the findings for implicit-statistical learning aptitude
do not generalize beyond the measure with which they were obtained. Future researchers
will therefore need to continue treating different tests of implicit-statistical learning
aptitude as noninterchangeable. For maximum generalizability, it will be important to
continue using a multitest approach as exemplified in the present study. Including
multiple tests of implicit-statistical learning aptitude will ensure proper representation
of the substantive domain and may help researchers steer clear of confirmation bias. Over
time, it will also enable researchers to refine their understanding of the different dimen-
sions of implicit-statistical learning aptitude (Siegelman et al., 2017a) and come to a more
nuanced understanding of these dimensions’ roles, or nonroles, in different L2 learning
environments, for learners of different ages and education levels, and with different target
structures. Our call for a multitest approach echoes common practice in explicit learning
aptitude research, where researchers routinely administer a battery of different tests to
language learners to measure their aptitudes (see Kalra et al., 2019; Li, 2015, 2016).

ONLY TIMED, ACCURACY-BASED TESTS SUPPORTED AS MEASURES OF IMPLICIT
KNOWLEDGE (RQ2)

This study was conducted against the background of an ongoing debate about how best to
measure L2 learners’ implicit knowledge. Measures of implicit-statistical learning apti-
tude can inform the construct validity of different tests—timed, accuracy-based tests and
reaction time tasks—by revealing associations of aptitude with these hypothetical mea-
sures of implicit knowledge (DeKeyser, 2012; Granena, 2013). The results of this study
support the predictive validity of implicit-statistical learning aptitude (ASRT) for perfor-
mance on timed language tests, affirming the validity of timed, accuracy-based tests as
measures of implicit knowledge (Ellis, 2005). Similar support for the validity of reaction-
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time—based tests was lacking (cf. Suzuki & DeKeyser, 2017), which emphasized that our
understanding of reaction-time measures of linguistic knowledge is still at an early stage.

We find these results to be intriguing. The two reaction-time tasks in the study, WMT
and SPR, rely on the same mechanism of grammatical sensitivity (i.e., slower responses to
ungrammatical than grammatical sentences) to capture an individual’s linguistic knowl-
edge. It has been assumed, often without much challenge, that grammatical sensitivity on
reaction-time tests operates outside the participants’ awareness, and hence may represent
the participants’ linguistic competence or implicit knowledge (for a critical discussion of
this assumption, see Godfroid, 2020; Marsden et al., 2018). But in spite of the underlying
similarity between the two tasks, performance on the SPR and the WMT correlated
weakly, rs=.178, p=.098 (see Figure 1), and the two tasks loaded poorly onto the implicit
knowledge factor in the CFA/SEM analysis (SPR, Std. Est. = 0.225; WMT, Std.
Est. = 0.054). This indicates that current models of L2 linguistic knowledge do not
account well for participants’ performance on reaction-time tasks.

The construct validity of reaction time measures of linguistic knowledge cannot be
separated from the instrument reliability. Compared to the accuracy-based tasks in the
study, learners’ performance on the WMT and SPR (the two reaction time tasks) was
somewhat less reliable (see Table 4 for a comprehensive review on the validity and
reliability of the nine linguistic measures). This has been a fairly consistent observation
for reaction time measures, and in particular reaction time difference measures used in
individual differences research (e.g., Draheim et al., 2019; Hedge et al., 2018; Rouder &
Haaf, 2019), such as the grammatical sensitivity scores calculated for SPR and WMT in
this study. Draheim et al. (2019) pointed out that researchers who work with reaction time
difference measures often see one task “dominate” a factor, with other measures loading
poorly onto the same factor. This is exactly what happened in the three-factor SEM model,
where the implicit knowledge factor accounted perfectly for participants’ SPR perfor-
mance, but did not explain much variance in WMT scores. The three-factor model was
abandoned for a simpler, two-factor SEM model, but that model did not account well for
either reaction-time measure (see Figure 2 and Appendix S3 in online Supplementary
Materials). These results suggest that reaction-time tests of linguistic knowledge are not a
homogeneous whole (either inherently or because of lack of internal consistency), in spite
of their shared methodological features. Therefore, given the current state of affairs,
claims about their construct validity ought to be refined to the level of individual tests, for
instance WMT or SPR separately, rather than reaction time measures as a whole.

Toillustrate, we performed a post-hoc correlation analysis of the ASRT with WMT and
SPR separately. We found that the ASRT correlated significantly and positively with the
WMT (Spearman rank, rs = .335, p = .002), mirroring the global result for implicit
knowledge (i.e., the latent variable, which was also predicted by the ASRT). SPR did not
correlate with the ASRT (rs = —.027, p = .804) or with other measures of implicit-
statistical learning aptitude. These results suggest that at the individual-test level, the
WMT has some characteristics of a measure of implicit knowledge, consistent with earlier
findings from Granena (2013) and Suzuki and DeKeyser (2015). No such evidence for
SPR was obtained in this study.

Last but not least, our results revealed a significant association between implicit-
statistical learning aptitude (the ASRT) and a latent factor that included four timed,
accuracy-based tests (TWGIJT, TAGJT, EI, OP). This supported the validity of these
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measures as implicit knowledge tests (Ellis, 2005). Successful performance on the timed,
accuracy-based measures requires fast and accurate processing of targeted grammatical
knowledge. The ASRT, however, is an entirely nonlinguistic (nonverbal) task that
requires fast and accurate motor responses from participants. To obtain a high aptitude
score on the ASRT, participants need to speed up over time as they induce the repeating
patterns in the motor sequence. One possible account for the ASRT-implicit knowledge
relationship, therefore, is that both measures rely on participants’ procedural memory
(also see Buffington et al., 2021). On this account, the ASRT derives its validity as a
predictor of implicit knowledge because it taps into the same neural substrate as implicit
knowledge of language does, namely procedural memory. Similarly to procedural
memory representations, implicit knowledge takes time to develop. This may explain
why in previous studies, as in the present one, the SRT and ASRT predicted performance
in proficient or near-native L2 learners (Granena, 2013; Linck et al., 2013; Suzuki &
DeKeyser, 2015; but see Suzuki & DeKeyser, 2017; Tagarelli et al., 2016) or predicted
collocational knowledge in L1 speakers and not L2 speakers (Yi, 2018). For researchers
who may not have the resources to include multiple measures of implicit-statistical
learning, the SRT or ASRT may thus be the best, single-test option to gain insight into
the nature of learner processes or linguistic outcomes (also see Kaufman et al., 2010, who
referred to the SRT as “the best measure of implicit learning currently available,” p. 325).

CONCLUSION

We examined the contributions of implicit-statistical learning aptitude to implicit L2
grammar knowledge. Our results are a part of an ongoing, interdisciplinary research
effort, designed to uncover the role of domain-general mechanisms in first and second
language acquisition. Implicit-statistical learning aptitude was found to differ along
multiple dimensions, suggesting a need for caution when generalizing results from a
specific test (e.g., ASRT) to the larger theoretical constructs of implicit learning, statistical
learning, and procedural memory because results may be specific to the test with which
they were obtained, and the theoretical constructs may not be unitary in nature.

We also adduced support for the validity of timed, accuracy-based knowledge tests
(i.e., OP, EI, timed auditory/written GJTs) as measures of implicit knowledge, supporting
their use in the language classroom, language assessment, and lab-based language
research to assess implicit grammar knowledge. Reaction time measures (i.e., SPR, word
monitoring) currently do not enjoy the same level of validity evidence, in spite of their
widespread use in lab-based research.

Despite its contributions, this study had some limitations that must be considered when
interpreting the results. First, our participants were highly heterogeneous in their L1s,
language learning contexts, and length of residence in an English-speaking country.
Nearly half of our participants were Chinese, who may have had a jagged profile of
explicit and implicit knowledge. Differences in L1 background could invite possible
transfer effects (both positive and negative) across the tasks and structures. This study
would also have benefited from a larger sample size, both for the EFA and the SEM.
Lastly, it will be crucial to establish a good test-retest reliability for the different measures
of implicit-statistical learning aptitude in future research (see Kalra et al., 2019;
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Siegelman & Frost, 2015) to show that these aptitude measures can serve as stable
individual differences measures that preserve rank order between individuals over time.

Nonetheless, the results of this study help reconcile different theoretical positions
regarding the measurement of L2 implicit knowledge by affirming the validity of timed,
accuracy-based tests. They also point to the validity and reliability of reaction-time
measures as an important area for future research. We would very much welcome other
researchers to advance this research agenda and hope that the test battery developed for
this project will help contribute to this goal.

SUPPLEMENTARY MATERIALS

To view supplementary material for this article, please visit http://dx.doi.org/10.1017/
S0272263121000085.

NOTES

'We have chosen to adopt the term “implicit-statistical learning” based on Conway and Christiansen
(2006), Perruchet and Pacton (2006), Reber (2015), Christiansen (2019), and Rebuschat and Monaghan (2019),
in which these authors make arguments for combining the two approaches of implicit learning and statistical
learning into one phenomenon due to their similar focus, ancestry, and use of artificial languages.

2Although knowledge represented in procedural memory is implicit (inaccessible to awareness), both
declarative and procedural memory underlie implicit knowledge, suggesting procedural memory and implicit
knowledge are related but not isomorphic (Batterink et al., 2019; Ullman, 2020; Williams, 2020).

The full covariance matrix with error covariances for each figure is available from the authors upon
request.
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