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Measures

The first section of this chapter is devoted to a review of basic definitions of meas-
ure theory. Among other topics, we recall basic properties of positivity preserving
operators, which provide tools useful in constructive quantum field theory.

The rest of this chapter is devoted to measures on infinite-dimensional Hilbert
spaces. It is well known that there are no Borel translation invariant measures
on infinite-dimensional vector spaces. However, one can define useful measures
on such spaces which are not translation invariant. In particular, the notion
of a Gaussian measure has a natural generalization to the infinite-dimensional
case.

Measures on an infinite-dimensional Hilbert space X is quite a subtle topic. A
naive approach to this subject leads to the notion of a weak distribution, which
is a family of measures on finite-dimensional subspaces satisfying a natural com-
patibility condition. It is natural to ask whether a weak distribution is generated
by a measure on X . In general, the answer is negative. In order to obtain such a
measure, one has to consider a larger measure space containing X . Many choices
of such a larger space are possible. A class of such choices that we describe
in detail are Hilbert spaces BX for a self-adjoint operator B satisfying certain
conditions.

Measures on Hilbert spaces play an important role in probability theory and
quantum field theory. One of them is the Wiener measure, used to describe
Brownian motion. There are also natural representations of the Fock space as
the L2 space with respect to a Gaussian measure: the so-called real-wave and
complex-wave CCR representations, which we will consider in Chap. 9.

Note that for most practical purposes many subtleties of measures in infinite
dimensions can be ignored. In applications, an important role is played by such
concepts as Lp spaces, the integral, the positivity a.e., etc. It is important that
there exists an underlying measure space, so that we can use tools of measure
theory. However, which measure space we actually take is irrelevant. Therefore,
the choice of the operator B mentioned above is usually not important for appli-
cations.

5.1 General measure theory

In this section we recall basic concepts and facts of measure and integration
theory.
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112 Measures

5.1.1 σ-algebras

Let Q be a set. Let 2Q denote the family of its subsets. Let us introduce some
useful kinds of subfamilies of 2Q .

Definition 5.1 Let R ⊂ 2Q .

(1) We say that R is a ring if A,B ∈ R ⇒ A\B, A ∪B ∈ R.

(2) R is a σ-ring if it is a ring and A1 , A2 , ... ∈ R ⇒
∞⋃

n=1
An ∈ R.

Definition 5.2 Let S ⊂ 2Q .

(1) S is an algebra if it is a ring and Q ∈ S.
(2) S is a σ-algebra if it is a σ-ring and an algebra.

Definition 5.3 If T ⊂ 2Q , then there exists the smallest ring, σ-ring, algebra
and σ-algebra containing T. It is called the ring, σ-ring, algebra, resp. σ-algebra
generated by T.

Definition 5.4 If (Qi,Si), i = 1, 2, are spaces equipped with σ-algebras, we say
that F : Q1 → Q2 is measurable if for any A ∈ S2 , F−1(A) ∈ S1 .

5.1.2 Measures

Let (Q,S) be a space equipped with a σ-algebra.

Definition 5.5 A finite complex measure is a function

S � A �→ μ(A) ∈ C

such that μ(∅) = 0 and for any A1 , A2 , ... ∈ S, Ai ∩Aj = ∅, i �= j,
∞⋃

j=1

Aj = A ⇒ μ(A) =
∞∑

j=1

μ(Aj ), (5.1)

where the above sum is absolutely convergent. A finite real, resp. finite positive
measure on (Q,S) has the same definition, except that we replace C with R,
resp. [0,∞[. In the case of a positive measure we usually drop the word positive.
(In this case the requirement of the absolute convergence of the series in (5.1) is
automatically satisfied, and hence can be dropped from the definition).

We say that a positive finite measure μ is a probability measure if μ(Q) = 1.

In the positive case Def. 5.5 has a well-known generalization that allows the
measure to take infinite values.

Definition 5.6 A (positive) measure, is a function

S � A �→ μ(A) ∈ [0,∞]
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5.1 General measure theory 113

such that μ(∅) = 0 and for any A1 , A2 , ... ∈ S, Ai ∩Aj = ∅, i �= j,

∞⋃
j=1

Aj = A ⇒ μ(A) =
∞∑

j=1

μ(Aj ). (5.2)

Such a triple (Q,S, μ) is often called a measure space. If in addition μ is a
probability measure, (Q,S, μ) is called a probability space.

A measure space (Q,S, μ) is complete if B ⊂ A with A ∈ S and μ(A) = 0
implies B ∈ S. If (Q,S, μ) is a measure space, one sets

Scpl :=
{
B ∈ 2Q : ∃A1 , A2 ∈ S with A1 ⊂ B ⊂ A2 , μ(A2\A1) = 0

}
,

μcpl(B) := μ(A1).

Then (Q,Scpl, μcpl) is a complete measure space called the completion of
(Q,S, μ). It admits more measurable sets and functions and therefore is more
convenient for the theory of integration.

5.1.3 Pre-measures

Generalizing Def. 5.6 to the real or complex case poses problems because the
series in (5.1) could be divergent. In this case, one of the possible solutions is to
use the concept of a pre-measure, which is defined only on a ring, takes finite
values and is conditionally σ-additive.

Let (Q,R) be a space equipped with a ring.

Definition 5.7 A complex pre-measure on (Q,R) is a function

R � A �→ ν(A) ∈ C

such that ν(∅) = 0 and for any A1 , A2 , ... ∈ S, Ai ∩Aj = ∅, i �= j,

∞⋃
j=1

Aj = A ∈ R ⇒ μ(A) =
∞∑

j=1

μ(Aj ). (5.3)

where the above sum is absolutely convergent. A real, resp. positive pre-measure
on (Q,R) has the same definition, except that we replace C with R, resp. [0,∞[.

The following well-known theorem allows us to extend in a canonical way a
positive pre-measure to a positive measure.

Theorem 5.8 Suppose that (Q,R) is a space with a ring and ν : R → [0,∞[ is
a positive pre-measure. Let S be a σ-algebra containing R. Then

μ(A) := sup
{
ν(B) : B ∈ R, B ⊂ A

}
, A ∈ S, (5.4)

is a measure on S extending ν. If S coincides with the σ-algebra generated by
R, then μ is the unique measure on S extending ν.
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5.1.4 Borel measures and pre-measures

Let Q be a topological space. The following two families of subsets of Q play a
distinguished role in measure theory:

Definition 5.9 (1) The σ-algebra generated by the family of open sets of Q will
be called the Borel σ-algebra of Q and denoted B(Q).

(2) The ring that consists of pre-compact Borel sets in Q will be denoted K(Q).
(We say that a set is pre-compact if its closure is compact).

Definition 5.10 A complex, real, resp. positive Borel pre-measure on Q is a
complex, real resp. positive pre-measure on (Q,K(Q)). Meas(Q) will denote the
space of complex Borel pre-measures.

Definition 5.11 μ is a positive Borel measure on Q if it is a measure on
(Q,B(Q)) that is finite on K(Q) and

μ(A) = sup
{
μ(B) : B ∈ K(Q), B ⊂ A

}
, A ∈ B(Q). (5.5)

Meas+(Q) will denote the space of positive Borel measures on Q.

Note that every positive Borel pre-measure possesses a unique extension to a
Borel measure. Conversely, every positive Borel measure restricted to K(Q) is a
positive Borel pre-measure.

Definition 5.12 Let μ be a complex Borel pre-measure on Q. The total variation
of μ is the positive Borel measure |μ| defined for A ∈ B(Q) by

|μ|(A) := sup
∞∑

i=1

|μ(Ai)|,

where the supremum is taken over all families A1 , A2 , · · · ∈ K(Q) such that Ai ∩
Aj = ∅, i �= j and Ai ⊂ A. Meas1(Q) will denote the space of finite complex Borel
pre-measures on Q equipped with the norm |μ|(Q), which makes it into a Banach
space.

5.1.5 Integral

Let (Q,S) be a space with a σ-algebra.

Definition 5.13 Let M+(Q,S), resp. M(Q,S) denote the set of S-measurable
functions with values in [0,∞[, resp. C.

Let (Q,S, μ) be a measure space.
We will often abbreviate (Q,S) to Q and (Q,S, μ) to (Q,μ).

Definition 5.14 Let N (Q,μ), denote the subset ofM(Q) consisting of functions
vanishing outside of a set of measure zero. We set M+(Q,μ) := M+(Q)/N (Q,μ)
and M(Q,μ) := M(Q)/N (Q,μ).
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Definition 5.15 For f ∈M+(Q), in a standard way we define its integral,
which is an element of [0,∞] and is denoted

ˆ
fdμ. (5.6)

Clearly, (5.6) does not change if we add to f a function vanishing outside a set
of measure zero, hence it makes sense to write

´
fdμ also for f ∈M+(Q,μ).

5.1.6 Lp spaces

Definition 5.16 For f ∈M+(Q) we define

ess sup f := inf
{

sup f
∣∣
Q\N

: N ∈ S, μ(N) = 0
}

. (5.7)

Clearly, (5.7) does not change if we add to f a function vanishing outside a set
of measure zero, hence it makes sense to write ess sup f also for f ∈M+(Q,μ).

Definition 5.17 For 1 ≤ p ≤ ∞ and f ∈ M(Q,μ), we set

‖f‖p :=
(ˆ

Q

|f |pdμ
)1/p

,

‖f‖∞ := ess sup|f |.

We also introduce in the standard way the Banach spaces Lp(Q,μ) ⊂M(Q,μ).
For f ∈ L1(Q,μ), we define its integral, denoted by

´
fdμ.

If q is used as the generic variable in Q, then instead of (5.6) one can write´
f(q)dμ(q). Often, especially if Q is a finite-dimensional vector space and μ is

a Lebesgue measure on Q, we will write
´

f(q)dq for (5.6).
If the measure μ is obvious from the context, we will often drop μ from our

notation and we will write Lp(Q), M(Q) etc. for Lp(Q,μ), M(Q,μ),
Let 1 ≤ p, q ≤ ∞, p−1 + q−1 = 1. If f, g ∈ M(Q), the Hölder’s inequality says

‖fg‖1 ≤ ‖f‖p‖g‖q ,

Definition 5.18 We will write Lp
+(Q) for Lp(Q) ∩M+(Q).

Definition 5.19 Let g ∈ M(Q). We say that g is strictly positive (w.r.t. μ),
and we write g > 0, if g ≥ 0 and μ

({
q : g(q) = 0

})
= 0.

Proposition 5.20 Let g ∈ Lp(Q), 1 ≤ p, q ≤ ∞, p−1 + q−1 = 1.

(1) g ≥ 0 iff
ˆ

Q

fgdμ ≥ 0, f ∈ Lq
+(Q). (5.8)
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(2) g > 0 iff
ˆ

Q

fgdμ > 0, f ∈ Lq
+(Q), f �= 0.

If the measure is finite, then q ≥ p implies Lq (Q) ⊂ Lp(Q).

5.1.7 Operators on Lp spaces

In this subsection we recall properties of linear operators on Lp spaces.
Let μi be a measure on (Qi,Si), i = 1, 2.

Definition 5.21 T ∈ B
(
L2(Q1), L2(Q2)

)
is called

(1) positivity preserving if f ≥ 0 ⇒ Tf ≥ 0,
(2) positivity improving if f ≥ 0, f �= 0 ⇒ Tf > 0.

Note that T is positivity preserving (resp. improving) iff T ∗ is.
Let us assume in addition that μi , i = 1, 2, are probability measures.

Definition 5.22 T ∈ B
(
L2(Q1), L2(Q2)

)
is called hyper-contractive if T is a

contraction and there exists p > 2 such that T is bounded from L2(Q1) into
Lp(Q2).

Let μ be a probability measure on (Q,S). Clearly, the constant function 1
belongs to L2(Q).

Definition 5.23 T ∈ B
(
L2(Q)

)
is doubly Markovian if T is positivity preserving

and T1 = T ∗1 = 1.

We recall some classic results.

Proposition 5.24 A doubly Markovian map T extends to a contraction on
Lp(Q) for all 1 ≤ p ≤ ∞.

Theorem 5.25 (Perron-Frobenius) Let H be a bounded below self-adjoint
operator on L2(Q), such that e−tH is positivity preserving for t ≥ 0 and E =
inf spec(H) is an eigenvalue. Then the following are equivalent:

(1) inf spec(H) is a simple eigenvalue with a strictly positive eigenvector.
(2) e−tH is positivity improving for all t > 0.

5.1.8 Conditional expectations

Let μ be a measure on (Q,S). Let S0 be a sub-σ-algebra of S. Let μ0 denote
the restriction of the measure μ to S0 .

For 1 ≤ p ≤ ∞, elements of Lp(Q,μ) that are S0-measurable form a closed
subspace of Lp(Q,μ) that can be identified with Lp(Q,μ0).
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Definition 5.26 We denote by ES0 the orthogonal projection from L2(Q,μ)
onto the subspace L2(Q,μ0). ES0 is called the conditional expectation w.r.t. S0 .

The following properties are well known.

Proposition 5.27 Let μ be a probability measure.

(1) ES0 extends to a contraction on Lp(Q,μ) for all 1 ≤ p ≤ ∞.
(2) ES0 extends to an operator from M+(Q,S) to M+(Q,S0).
(3) If g ∈ L∞(Q,μ) is S0-measurable, then ES0 (gf) = gES0 (f) whenever both

sides are defined.
(4) If ϕ : R → R is convex and positive, then

ϕ(ES0 f) ≤ ES0 (ϕ(f)) a.e.

(5) If S0 ⊂ S1 are two sub-σ-algebras of S, then ES0 ≤ ES1 .
(6) Let {Sn}n∈N be an increasing sequence of sub-σ-algebras of S such that S

is generated by
⋃

n∈N

Sn . Then

s − lim
n→∞ESn

= 1l, in Lp(Q,μ), 1 ≤ p <∞.

(7) Let F ∈ L1(Q,μ) with F > 0 a.e. and set dμF =
(´

Q
Fdμ
)−1

Fdμ. Denote
by EF

S0
the conditional expectation for the measure μF . Then

EF
S0

(f) =
ES0 (Ff)
ES0 (F )

.

5.1.9 Convergence in measure

Let (Q,μ) be a probability space. In this subsection we review various notions
of convergence for nets of functions on a probability space.

Definition 5.28 The topology of convergence in measure on M(Q) is defined by
the following family V (ε, δ) of neighborhoods of 0:

V (ε, δ) :=
{

f ∈ M(Q) : μ({q : |f(q)| > ε}) < δ
}
.

It is a metric topology for the distance

d(f, g) =
∞∑

n=0

2−nμ
({

q : |f(q)− g(q)| ≥ 2−n
})

.

The following proposition is immediate:

Proposition 5.29 If fn → f a.e. then fn → f in measure.

We also recall the useful notion of the equi-integrability.
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Definition 5.30 A family {fi}i∈I in M(Q) is equi-integrable if

lim
n→+∞ sup

i∈I

ˆ
Q

|fi |1l[n,∞[(fi)dμ = 0.

The following two results are well-known:

Proposition 5.31 Let {fi}i∈I belong to M(Q). Then the following hold:

(1) If f := sup
i∈I
|fi | is in L1(Q), then {fi}i∈I is equi-integrable.

(2) If sup
i∈I
‖fi‖p <∞ for some p > 1, then {fi}i∈I is equi-integrable.

Theorem 5.32 (Lebesgue–Vitali theorem) Let 1 ≤ p <∞, (fn )n∈N belong to
Lp(Q) and f ∈M(Q). Then the following are equivalent:

(1) f ∈ Lp(Q) and fn → f in Lp(Q).
(2)
(|fn |p

)
n∈N

is equi-integrable and fn → f in measure.

5.1.10 Measure preserving transformations

Let μ be a probability measure on (Q,S). Clearly, L∞(Q) is a commutative
W ∗-algebra equipped with a faithful normal state, which we also denote by μ,
that is,

μ(f) :=
ˆ

fdμ, f ∈ L∞(Q).

(See Subsect. 6.2.7 for the terminology on W ∗-algebras.) Conversely, every com-
mutative W ∗-algebra equipped with a faithful normal state can be represented
as L∞(Q) for some probability space (Q,S, μ). However, in general there may
be many non-isomorphic choices of probability spaces that lead to the same
W ∗-algebra and state.

Clearly, if r is a measure preserving bijection on Q, then r# f := f ◦ r−1 defines
an isometry on Lp(Q) for all 1 ≤ p ≤ ∞. In the case of p =∞, it is in addition a
σ-continuous ∗-automorphism of the commutative W ∗-algebra L∞(Q) preserving
the state μ. However, if we are given a σ-continuous ∗-automorphism of L∞(Q),
we have no guarantee that there exists an underlying bijection of Q. Therefore,
in the following proposition we do not insist on the existence of an underlying
bijection for ∗-automorphisms of L∞(Q).

Proposition 5.33 (1) A ∗-automorphism of L∞(Q) that preserves the state μ

extends to an isometry of Lp(Q) for all 1 ≤ p ≤ +∞.
(2) Let R � t �→ U(t) be a group of ∗-automorphisms of L∞(Q) preserving the

state μ. Then the following statements are equivalent:

(i) For some 1 ≤ p < ∞ and all f ∈ Lp(Q), R � t �→ U(t)f ∈ Lp(Q) is
norm continuous.
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5.1 General measure theory 119

(ii) For all f ∈ L∞(Q), R � t �→ U(t)f is continuous in measure.
(iii) For all 1 ≤ p < ∞ and f ∈ Lp(Q), R � t �→ U(t)f ∈ Lp(Q) is norm

continuous.
(iv) For all f ∈ L∞(Q), R � t �→ U(t)f is σ-weakly continuous.

Proof Let T be a ∗-automorphism of M(Q) as in (1). Clearly, T preserves the
Lp norm of simple functions for all 1 ≤ p <∞. Therefore, T is an isometry of Lp

for 1 ≤ p < ∞. Then using that ‖f‖∞ = ‖m(f)‖B (L2 (Q)) if m(f) is the operator
of multiplication by f , we obtain also that T is an isometry of L∞(Q).

We now prove (2). Since
´ |f |pdμ ≥ εpμ({|f | ≥ ε}), we obtain that (i)⇒(ii).

Let us prove that (ii)⇒(iii). Using (1) it suffices by density to show that

lim
t→0

ˆ
|U(t)f − f |pdμ = 0, for f ∈ L∞. (5.9)

We write ˆ
|U(t)f − f |pdμ ≤ μ

({|U(t)f − f | ≥ ε
})

2p‖f‖p
∞ + εp .

Choosing first ε and then t small enough we obtain (5.9). To complete the proof
of the lemma it suffices to prove that (iii) ⇒ (iv) ⇒ (i). Since

´
Q

fU(t)gdμ =´
Q

U(−t)fgdμ for g ∈ L∞, f ∈ L1 , we see that (iii) ⇒ (iv). Using that ‖U(t)g −
g‖2

2 = 2‖g‖2 − 2Re
´

Q
U(t)ggdμ for g ∈ L∞, we obtain by a density argument

that (iv) ⇒ (i). �

5.1.11 Relative continuity

Let μ be a measure on (Q,S).

Proposition 5.34 Let F ∈M+(Q). Then

S � A �→ ν(A) :=
ˆ

1lAFdμ (5.10)

is a measure.

Definition 5.35 The measure (5.10) is called the measure with the density F

w.r.t. the measure μ and is denoted ν = Fμ. We will also write dν
dμ := F .

Proposition 5.36 (1) For F,G measurable functions we have

F = G μ-a.e.⇒ Fμ = Gμ.

(2) If Fμ is σ-finite, then the converse implication is also true.

Definition 5.37 Let ν be a measure on (Q,S). ν is called continuous w.r.t. μ

(or μ-continuous), if

μ(N) = 0 ⇒ ν(N) = 0, N ∈ F .

Theorem 5.38 (Radon–Nikodym theorem) Let μ be σ-finite. Let ν be a measure
on (Q,S). Then the following conditions are equivalent:
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(1) there exists a positive measurable function F such that ν = Fμ.
(2) ν is μ-continuous. The function F is called the Radon–Nikodym derivative

of ν w.r.t. μ and denoted by dν
dμ .

Note that, in the notation of Def. 5.35, the map

L2(Q, ν) � f �→
(

dν

dμ

) 1
2

f ∈ L2(Q,μ)

is unitary.

5.1.12 Moments of a measure

Let μ be a probability measure on (Q,S).

Proposition 5.39 Let f : Q → R be a measurable function. Let

C(t) =
ˆ

eitf dμ, t ∈ R.

(1) f ∈ ⋂
p∈N

Lp(Q) iff C(t) ∈ C∞(R), and then

ˆ
fpdμ = (−i)p dp

dtp
C(0).

(2) Assume that C(t) extends holomorphically to {|Im z| < R0}. Then for all
|Im z| < R0 , eizf ∈ L1(Q) and

C(z) =
ˆ

eizf dμ.

Proof Let us first prove (1). The ⇒ part is immediate by differentiating under
the integral sign. It remains to prove ⇐. It suffices to prove that f ∈ L2n (Q)
for all n ∈ N by induction on n. For Φ ∈ L2(Q), fΦ ∈ L2(Q) iff Φ ∈ Dom m(f),
where m(f) denotes the operator of multiplication by f on L2(Q). This is equiv-
alent to ‖(eitf − 1l)Φ‖2 ≤ Ct2 for |t| ≤ 1. If Φ = 1, we get

‖(eitf − 1l)Φ‖2 =
ˆ

Q

(2− eitf − e−itf )dμ

= 2C(0)− C(t)− C(−t) = O(t2),

since C(t) is C2 , and hence f ∈ L2(Q). Assume now that f ∈ L2n (Q). We then
have

d2n

dt2n
C(t) = i2n

ˆ
f 2neitf dμ.
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Applying the above remark to Φ = f 2n , we get

‖(eitf − 1l)f 2n‖2 =
ˆ

(2− eitf − e−itf )f 2ndμ

= 2C(2n)(0)− C(2n)(t)− C(2n)(−t) = O(t2),

since C(t) is C2n+2. Hence f ∈ L2n+2(Q).
To prove (2), it clearly suffices to show that e±Rf ∈ L1(Q) for all 0 < R < R0 .

By Cauchy’s inequalities, we get for all 0 < R < R0

|C(n)(0)| ≤ CRR−nn!,

and henceˆ
f 2ndμ ≤ CRR−2n (2n)!,

ˆ
|f |2n+1dμ ≤

(ˆ
f 2ndμ

) 1
2
(ˆ

f 2n+2dμ
) 1

2 ≤ CRR−(2n+1)
√

2n!
√

(2n + 2)!.

Using Stirling’s formula, we see that
√

2n!
√

(2n + 2)! ∼ (2n + 1)!, and henceˆ
|f |2n+1dμ ≤ C ′

RR−(2n+1)(2n + 1)!.

From these bounds, by expanding the exponential, we deduce that e±Rf ∈ L1(Q)
for all R < R0 �

5.2 Finite measures on real Hilbert spaces

In this section we describe the basic theory of probability measures on real
Hilbert spaces.

Throughout this section, X will be a real separable Hilbert space. For x1 , x2 ∈
X we denote their scalar product by x1 · x2 .

5.2.1 Cylinder sets and cylinder functions

Let Y be a closed subspace of X . Recall that PY denotes the orthogonal projec-
tion on Y. Recall also that B(Y) stands for the σ-algebra of Borel sets in Y. We
will write B for B(X ).

Definition 5.40 Fin(X ) will denote the family of finite-dimensional subspaces
of X . For Y ∈ Fin(X ) and A ⊂ Y, the set

P−1
Y (A) := {x ∈ X : PYx ∈ A}

is called the cylinder set of base A. Denote by BY the σ-algebra of cylinder sets
of bases in B(Y).

Bcyl :=
⋃

Y∈Fin(X )

BY

is the algebra of all cylinder sets.

Clearly, BY1 ⊂ BY2 if Y1 ⊂ Y2 .
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Proposition 5.41 B is the σ-algebra generated by Bcyl.

Definition 5.42 We say that F : X → C is based on Y ∈ Fin(X ) if it is meas-
urable w.r.t. BY . F is called a cylinder function if it is based on Y for some
Y ∈ Fin(X ).

Each cylinder function is of the form F (x) = FY(PYx) for some measurable
function FY on Y.

5.2.2 Finite-dimensional distributions of a measure

Until the end of this section we fix a probability measure μ on (X ,B).

Definition 5.43 If Y ∈ Fin(X ), we define the probability measure μY on(Y,B(Y)
)

by

μY(A) := μ
(
P−1
Y (A)

)
, A ∈ B(Y).

The collection
{
μY : Y ∈ Fin(X )

}
is called the set of finite-dimensional distri-

butions of the measure μ.

Finite-dimensional distributions satisfy the following compatibility condition:

μY1 (A) = μY2

(
P−1
Y1

(A) ∩ Y2
)
, A ∈ B(Y1), Y1 ⊂ Y2 . (5.11)

Proposition 5.44 The set of finite-dimensional distributions uniquely deter-
mines the measure μ on the whole B.

Proof Finite-dimensional distributions uniquely determine μ on Bcyl. But Bcyl

generates B. �

5.2.3 Characteristic functional of a measure

Recall that X # denotes the space dual to X . Even though there exists a canonical
identification of X and X # , it is sometimes convenient to distinguish between X
and X # .

Definition 5.45 For ξ ∈ X # , we set

μ̂(ξ) :=
ˆ
X

e−iξ ·xdμ(x).

The function μ̂ : X # → C is called the characteristic functional of μ, or the
Fourier transform of μ.

Proposition 5.46 The characteristic functional of μ satisfies the following three
conditions:

(1) μ̂(0) = 1,

(2)
N∑

i,j=1
μ̂(ξi − ξj )zizj ≥ 0, ξi ∈ X # , zi ∈ C,

(3) X # � ξ �→ μ̂(ξ) ∈ C is sequentially continuous for the weak topology of X # .
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The condition (2) above is called positive definiteness.

Proposition 5.47 The characteristic functional μ̂ uniquely determines the
measure μ.

Proof The restriction of μ̂ to Y# for Y ∈ Fin(X ) is the Fourier transform of
μY , so μ̂ determines the finite-dimensional distributions of μ. By Prop. 5.44 this
determines μ. �

5.2.4 Moment functions

Proposition 5.48 Let p0 ≥ 0. Assume that for all ξ ∈ X # , the function x �→
ξ · x belongs to Lp0 (X ,dμ). Then, for 0 ≤ p ≤ p0 , there exists C such that

γp(ξ) :=
ˆ
X
|ξ · x|pdμ(x) ≤ C‖ξ‖p . (5.12)

Proof For ε > 0, set

γp,ε(ξ) :=
ˆ
X
|ξ · x|pe−ε‖x‖2

dμ(x).

For n ∈ N, set

An :=
{
ξ ∈ X # : γp(ξ) ≤ n

}
,

An,ε :=
{
ξ ∈ X # : γp,ε(ξ) ≤ n

}
.

Clearly, γp,ε(ξ) ↗ γp(ξ) when ε → 0, hence An =
⋂

ε>0 An,ε . Since ξ �→ γp,ε(ξ)
is norm continuous, An,ε is closed and so is An as an intersection of closed sets.
Finally X # =

⋃
n∈N

An .
Since X # has a non-empty interior, there exists by the Baire property a set

Am with a non-empty interior. Let ξ0 ∈ X # , δ > 0 such that B(ξ0 , δ) ⊂ Am . If
‖ξ‖ ≤ δ, we write ξ = ξ0 + ξ1 , ξ1 = ξ − ξ0 ∈ Am . Using that

|ξ · x|p ≤ C
∑

p1 +p2 =p

|ξ0 · x|p1 |ξ1 · x|p2

and the Hölder inequality, we obtain that

γp(ξ) ≤ C, ‖ξ‖ ≤ δ,

which proves (5.12). �

Definition 5.49 Assume that the conditions of Prop. 5.48 are satisfied. The
moment functions of order 1 ≤ p ≤ p0 of the measure μ are the maps

(ξ1 , . . . , ξp) �→ σp(ξ1 , . . . , ξp) :=
ˆ
X

(ξ1 · x) · · · (ξp · x)dμ(x).
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Moment functions are well defined by the Hölder inequality.
The following proposition follows directly from Props. 5.39 and 5.48:

Proposition 5.50 (1) The moment functions σp are multi-linear symmetric
functionals on X # .

(2)

|σp(ξ1 , . . . , ξp)| ≤ C‖ξ1‖ · · · ‖ξp‖. (5.13)

(3) μ admits moments of all orders iff its characteristic functional μ̂ is weakly
infinitely differentiable. We then have

σp(ξ1 , . . . , ξp) = (−i)p ∂p

∂t1 · · · ∂tp
μ̂
( p∑

i=1

tiξi

)∣∣∣
t1 =···=tp =0

.

By Prop. 5.50 and the Riesz theorem, if the assumptions of Prop. 5.48 hold
with n = 1, then there exists q ∈ X such that

ξ · q =
ˆ
X

(ξ · x)dμ(x), ξ ∈ X # .

Definition 5.51 The vector q is called the mean of the measure μ.

Again by Prop. 5.50, if assumptions of Prop. 5.48 hold with n = 2 and q is the
mean of μ, there exists a bounded positive A ∈ Bs(X ) such that

ξ1 ·Aξ2 =
ˆ
X

(
ξ1 · (x− q)

)(
ξ2 · (x− q)

)
dμ(x), ξ1 , ξ2 ∈ X # .

Definition 5.52 The operator A is called the covariance of the measure μ.

Proposition 5.53 Assume that the measure μ has mean zero and
ˆ
X
‖x‖2dμ(x) <∞.

Then the covariance A of μ is trace-class and

Tr A =
ˆ
X
‖x‖2dμ(x).

Proof It suffices to let n →∞ in the equality

n∑
i=1

ei ·Aei =
ˆ
X

n∑
i=1

(x · ei)2dμ(x),

where (ei)i∈N is an o.n. basis of X . �
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5.2.5 Density of exponentials

Theorem 5.54 Let D be a dense subspace of X # . Then the space

Span{eiξ ·x : ξ ∈ D}
is dense in L2(X ).

Proof Let G ∈ L2(X ) such thatˆ
X

eiξ ·xG(x)dμ(x) = 0, ξ ∈ D. (5.14)

Without loss of generality we can assume that G is real-valued. Let

B1 =
{
x ∈ X : G(x) ≥ 0

}
, B2 =

{
x ∈ X : G(x) < 0

}
.

We can define the finite measures

μ1(A) :=
ˆ

A

1lB1 (x)G(x)dμ(x), μ2(A) = −
ˆ

A

1lB2 (x)G(x)dμ(x),

where A ∈ B. From (5.14), we deduce thatˆ
X

eiξ ·xdμ1(x) =
ˆ
X

eiξ ·xdμ2(x), ξ ∈ D. (5.15)

D is a dense subspace of X # . Hence it is weakly sequentially dense in X # .
Since the characteristic functional of a measure is sequentially continuous for
the weak topology, (5.15) extends to all ξ ∈ X # . So μ1 and μ2 have the same
characteristic functionals, and hence are identical, i.e. μ1(A) = μ2(A) for all A ∈
B. But μi(A) = μi(A ∩Bi), i = 1, 2, and B1 ∩B2 = ∅. Hence, μ1 = μ2 = 0. This
implies that G(x) = 0 μ-a.e., and hence G = 0. �

5.2.6 Density of continuous polynomials

Let D be a subspace of X # .

Definition 5.55 Functions on X of the form (ξ1 · x) · · · (ξp · x), for ξ1 , . . . , ξn ∈
D, are called monomials based on D. Finite linear combinations (with complex
coefficients) of monomials based on D are called polynomials based on D.

Note that polynomials based on X # are continuous functions. Therefore, they
are sometimes called continuous polynomials.

If the measure μ admits moments of all orders, then all continuous polyno-
mials belong to L2(X ). The following theorem gives a sufficient condition for the
density of continuous polynomials in L2(X ).

Theorem 5.56 Let D ⊂ X # be a dense subspace of X # . Assume that for all
ξ ∈ D there exists R(ξ) > 0 such that the function

R � t �→ μ̂(tξ) ∈ C
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extends holomorphically to |Im t| < R(ξ). Then polynomials based on D are dense
in L2(X ).

Proof Let G ∈ L2(X ) be a vector orthogonal to all polynomials based on D.
Without loss of generality we can assume that G is real-valued. We then haveˆ

X
G(x)(ξ · x)ndμ(x) = 0, ξ ∈ D, n ∈ N.

Let us fix ξ ∈ D and let 2R < R(ξ). Then by Prop. 5.39 we know that e2R |ξ ·x| ∈
L1(Q) and

ˆ
G(x)eiRξ ·xdμ(x) = lim

n→∞

ˆ
G(x)

n∑
k=1

(iRξ · x)k

k!
dμ(x).

We can exchange sum and integral, since the integrand in the r.h.s. is less than

|G(x)|eR |ξ ·x| ≤ 1
2
(|G(x)|2 + e2R |ξ ·x|) ∈ L1(X ).

We obtain hence that ˆ
G(x)eiRξ ·xdμ(x) = 0,

and, by differentiating w.r.t. R,ˆ
G(x)eiRξ ·x(ξ · x)ndμ(x) = 0, n ∈ N.

Arguing as above with G(x) replaced by G(x)eiRξ ·x , we obtainˆ
G(x)eiRξ ·xeiRξ ·xdμ(x) = 0.

Hence, repeating this argument, we obtainˆ
G(x)eimRξ ·xdμ(x) = 0, m ∈ N.

If we choose m ∈ N and 2R < R(ξ) such that mR = 1, we finally obtainˆ
G(x)eiξ ·xdμ(x) = 0, ξ ∈ D.

Applying Thm. 5.54, we obtain that G = 0. �

5.3 Weak distributions and the Minlos–Sazonov theorem

Throughout this section, X is a separable real Hilbert space.
Suppose that we have a compatible family of measures on finite-dimensional

subspaces of X . We can ask whether this family comes from a measure on a
certain measure space. Often, there is no such a measure on X itself. However,
if we enlarge X , usually in a non-unique way, then such a measure may exist.
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5.3.1 Weak distributions

Definition 5.57 A collection μ∗ =
{
μY : Y ∈ Fin(X )

}
is called a weak distri-

bution or a generalized measure if, for each Y ∈ Fin(X ), μY is a Borel probability
measure on Y, and these measures satisfy the compatibility condition (5.11).

Note that cylinder functions can be “integrated” w.r.t. a weak distribution μ∗.
In fact, we can set

ˆ
X

Fdμ∗ :=
ˆ
Y

FYdμY , (5.16)

where F (x) = FY(PYx). Because of the compatibility condition (5.11), the r.h.s.
of (5.16) is independent of the choice of Y on which F is based.

For each Y ∈ Fin(X ) and 1 ≤ p < ∞, we can define the space Lp(Y, μY). For
Y1 ⊂ Y2 , we have natural isometric embeddings

Lp(Y1 , μY1 ) ⊂ Lp(Y2 , μY2 ).

Definition 5.58 The generalized Lp space associated with a generalized measure
μ∗ is defined as the inductive limit of the spaces Lp(Y, μY), that is,

Lp(X , μ∗) :=

( ⋃
Y∈Fin(X )

Lp(Y, μY)

)cpl

.

5.3.2 Weak distributions generated by a measure

Definition 5.59 Let μ be a measure on (X ,B). A weak distribution μ∗ =
{
μY :

Y ∈ Fin(X )
}

is said to be generated by μ if it is the set of finite-dimensional
distributions of μ.

The following necessary and sufficient condition for this to happen is given in
Skorokhod (1974):

Theorem 5.60 A weak distribution μ∗ is generated by a probability measure
iff

lim
R→∞

(
sup

Y∈Fin(X )

ˆ
Y

1l[R,∞[(‖y‖)dμY(y)
)

= 0. (5.17)

5.3.3 Characteristic functionals of weak distributions

The following proposition coincides with the famous Bochner theorem if X is
finite-dimensional:

Proposition 5.61 Let F : X → C be a function satisfying the following condi-
tions:
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(1) F (0) = 1,

(2)
n∑

i,j=1
F (ξi − ξj )zizj ≥ 0, ξ1 , . . . , ξn ∈ X , z1 , . . . , zn ∈ C,

(3) Y � ξ �→ F (ξ) ∈ C is continuous for all Y ∈ Fin(X ).

Then there exists a weak distribution
{
μY : Y ∈ Fin(X )

}
such that, for any

Y ∈ Fin(X ),

F (ξ) =
ˆ
Y

e−iξ ·ydμY(y), ξ ∈ Y. (5.18)

Note that the functions X � x �→ eiξ ·x are cylinder functions, hence the integral
in the r.h.s. of (5.18) is well defined.

Definition 5.62 A function F satisfying (1), (2) and (3) of Prop. 5.61 will be
called a weak characteristic functional.

Proof of Prop. 5.61. For any Y ∈ Fin(X ), the restriction of F to Y satisfies the
hypotheses of Bochner’s theorem (see Reed–Simon (1978b)). Hence there exists
a probability measure μY on Y such that (5.18) holds. It remains to check the
compatibility condition (5.11). To check this, it suffices to show that, if Y1 ⊂ Y2 ,
for each bounded continuous function G on Y1 one has

ˆ
Y2

G ◦ PY1 dμY2 =
ˆ
Y1

GdμY1 . (5.19)

This is clearly satisfied for G(y) = eiξ ·y for ξ ∈ Y1 . Next we can find a bounded
sequence (Gn ) of finite linear combinations of eiξ ·x for ξ ∈ Y1 which converges
a.e. to G, from which (5.19) follows. �

5.3.4 Minlos–Sazonov theorem

Theorem 5.63 (Minlos–Sazonov theorem) Let F : X # → C be a weak charac-
teristic functional. Then the following are equivalent:

(1) F is the characteristic functional of a probability measure μ on (X ,B).
(2) There exists a positive trace-class operator S on X such that X � ξ �→ F (ξ) ∈

C is continuous if we equip X with the norm ‖ξ‖S := (ξ|Sξ)
1
2 .

Proof (1)⇒(2). Assume that F is the characteristic functional of a measure μ.
Note that

|F (ξ1)− F (ξ2)|2 = 2Re
(
1− F (ξ1 − ξ2)

)
. (5.20)
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Now, for R > 0,

Re(1− F (ξ)) =
ˆ
X

(1− cos(ξ · x)) dμ(x)

≤ 1
2

ˆ
‖x‖≤R

(ξ · x)2dμ(x) + 2
ˆ
‖x‖≥R

dμ(x),

where we used 1− cos θ ≤ inf( θ2

2 , 2). Since
´
‖x‖≤R

‖x‖2dμ(x) < ∞, we obtain
from Prop. 5.53 that there exists a trace-class operator AR such thatˆ

‖x‖≤R

(ξ · x)2dμ(x) = ξ ·ARξ.

This yields

Re(1− F (ξ)) ≤ ξ ·ARξ + 2μ
({‖x‖ ≥ R}).

Now let ε > 0. Fixing Rε > 0 such that 2μ
({‖x‖ ≥ Rε}

) ≤ 1
2 ε, and then taking

Sε = 2ε−1ARε
, we prove that for any ε > 0 there exists a trace class Sε such that

(ξ|Sεξ) ≤ 1 implies

Re
(
1− F (ξ)

) ≤ ε.

Now let εk → 0. Let Sk be positive trace-class operators such that Re(1−
F (ξ)) ≤ εk if (ξ|Skξ) ≤ 1. We pick a sequence (λk ) > 0 such that

∑
k λkTr Sk <

∞. Then S =
∑

k λkSk is trace-class. Moreover, if (ξ|Sξ) ≤ λk , then (ξ|Skξ) ≤ 1,
and hence Re

(
1− F (ξ)

) ≤ εk .
(1)⇐(2). Since F satisfies the conditions of Prop. 5.61, we can construct from

F a weak distribution
{
μY : Y ∈ Fin(X )

}
. To construct a measure from the

weak distribution, we will use Thm. 5.60.
Let us fix δ > 0. Let ε be such that (ξ|Sξ) ≤ ε implies Re

(
1− F (ξ)

) ≤ δ. Since
Re
(
1− F (ξ)

) ≤ 2, we clearly have

Re
(
1− F (ξ)

) ≤ δ +
2
ε
(ξ|Sξ).

Let Y ∈ Fin(X ), α > 0, dimY = d. By (4.10), for y ∈ Y we have

e−
1
2 α‖y‖2

= (2πα)−
1
2 d

ˆ
Y

eiy ·ξe−
1

2 α ‖ξ‖2
dξ,

and henceˆ (
1− e−

1
2 α‖y‖2

)
dμY(y) = (2πα)−

1
2 d

ˆ
Y

e−
1

2 α ‖ξ‖2 (
1− F (ξ)

)
dξ

= (2πα)−
1
2 d

ˆ
Y

e−
1

2 α ‖ξ‖2
Re
(
1− F (ξ)

)
dξ

≤ (2πα)−
1
2 d

ˆ
Y

e−
1

2 α ‖ξ‖2
(
δ +

2
ε
ξ · Sξ

)
dξ

= δ + 2
α

ε
Tr PYSPY

≤ δ + 2
α

ε
Tr S,
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using (4.15). Next we have

1− e−
1
2 α‖y‖2 ≥ (1− e−

1
2 αR2

)1l[R,∞[(‖y‖),
which yieldsˆ

Y
1l[R,∞[(‖y‖)dμY(y) ≤ (1− e−

1
2 αR2

)−1
ˆ
Y
(1− e−

1
2 α‖y‖2

)dμY(y)

≤ (1− e−
1
2 αR2

)−1
(
δ + 2

α

ε
Tr S
)

.

Fixing first δ > 0, then α > 0, and then letting R →∞, we see that condition
(5.17) is satisfied. This completes the proof of the theorem. �

5.3.5 Measures on enlarged spaces

Using the Minlos–Sazonov theorem, it is possible to realize many weak charac-
teristic functionals on X (and even on a dense subspace of X ) as characteristic
functionals of measures on a larger Hilbert space.

In the theorem below the Hilbert space B
1
2 X is defined as in Subsect. 2.3.4.

We follow the usual convention for scales of real Hilbert spaces: X # is identified
with X , but (B

1
2 X )# is identified with B− 1

2 X using the scalar product on X .

Theorem 5.64 Let F : X → C be a weak characteristic functional continuous
for the norm of X . Let B > 0 be a self-adjoint operator on X such that B−1 is
trace-class. Then there exists a Borel probability measure μB on the Hilbert space
B

1
2 X such that

F (ξ) =
ˆ

B
1
2 X

eiξ ·xdμB (x), ξ ∈ B− 1
2 X .

Proof Since B−1 is trace-class, B is bounded away from zero, and hence
B− 1

2 X = Dom B
1
2 ⊂ X . Let FB be the restriction of the functional F to B− 1

2 X .
Clearly, FB is continuous if we equip B− 1

2 X with the norm (ξ|B−1ξ)
1
2

B− 1
2 X

=

(ξ|ξ) 1
2
X . Hence FB is a weak characteristic functional on B− 1

2 X .
B−1 can be restricted to B− 1

2 X . Interpreted in this way, it will be denoted
B−1
∣∣
B− 1

2 X . It is then unitarily equivalent to B−1 as an operator on X . Indeed,

B− 1
2 : X → B− 1

2 X , B
1
2 : B− 1

2 X → X are unitary and

B−1
∣∣
B− 1

2 X = B− 1
2 B−1B

1
2 .

Hence, if B−1 is trace-class, then so is B−1
∣∣
B− 1

2 X . Therefore, we can apply now
Thm. 5.63, which implies that FB is the characteristic functional of a Borel
probability measure μB on the dual (B− 1

2 X )# . By Prop. 2.60, (B− 1
2 X )# can be

identified with B
1
2 X . This completes the proof of the theorem. �

Remark 5.65 Sometimes the functional F is not continuous for the topology of
X , but for a certain norm (ξ|Aξ)

1
2 , where A > 0 is a self-adjoint operator on X .
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This case can be easily reduced to the case A = 1l by replacing X by A− 1
2 X . The

condition on B becomes that B− 1
2 AB− 1

2 is trace-class on X .

Remark 5.66 Note that we still use the notation x for the generic variable in
the enlarged space B

1
2 X .

5.3.6 Comparison of enlarged spaces

Proposition 5.67 Let F be as in Thm. 5.64 and let Bi > 0, i = 1, 2, be two
self-adjoint operators on X . Assume that B−1

1 is trace-class and B1 ≤ B2 . Then

B−1
2 is trace-class. Let μi be the associated probability measures on B

1
2
i X . Then

B
1
2
1 X is a Borel subset of B

1
2
2 X and

μ2(C) = μ1(C ∩B
1
2
1 X ), C ∈ B(B

1
2
2 X ).

For the proof we will use the following lemma:

Lemma 5.68 Let X be a real Hilbert space and A ∈ B(X ). Then Ran A ∈ B(X ).

Proof We use the polar decomposition A = U |A| of A, where U is a partial isom-
etry. It is clear that partial isometries map Borel sets onto Borel sets. Therefore,
it suffices to show that Ran |A| is Borel. By the spectral theorem,

Ran |A| =
{

x ∈ X , supn∈N

∥∥∥(|A|+ n−1
)−1

x
∥∥∥
X

<∞
}

=
⋃

m∈N

⋂
n∈N

{
x ∈ X ,

∥∥∥(|A|+ n−1
)−1

x
∥∥∥
X

< m
}

.

This proves that Ran|A| ∈ B(X ). �

Proof of Prop. 5.67. B
1
2
1 X equals AB

1
2
2 X , where A = B

1
2
1 B

− 1
2

2 ∈ B(B
1
2
2 X ).

Hence, by Lemma 5.68, B
1
2
1 X ∈ B(B

1
2
2 X ).

Recall from Subsect. 2.3.4 that we have a natural embedding I : B
1
2
1 X → B

1
2
2 X .

Its adjoint is an embedding I# : B
− 1

2
2 X → B

− 1
2

1 X . Both B
− 1

2
2 X and B

− 1
2

1 X are

embedded in X . Thus, for ξ ∈ B
− 1

2
2 X treated as an element of X , we can write

I# ξ = ξ.
Define a measure μ̃2 on B(B

1
2
2 X ) by

μ̃2(C) = μ1(I−1C) = μ1(C ∩B
1
2
1 X ), C ∈ B(B

1
2
2 X ).

For ξ ∈ B
− 1

2
2 X , we haveˆ

B
1
2
2 X

e−iξ ·x2 dμ̃2(x2) =
ˆ

B
1
2
1 X

e−iξ ·Ix1 dμ1(x1) =
ˆ

B
1
2
1 X

e−iI # ξ ·x1 dμ1(x1)

= F (I# ξ) = F (ξ) =
ˆ

B
1
2
2 X

e−iξ ·x2 dμ2(x2).
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This implies that the characteristic functionals of μ̃2 and μ2 are equal. Hence
μ2 = μ̃2 . This completes the proof of the proposition. �

5.4 Gaussian measures on real Hilbert spaces

Let X be a real Hilbert space. We would like to discuss Gaussian measures on
real Hilbert spaces and the corresponding L2 spaces. This section has a natural
continuation in Sect. 9.3, where we discuss the real-wave representation of CCR.

5.4.1 Gaussian measures

Proposition 5.69 Let A be a positive self-adjoint operator on X and q be a
bounded linear functional on A− 1

2 X .

(1) The function

Dom A � ξ �→ F (ξ) = eiq ·ξ− 1
2 ξ ·Aξ (5.21)

is a weak characteristic functional.
(2) It is the characteristic functional of a probability measure μ on X iff A is

trace-class.

Proof (1) To prove the conditions of Prop. 5.61 we can assume that X is finite-
dimensional. Setting X1 = Ker A, we decompose X as X1 ⊕X2 and q = (q1 , q2).
Let A2 be A restricted to X2 . Using (4.10) we see that F is the Fourier transform
of the probability measure dμ = dμ1 ⊗ dμ2 for

dμ1(x1) = δ(x1 − q1)dx1 ,

dμ2(x2) = (2π)−
1
2 dim Y2 det A

− 1
2

2 e−
1
2 (x2 −q2 )·A−1

2 (x2 −q2 )dx2 .

(2) Let us prove ⇐. We have

Re(1− F (ξ)) = (1− e−
1
2 ξ ·Aξ ) + e−

1
2 ξ ·Aξ (1− cos(q · ξ))

≤ 1
2 ξ ·Aξ + c|q · ξ|2 .

Since q is bounded on A− 1
2 X we obtain that |Re(1− F (ξ))| ≤ Cξ ·Aξ. By (5.20)

this proves the continuity of F for the norm given by A, which is trace-class. So
we can apply the Minlos–Sazonov theorem.

Let us now prove ⇒. Let us assume that F is the characteristic functional of a
measure μ. By translating the measure μ we can assume that q = 0. Splitting X
as Ker A⊕Ker A⊥, we may assume that A is non-degenerate. If A is not compact,
we can find a sequence (ξn )n∈N such that w − lim

n→∞ ξn = 0 and lim
n→∞ ξn ·Aξn =

λ �= 0. This contradicts the weak continuity of F . Hence A is a compact operator.
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Now let (ej )j∈N be an o.n. basis of eigenvectors of A for the eigenvalues (λj )j∈N.
Let Yn = Span{e1 , . . . , en}, Pn be the orthogonal projection on Yn and An =
PnAPn . Let μn denote the measure μYn

on Yn , yn the generic variable on Yn

and dyn the Lebesgue measure on Yn . By (4.10), we know that

dμn (yn ) = (2π)−
n
2 det A

− 1
2

n e−
1
2 yn ·A−1 yn dyn .

Hence, for ε > 0,
ˆ
X

e−
ε
2 ‖Pn x‖2

dμ(x) =
ˆ
Yn

e−
ε
2 ‖yn ‖2

dμn (yn ) =
n∏

j=1

(1 + ελj )−
1
2 .

Now

1 = lim
ε↘0

lim
n→∞

ˆ
X

e−
ε
2 ‖Pn x‖2

dμ(x) = lim
ε↘0

∞∏
j=1

(1 + ελj )−
1
2 .

This implies that
∏∞

j=1(1 + ελj ) < ∞ for small enough ε > 0, and hence the
series

∑∞
j=1 λj is convergent and A is trace-class. �

Definition 5.70 The measure defined in Prop. 5.69 will be called the Gaussian
measure on X of mean q and covariance A and will be denoted by

Cδ(x1 − a1)e−
1
2 (x2 −q2 )·A−1

2 (x2 −q2 )dx1dx2 , (5.22)

or, if Ker A = 0, by

Ce−
1
2 (x−q)·A−1 (x−q)dx. (5.23)

Note that C in (5.22) and (5.23) has the meaning of the “normalizing constant”
that makes (5.22) a probability measure.

Remark 5.71 Prop. 5.69 provides an example of a weak distribution on X which
is not generated by a probability measure on X .

5.4.2 Gaussian measures on enlarged spaces

In this subsection we consider the case of a covariance for which (5.21) is only a
weak characteristic functional.

Let A be a positive self-adjoint operator on X . Consider the function

X � ξ �→ e−
1
2 ξ ·Aξ . (5.24)

It is a weak characteristic functional. It is not a characteristic functional of a
measure unless A is trace-class.

Definition 5.72 The generalized measure given by the weak characteristic
functional (5.24) will be called the generalized Gaussian measure on X with
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covariance A. We will denote by

L2(X , e−
1
2 x·A−1 xdx)

the corresponding L2 space. We will call it the Gaussian L2 space over X with
covariance A.

If B is a positive self-adjoint operator B on X such that B− 1
2 AB− 1

2 is trace-
class, then L2(X , e

1
2 xA−1 xdx) is naturally isomorphic to L2(B

1
2 X ,dμB ), where

ˆ
B

1
2 X

eiξ ·xdμB (x) = e−
1
2 ξ ·Aξ , ξ ∈ B− 1

2 X .

Note that there is no canonical choice of the operator B.

Definition 5.73 Following (5.23), the measure μB will often be denoted

Ce−
1
2 x·A−1 xdx.

(Note that this notation hides the dependence on B, which plays only an
auxiliary technical role.)

Consider in particular the case of covariance 1l. L2(X , e−
1
2 x2

dx) can be realized
as an L2 space over X iff X is finite-dimensional. L2(X , e−

1
2 x2

dx) is then equal
to L2(X , (2π)−

1
2 de−

1
2 x2

dx), where d = dimX and dx is the Lebesgue measure
on X compatible with the Euclidean structure.

Remark 5.74 (5.24) is a weak characteristic functional even if the positive
operator A has a non-zero kernel. If this is the case, then the corresponding
Gaussian L2 space can be identified with L2(X1 , e−

1
2 x1 ·A−1

1 x1 dx1), where X1 :=
(Ker A)⊥, A1 is the restriction of A to X1 and x1 is the generic variable of X1 .

5.4.3 Exponential law for Gaussian spaces

In this subsection, for simplicity we restrict ourselves to covariance 1l.

Proposition 5.75 Let X1 , X2 be two real Hilbert spaces. Set X := X1 ⊕X2 .
Then the map

U : CPol(X1)⊗ CPol(X2) → CPol(X )
P1(x1)⊗ P2(x2) �→ P (x1)P (x2)

extends to a unitary map

U : L2(X1 , e−
1
2 x2

1 dx1)⊗ L2(X2 , e−
1
2 x2

2 dx2) → L2(X , e−
1
2 x2

dx).

Proof Let us choose two operators B1 , B2 such that B−1
i is trace-class on

Xi , and use L2(B
1
2
i Xi ,dμBi

) as representatives for L2(Xi , e−
1
2 x2

i dxi). Then the

map U extends to a unitary map from L2(B
1
2
1 X1 ,dμB1 )⊗ L2(B

1
2
2 X2 ,dμB2 ) into
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L2(B
1
2 X ,dμB ) for B = B1 ⊕B2 . We have

ˆ
B

1
2 X

eiξ ·xdμB (x) = e−
1
2 ξ 2

1 − 1
2 ξ 2

2 = e−
1
2 ξ 2

,

which shows that L2(B
1
2 X ,dμB ) is a representative of L2(X , e−

1
2 x2

dx). �

5.4.4 Polynomials in Gaussian spaces

Let A, B be positive operators with B− 1
2 AB− 1

2 trace-class. We identify
L2(X , e−

1
2 x·A−1 xdx) with L2(B

1
2 X ,dμB ).

Proposition 5.76 Polynomials based on B− 1
2 X are dense in L2(X , e−

1
2 x2

dx).

Proof Clearly, for ξ ∈ B− 1
2 X , the function

C � t �→ μ̂B (tξ) =
ˆ

B
1
2 X

e−itξ ·xdμB (x) = e−
t 2
2 ξ ·Aξ

is entire. Hence the statement follows from Thm. 5.56. �

Clearly, we have the inclusion B− 1
2 X ⊂ A− 1

2 X . If we regard B
1
2 X as the under-

lying space, then only polynomials based on B− 1
2 X are continuous functions.

Those based on A− 1
2 X do not have to be continuous. However, they are Lp

integrable, as the following proposition shows.

Proposition 5.77 Polynomials based on A− 1
2 X belong to

⋂
1≤p<∞

Lp(B
1
2 X ,dμB )

and, for ξ ∈ A− 1
2 X , we have
ˆ

B
1
2 X

(ξ · x)2n+1dμB (x) = 0,
ˆ

B
1
2 X

(ξ · x)2ndμB (x) =
2n!
2nn!

(ξ ·Aξ)n . (5.25)

Proof Using Prop. 5.50, we obtain (5.25) for ξ ∈ B− 1
2 X .

Using (5.25), we see that if (ξn )n∈N is a sequence in B− 1
2 X converg-

ing to some ξ ∈ X , then the sequence of functions (ξn · x)m is Cauchy in⋂
1≤p<∞

Lp(B
1
2 X ,dμB ). Hence we can define the function

(ξ · x)m := lim
n→∞(ξn · x)m ,

which belongs to
⋂

1≤p<∞
Lp(B

1
2 X ,dμB ). �
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5.4.5 Relative continuity of Gaussian measures

Let Ai , i = 1, 2, be two bounded positive operators on X . For simplicity we
assume that Ai > 0, i.e. KerAi = {0}. Let B−1 be trace-class. Consider the
Gaussian measures μi with the covariances Ai , i = 1, 2, on the space B

1
2 X .

Theorem 5.78 (Feldmann–Hajek theorem) The measures μ1 and μ2 are abso-

lutely continuous w.r.t. one another iff A
− 1

2
1 A2A

− 1
2

1 − 1l ∈ B2(X ).

Let us now discuss the Radon–Nikodym derivative dμ2
dμ1

(x) under the hypoth-
eses of Thm. 5.78. For simplicity we assume that A1 = 1l and denote A2 by A,
μ1 by μ and μ2 by μ̃. It is easy to obtain the corresponding statements in the
general case by replacing X by A

− 1
2

1 X (see Subsect. 11.4.6).

Proposition 5.79 Assume that 1l−A ∈ B2(X ). Then the following hold:

(1) Let {πn}n∈N be an increasing sequence of finite rank orthogonal projections
in X with s − lim πn = 1l. Set

Fn (x) := (det πnAπn )−
1
2 e

1
2 x·πn (1l−A−1 )πn x , n ∈ N.

Then {Fn}n∈N converges in L1(B
1
2 X ,dμ) to a positive function F with´

Fdμ = 1.
(2) If 1l−A ∈ B1(X ), then

F (x) = (detA)−
1
2 e

1
2 x·(1l−A−1 )x .

(3) One has dμ̃
dμ (x) = F (x).

Remark 5.80 Statement (3) of Prop. 5.79 shows that F is independent
on the choice of {πn}. Note also that x �→ x · (1l−A−1)x is continuous on
B

1
2 X , hence x �→ e

1
2 x·(1l−A−1 )x is measurable on B

1
2 X , although not integrable if

1l−A �∈ B1(X ). Therefore, a convenient notation for F is

F (x) = Ce
1
2 x·(1l−A−1 )x ,

where C is the “normalizing constant”, as in Def. 5.70.

The proof of this theorem will be given later on; see Subsect. 11.4.6.

5.5 Gaussian measures on complex Hilbert spaces

Let Z be a separable (complex) Hilbert space. We denote by z1 · z2 the scalar
product of z1 , z2 ∈ Z.

We will discuss Gaussian L2 spaces of anti-holomorphic functions on Z. This
section has a natural continuation in Sect. 9.2, where we discuss the complex-
wave representation of CCR.
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5.5 Gaussian measures on complex Hilbert spaces 137

5.5.1 Holomorphic and anti-holomorphic functions

Recall from Subsect. 3.5.6 that inside the space of all complex polynomials
CPol(ZR) we have the subspace Pol(Z), resp. Pol(Z) of holomorphic, resp. anti-

holomorphic polynomials spanned by
p

Π
i=1

wi · z, resp.
p

Π
i=1

wi · z, for wi ∈ Z.

The following definition generalizes the notion of a holomorphic function to
an arbitrary dimension.

Definition 5.81 A function F : Z → C is holomorphic, resp. anti-holomorphic
if its restriction to any finite-dimensional complex subspace of Z is holomorphic,
resp. anti-holomorphic.

5.5.2 Measures on complex Hilbert spaces

Recall from Subsect. 3.6.9 that, in the context of the integration, a complex space
Z is often identified with Re(Z ⊕ Z) by the map

Z � z �→ (z, z) ∈ Re(Z ⊕ Z). (5.26)

This suggests adoption of the following convention for characteristic functionals
on complex spaces:

Definition 5.82 If μ is a Borel probability measure on Z, its characteristic
functional is defined by

Z � w �→ μ̂(w) :=
ˆ
Z

e−2iRew ·zdμ(z) =
ˆ
Z

e−iw ·z−iw ·zdμ(z).

5.5.3 Gaussian measures on complex spaces

Now let A > 0 be a trace-class self-adjoint operator on Z. There exists a unique
measure μ on Z such that

μ̂(w) = e−w ·Aw , w ∈ Z. (5.27)

This follows from Prop. 5.69, if we consider Z as the real Hilbert space ZR

equipped with the scalar product Re z1 · z2 .

Definition 5.83 The measure μ defined by (5.27) will be denoted Ce−z ·A−1 zdzdz

and called the Gaussian measure of covariance A.

Let Z be finite-dimensional of complex dimension d with a fixed (complex)
volume form dz. By Subsect. 4.1.9, we then have

Ce−z ·A−1 zdzdz = det A−1(2πi)−de−z ·A−1 zdzdz. (5.28)

(The notation i−ddzdz is explained in Subsect. 3.6.9.)
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Definition 5.84 We denote by L2
C
(Z, Ce−z ·A−1 zdzdz), resp.

L2
C
(Z, Ce−z ·A−1 z dzdz) the closure in L2(ZR, Ce−z ·A−1 zdzdz) of Pol(Z),

resp. Pol(Z).

Theorem 5.85 The space L2
C
(Z, Ce−z ·A−1 zdzdz), resp. L2

C
(Z, Ce−z ·A−1 zdzdz)

coincides with the space of holomorphic, resp. anti-holomorphic functions in
L2(ZR, Ce−z ·A−1 zdzdz).

Proof It suffices to consider the holomorphic case.
Let Y ⊂ Z be a finite-dimensional complex subspace. If G is a function on

Z, let G|Y be its restriction to Y. Let F ∈ L2
C
(Z, Ce−z ·A−1 zdzdz), and (Pn ) a

sequence in Pol(Z) converging to F in L2(ZR, Ce−z ·A−1 zdzdz). If Y is finite-
dimensional then (Pn )|Y converges to F|Y in L2(YR, Ce−z ·A−1 zdzdz), hence in
D′(YR). By Prop. 4.12 it follows that F|Y is holomorphic.

Conversely, let F ∈ L2(ZR, Ce−z ·A−1 zdzdz) be a holomorphic function, and
assume that F is orthogonal to all holomorphic polynomials. Let (ej )j∈N be an
o.n. basis of eigenvectors of A for the eigenvalues (λj )j∈N. We fix d and restrict
F to Span{e1 , . . . , ed}. If we identify Cd with Span{e1 , . . . , ed} by the map

(z1 , . . . , zd) �→
d∑

i=1

zj√
λj

ej ,

we are reduced to considering a holomorphic function G on Cd , which is orthog-
onal to all holomorphic polynomials for the measure (2πi)−de−z ·zdzdz.

For �n = (n1 , . . . , nd) ∈ Nd we recall that �n! := n1 ! . . . nd !, ∂n
z = ∂n1

z1
. . . ∂nd

zd
.

From Cauchy’s formula, we get

∂n
z G(0) =

�n!
(2π)d

ˆ
[0,2π ]d

G(r1eiθ1 , . . . , rdeiθd )
d

Π
j=1

einj θj r
−nj

j dθ1 . . . dθd.

If C(n) =
d

Π
j=1

´ +∞
0 r2nj +1e−r 2

dr, we obtain

C(n)∂n
z G(0) = �n!2−d

ˆ
G(z1 , . . . , zd)

d

Π
j=1

z
nj

j e−z ·z (2iπ)−ddzdz.

Hence, if G ∈ L2(Cd , (2iπ)−de−z ·zdzdz) is holomorphic and orthogonal to the
holomorphic polynomials, we have ∂�n

z G(0) = 0 for all �n and hence G(z) ≡ 0.
This implies that the restriction of F to Span{e1 , . . . , ed} is equal to 0 for all

d. In particular, F is orthogonal to all real polynomials generated by Re(ej · z)
and Im(ej · z). Since these polynomials are dense in L2(ZR, e−z ·A−1 zdzdz), we
have F ≡ 0. �

5.5.4 Generalized Gaussian measures on complex spaces

We now extend Def. 5.84 to generalized Gaussian measures that cannot be real-
ized as measures on Z. For simplicity, we assume that the covariance of the
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5.5 Gaussian measures on complex Hilbert spaces 139

measure is given by the scalar product of the underlying (complex) Hilbert
space.

Definition 5.86 Denote by L2
C
(Z, e−z ·zdzdz), resp. L2

C
(Z, e−z ·zdzdz) the clo-

sure in L2(ZR, e−z ·zdzdz) of the space of holomorphic, resp. anti-holomorphic
polynomials on Z. The space L2

C
(Z, e−z ·zdzdz), resp. L2

C
(Z, e−z ·zdzdz) will be

called the holomorphic, resp. anti-holomorphic Gaussian L2 space with covari-
ance 1l.

Proposition 5.87 Let B ≥ 0 be an operator such that B−1 is trace-class.
Identify L2(ZR, e−z ·zdzdz) with L2(B

1
2 ZR, Ce−z ·zdzdz) in the usual way. Then

L2
C
(Z, e−z ·zdzdz), resp. L2

C
(Z, e−z ·zdzdz) coincide with L2

C
(B

1
2 Z, Ce−z ·zdzdz),

resp. L2
C
(B

1
2 Z, Ce−z ·zdzdz).

5.5.5 Isomorphism with modified Fock spaces

Recall the modified Fock space Γmod
s (Z), defined as the completion of

a l
Γs(Z) with

the scalar product given by (Φ|Ψ)Γm o d
s (Z) :=

(
Φ| 1

N ! Ψ
)
Γs (Z) . Moreover, we recall

from Subsect. 3.5.1 that
a l
Γs(Z) can be identified with Pols(Z), which is dense in

L2
C
(Z, e−z ·zdzdz). It turns out that this identification extends to a unitary map:

Theorem 5.88 The map
a l
Γs(Z) � Φ �→ Φ(·) ∈ Pols(Z)

given by

Φ(z) :=
∞∑

n=0

(z⊗n |Φ)

extends by continuity to a unitary map

Γmod
s (Z) � Φ �→ Φ(·) ∈ L2

C(Z, e−z ·zdzdz). (5.29)

The proof of the above theorem for dimZ = 1 follows immediately from the
following simple computation:

Lemma 5.89 Let z ∈ C. Then

(2πi)−1
ˆ

C

e−z ·z zm zndzdz = n!δn,m . (5.30)

Proof We identify C with R2 . In the polar coordinates z = reiφ , the l.h.s. of
(5.30) equals

π

ˆ 2π

0
dφ

ˆ ∞

0
dreiφ(m−n)rm+n+1e−r 2

. (5.31)
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For n �= m the integral w.r.t. φ yields zero. For n = m we get

1
2

ˆ ∞

0
r2m+1e−r 2

dr =
ˆ ∞

0
r2m e−r 2

dr2 = m!.

Alternatively, we can rewrite (5.30) as

in+m ∂n
t ∂m

t (2πi)−1
ˆ

e−z ·z e−izt−iztdzdz
∣∣
t=0 = in+m ∂n

t ∂m
t e−|t|2 ∣∣

t=0

= n!δnm . �

Proof of Thm. 5.88. For notational simplicity assume that dimZ < ∞. Let
(e1 , . . . , en ) be an o.n. basis of Z. Recall that {e�k : �k ∈ Nn} is an o.n. basis of
Γmod

s (Z), where

e�k :=
1√
�k!

e⊗k1
1 ⊗s · · · ⊗s e⊗kn

n ,

e�0 = Ω and �k! = k1 ! · · · kn !. The vector e�k is mapped onto the polynomial

e�k (z) =
1√
�k!

n

Π
i=1

(ei · z)ki .

Using Lemma 5.89 we see that {e�k (·) : �k ∈ Nn} form an o.n. basis of
L2

C
(Z, Ce−z ·zdzdz). �

The following proposition is an illustration of the formalism of Gaussian com-
plex spaces.

Proposition 5.90 Let F ∈ L2
C
(Z, e−z ·zdzdz). Then

F (z0) =
ˆ

F (z)ez ·z0 Ce−z ·zdzdz, z0 ∈ Z.

Proof The integral on the r.h.s. is well defined, since z �→ ez ·z0 belongs to
L2

C
(Z, e−z ·zdzdz). By density and linearity it suffices to check the identity for

monomials. We have
ˆ
Z

p

Π
i=1

(ei · z)ni ez ·z 0 Ce−z ·zdzdz =
ˆ
Z

p

Π
i=1

∂ni
ti

exp
(
z · z0 +

p∑
i=1

tiei · z
)

×Ce−z ·zdzdz
∣∣
t=0

=
p

Π
i=1

∂ni
ti

exp
( p∑

i=1

tiei · z0

)∣∣
t=0

=
p

Π
i=1

(ei · z0)ni .

This completes the proof of the proposition. �
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5.6 Notes

General measure theory is studied e.g. in the monographs by Halmos (1950) and
Bauer (1968).

Properties of positivity preserving maps are discussed e.g. in Reed–Simon
(1978b).

The notion of equi-integrability and the Lebesgue–Vitali theorem can be found
in Kallenberg (1997). Measures on Hilbert spaces is the subject of a monograph
by Skorokhod (1974). The proof of Prop. 5.41 can be found e.g. in Chap. I.1 of
Skorokhod (1974).

The Feldman–Hajek theorem about relative continuity of Gaussian measures
was proved independently by Feldman (1958) and Hajek (1958).
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