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Abstract

The class of restless bandits as proposed by Whittle (1988) have long been known to be
intractable. This paper presents an optimality result which extends that of Weber and
Weiss (1990) for restless bandits to a more general setting in which individual bandits
have multiple levels of activation but are subject to an overall resource constraint. The
contribution is motivated by the recent works of Glazebrook et al. (2011a), (2011b) who
discussed the performance of index heuristics for resource allocation in such systems.
Hitherto, index heuristics have been shown, under a condition of full indexability, to
be optimal for a natural Lagrangian relaxation of such problems in which a resource is
purchased rather than constrained. We find that under key assumptions about the nature
of solutions to a deterministic differential equation that the index heuristics above are
asymptotically optimal in a sense described by Whittle. We then demonstrate that these
assumptions always hold for three-state bandits.
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1. Introduction

In what is now regarded as a classical result, Gittins [4] demonstrated the optimality of index
policies for a class of reward discounted Markov decision processes called multi-armed bandits
(MABs). MABs are a class of simple models for dynamic resource allocation in which, at
each decision epoch t ∈ N, a choice is made of one from n stochastic projects (or bandits),
for activation. The decision-maker is aided by the fact that the current state of each bandit is
always observable. Gittins’ solution has the following form: with each bandit is associated an
index, namely a real-valued function on that bandit’s state space. At each epoch it is optimal
to activate any bandit whose current index value is maximal. These so-called Gittins’ indices
offer a simple and interpretable calibration of the value of project activation and Gittins’ result
offers a significant easing of the computational burden involved in developing an optimal policy.
A sizeable literature now exists which is devoted to applications and extensions of Gittins’work.
The recent book by Gittins et al. [5] gives an introduction to, and an overview of, the area.

It is a feature of Gittins’ MABs that bandits which are not activated are frozen, that is
their state does not change. This feature delimits the range of application of the model and
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associated results. In order to address this, Whittle [21] introduced a class of so-called restless
bandits (RBs) in which the constituent projects have different stochastic dynamics depending
on whether they are active or passive. This generalisation is bought at some cost, since unlike
MABs, Whittle’s RBs are almost certainly intractable, having been shown to be PSPACE-
hard by Papadimitriou and Tsitsiklis [15]. Whittle proposed an index heuristic for RBs, with
Whittle’s index emerging from a Lagrangian relaxation of the optimisation problem as a fair
charge for the activation of a given bandit in a given state. Whittle’s indices reduce to those
of Gittins in the special MAB case. Whittle’s index policy has been shown empirically to
perform well in a range of application domains including asset management [3], [11], [14],
[17], inventory routeing [1], machine maintenance [8], and queueing control [2], [7], [10].
However, the question naturally arises as to what can be said theoretically and in generality
about its quality of performance.

This challenge was taken up by Weber and Weiss [19], [20] who explored a conjecture due
to Whittle [21]. The setting for these ideas is that a RB features n bandits, m of which may
be activated at any time. We consider average reward per unit time over an infinite horizon
as the criterion by which policies are evaluated. Whittle conjectured that his index heuristic
was asymptotically optimal in a limit in which n, m → ∞ in fixed proportion. Weber and
Weiss [19] demonstrated that this was indeed the case under a condition in which a particular
differential equation’s stationary point is a global attractor. They further argued that even when
that is not the case the degree of suboptimality of the index policy is often very small.

More recently, Glazebrook et al. [6] discussed a class of models for dynamic resource
allocation which extend Whittle’s RBs away from the simple active/passive dichotomy for
bandit treatment to one in which the key resource may be applied at a range of levels to each.
In these new scenarios the resource can be concentrated on a few projects which are in urgent
need of it or can be spread much more widely. The indices which emerge from this set-up,
which is the natural one for the allocation of a single divisible resource, are functions not only
of bandit state (i) but also of resource level (a). Index Ii(a) can now be viewed as a fair charge
for raising the resource level in state i to level a (from a − 1). In Glazebrook et al. [9] the
authors presented some of the first work on indexability for dual-speed bandits with bounds on
suboptimality of index heuristics. The first reference to indexability with multiple action levels
comes from [18] in Weber’s comments on the paper of Niño-Mora [13]. In his comments the
author conjectures that the index heuristics used in this paper might have asymptotic properties
similar to those in Weber and Weiss [19]. Glazebrook et al. [6] developed this index heuristic
and demonstrated empirically its strong performance in the context of models for queueing
control and asset management. The goal of our paper is to establish asymptotic optimality of
the index heuristic and so extend the result of Weber and Weiss [19] to this more general model
class.

In Section 2 we describe the model class of interest in more detail and provide a brief account
of the key notions of indices and indexability. The statement and proofs of our principal results
are contained in Section 3. In Section 4 we extend the result of [20], establishing asymptotic
optimality for three-state indexable bandits to our new framework. A typical illustrative example
is then presented. Section 5 contains some concluding remarks.

2. The model and key ideas

We shall consider a set up in which n finite-state continuous-time stochastic projects (or
bandits) are in competition for a key divisible resource. We shall assume without loss of
generality that each bandit has state space {1, 2, . . . , k}, that actions {0, 1, . . . , A} are available
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654 D. J. HODGE AND K. D. GLAZEBROOK

in each state and that the stochastic dynamics for bandits are Markovian and identical, with
λij (a) the exponential rate that a bandit in state i transitions to j , per unit time, under the
application of action a. Given any choice of actions, bandits evolve independently. A decision
regarding which action should be applied to each bandit will be made at time 0 and at all state
transitions of the process. Action a is to be understood here to be the application of a units of
resource. In what follows, we shall discuss a range of approaches to the way in which resource
availability constrains the choice of actions. A reward rate g(i, a) is obtained per unit of time
that a bandit spends in state i under action a. Our goal will be the selection of a stationary
randomized (see [16, Section 8.9]) policy σ to maximise the average long-run expected reward
rate aggregated across bandits, namely

rσ := lim
t→∞

1

t

∫ t

0

n∑
l=1

Eσ [g(xl(s), Aσ (l, s))] ds,

with xl(s) the state of bandit l at time s and Aσ (l, s) the random action applied to bandit l at
time s, under policy σ .

To simplify ergodicity concerns we shall assume here that, under all policies, the underlying
Markovian process is irreducible. This is easily achieved by, if necessary, perturbing transition
rates to achieve λi,1+(i mod k)(0) ≥ ε for all i. This could be weakened to demand that the
process is irreducible under the optimal policy proposed later; state removal to consider only
states visited under an optimal policy would allow a further weakening.

We now describe two problems of interest corresponding to two different approaches to
constraining resource availability. Suppose that 0 < β < A. We define

(i) P n
h (β): this is the n-bandit reward maximisation problem where the total resource

allocated to the bandits at each t ∈ N is fixed at nβ, which here needs to be a positive
integer. This latter requirement will be relaxed later;

(ii) P n
r (β): this is the n-bandit reward maximisation problem where the time average amount

of resource allocated to the bandits over an infinite horizon is fixed at nβ, which here
need not be a positive integer.

In keeping with the usage in [19] and [20], we shall useR
(n)
opt(β) for the optimal value of P n

h (β)

and r(n)(β) for the optimal value of P n
r (β). Subscripts ‘h’and ‘r’should be understood as ‘hard’

and ‘relaxed’and, hence, descriptors of the resource constraint in each case, with P n
r (β) the more

amenable to solution. With reference to Puterman [16, Theorem 8.9.6 and Corollary 8.9.7],
it is clear that for the relaxed problem simultaneously performing a, possibly randomized,
stationary optimal relaxed β-constraint strategy at each bandit achieves the optimum for the
n-bandit problem. One way to see this is to take a solution to the n-bandit problem, randomize
the bandit labels, then we have an optimal policy which shares expected resource levels equally
between the bandits. This policy may be history-dependent, in that it may depend on the
bandit labellings; however, Puterman [16, Theorem 8.9.6] allows us to transform this into an
equally good randomized stationary policy. The performance of this policy at any chosen
bandit is bounded above by an optimal policy for that specific bandit with this average resource
constraint β. The performance of using these optimal policies achieving r(1)(β) at each bandit
is therefore at least as good (and therefore equal to) an optimal policy for r(n)(β). In the n = 1
case, for simplicity, we shall denote r(1)(β) by r(β).

Gittins’ MABs have A = 1, nβ = 1, and λij (0) = 0 for all i �= j and his index policies
solve P n

h (β) for such cases. Whittle’s RBs have A = 1 and, hence, the resource constraint is on
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the number of bandits to be declared active at each time step. He developed an index heuristic
for P n

h (β) for indexable problems of this type in which the solution to the corresponding P n
r (β)

is of index form. The problem with A > 1 is considerably more complex, not least in the
combinatorial complexity of the partitioning of the available resource to the competing bandits.

In the previous paragraph, we observed that r(n)(β) = nr(β) and, hence, that a policy
solving P n

r (β) is obtained by applying a policy solving P 1
r (β) to each bandit in parallel. To

develop a solution to the single bandit problem, we first observe that r(β) is concave in β. We
can see this by considering optimal policies at distinct β1 < β2, and constructing the natural,
feasible randomized policy at any β = θβ1 + (1 − θ)β2 from them. The feasibility of such a
randomization establishes the following:

r(θβ1 + (1 − θ)β2) ≥ θr(β1) + (1 − θ)r(β2).

To develop a solution to P 1
r (β), we pose the W-charge problem for a single bandit as follows:

abandon any constraint on the resource available to the single bandit and, hence, allow the
decision-maker to choose any action from {0, 1, . . . , A} at each time t ∈ N. A resource charge
of Wa per unit time is made whenever action a is chosen and, hence, the net reward rate from
the application of action a in state i is g(i, a) − Wa. We write the average long-run reward
rate achieved under policy σ as rW

σ and rW for the maximal reward rate. It is easy to show that
rW is decreasing in W by a direct policy comparison contradiction argument. Convexity of rW

follows since rW is a piecewise linear hull formed by maximizing (in fact finitely many) affine
functions of W with negative gradients. This together with the concavity of r(β) allows us to
deduce that

r(β) = inf
W

(rW + Wβ), (1)

writing W(β), say, for any value achieving the infimum in (1). Hence, P 1
r (β) is solved by a

policy which solves the W(β)-charge problem.
We require that such policies be of index form, equivalently, that bandits be indexable as

follows.

Definition 1. A bandit is indexable if there exists a family {σW , −∞ < W < ∞} of stationary
policies σW : {1, 2, . . . , k} → {0, 1, . . . , A} such that

(i) σW is optimal for the W -charge problem, and

(ii) for all i ∈ {1, 2, . . . , k}, σW(i) as a function of W is decreasing and onto {0, 1, . . . , A}.
For an indexable bandit and a choice of (i, a) ∈ {1, 2, . . . , k} × {1, 2, . . . , A}, the index
Ii(a) is given by

Ii(a) = inf
W

{W ; σW(i) = a − 1},
where we set Ii(0) = ∞, Ii(A + 1) = −∞.

When W = Ii(a), the policy σW will be indifferent between actions a − 1 and a in state i.
In words, Ii(a) is the fair charge for raising the resource level allocated to the bandit from a−1
to a when in state i. The solution to the W -charge problem is straightforward for indexable
bandits: in the system state i = (il, 1 ≤ l ≤ n) in which bandit l is in state il , allocate resource
level al to bandit l, where

Iil (al + 1) ≤ W < Iil (al), 1 ≤ l ≤ n. (2)

From (1), it follows that a solution to the relaxed problem P n
r (β) for indexable bandits can be

found with an appropriate choice of W = W(β).

https://doi.org/10.1239/aap/1444308876 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1444308876


656 D. J. HODGE AND K. D. GLAZEBROOK

In words, we accumulate resource at bandit l until the fair charge for allocating further
resource falls below resource charge W(β). For W(β) chosen equal to an index value many
solutions exist (through action randomization) to the relaxed problem. However, when later
adapting a relaxed policy solution to the hard constraint problem the actual resource level used
will be critical. In this scenario we will achieve a given instantaneous resource usage level by
choosing W(β) equal to some Ii(a), and randomizing between actions a and a − 1 on bandits
in state i.

We develop a greedy index heuristic for P n
h (β) when bandits are indexable as follows: in

system state i = (il, 1 ≤ l ≤ n) apply action σW(il) to bandit l, 1 ≤ l ≤ n, where W is any
value satisfying

n∑
l=1

σW(il) = nβ.

From (2), we note that at nonindex values of W the solution to P n
r (β) is constant in W , thus

solutions to the above are unlikely. Nonuniqueness of optimal policy at index values, however,
allows us to choose W equal to an appropriate index value and if nβ ∈ Z to treat some bandits
in the same state differently (as proposed by two or more jointly optimal policies) to achieve
the desired resource usage through a deterministic policy.

It is helpful to extend the definition of this greedy heuristic to suitably defined problems
P n

h (β) with nβ /∈ N by use of randomisation. If nβ /∈ N then in system state i we find the
unique W(i) ∈ {Ij (a); (j, a) ∈ {1, 2, . . . , k} × {1, 2, . . . , A}} for which

n∑
l=1

σW(i)+(il) < nβ,

n∑
l=1

σW(i)−(il) > nβ.

Suppose that W(i) = Iim(a) and, hence, that σW(i)+(im) = a − 1. The greedy heuristic will
then, in state i, randomize between the actions {σW(i)+(il), 1 ≤ l ≤ n} and another set of
actions, identical save only that the resource allocated to bandit m is increased by 1. The
randomization will be designed to ensure that the expected resource level chosen is exactly nβ.

We now write R
(n)
ind(β) for the long-run average reward rate achieved when the greedy index

heuristic just defined is applied toP n
h (β). It follows trivially from the definitions of the quantities

concerned that
R

(n)
ind(β) ≤ R

(n)
opt(β) ≤ nr(β). (3)

When A = 1, namely in the restless bandit case, Weber and Weiss [19] were able to show that
when bandits are indexable, we must have

lim
n→∞

R
(n)
opt(β)

n
= r(β), (4)

and, moreover, that if a particular differential equation’s stationary point is a global attractor,

lim
n→∞

R
(n)
ind(β)

n
= r(β). (5)

In Section 3 we extend these results to accommodate A ≥ 1 as is demanded by our general
model for the dynamic allocation of a divisible resource. Of these two results, namely those
extending (4) and (5), respectively, it is the latter which is more challenging and it is certainly
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the case that more serious consideration has to be given to understanding the evolution of the
n-bandits in a scenario in which A > 1. Furthermore, with the counterexample provided in [19]
to universal asymptotic optimality of a greedy index policy recoverable as a special case (with
A = 1), we are guaranteed to need conditions at least as strong as are demonstrated necessary
there. Our condition for the general model here involves a considerably more complicated
differential equation, but one which maintains a similar form which allows for a proof of the
asymptotic optimality of the greedy index policy via a convexity argument.

Plainly, courtesy of (3), the result in (4) is implied by that in (5) while the latter has the global
attractor condition. For this reason, the verification of the former result provides the important
insight that the only reason for possible asymptotic strict inequality of the three quantites in
(3) arises from the first of the two inequalities. This also suggests that our relaxation approach
is promising for future research since we need only focus on closing the suboptimality gap
between policy performance and the value of the easily-solved relaxed form of the problem.

We now proceed to an account of our main theoretical results.

3. Results

The following result states that the time-average version, P n
r (β), of the problem P n

h (β)

yields an asymptotically tight relaxation.

Theorem 1. We have
R

(n)
opt(β)

n
→ r(β) as n → ∞.

Proof. We start by writing π for the equilibrium distribution of a single bandit arising under
use of the optimal policy for P n

r (β), i.e. under the relaxed optimal policy σrel. Note that by
symmetry this is the same for all bandits. The dynamic programming (DP) equation for P n

h (β)

can be written as

b(x) + R
(n)
opt(β)

n�
= max

a∈Â

{
1

n�

n∑
i=1

g(xi, ai) + E[b(x̂) | x, a]
}
,

where � is a uniformization parameter, b(x) is the usual bias function, x̂ denotes the system
state after one (uniformized) timestep under action a, and Â is the set of feasible actions for
the hard constraint problem P n

h (β). By rescaling time we can assume � = 1, without loss of
generality.

We begin by assuming that all uniformized transition probabilities are rational (which implies
that all equilibrium probabilities are rational) and choose an appropriate large n so that nπi ∈ N

for all i. We then consider starting the n-bandit system from a state, x, mirroring π , by having
nπi of the n bandits starting in state i, for each i. Then we can write ni(x) for the integer-valued
number of projects in state i where ni(x) = nπi . We now consider the action of σrel, which
will use a total activation resource of exactly nβ units in state x, since we are in a scaled-up
version of the single bandit equilibrium.

We now consider the (suboptimal) policy for P n
h (β) defined by performing the initially

nondynamic action specified by the relaxed policy σrel in our starting state for a fixed time δ

before switching to an optimal policy for P n
h (β) thereafter. Suppose now that the action defined

by this policy is a∗ = {a∗
1 , a∗

2 , . . . , a∗
n} with each a∗

i ∈ [0, . . . , A]. Then the expected number of
state changes (including null events as a result of uniformization) over this time period of length
δ is nδ. Over the same time the expected reward obtained will be at least δnr(β)−nδ2G, where
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G = 2 max |g(i, a)|, since only rewards incurred after a transition could possibly be incurred
suboptimally (not at rate r(β)) and for each such state the loss in reward is bounded by twice
the maximal reward. Since our δ-policy is suboptimal, we can bound its performance above by

δR
(n)
opt(β) + b(x) ≥ δr(β)n − nδ2G + Ea∗b(Xδ), (6)

where Xδ is the random system state after time δ. We would like to show that |b(x)−Ea∗b(Xδ)|
is o(δ) and o(n).

To do this we introduce the distance d(·, ·) defined by d(x, y) = 1
2

∑ |ni(x) − ni(y)|, i.e.
the minimal number of distinct state components between x and y after any permitted reordering
of y. We can write the number of bandits in state i at time δ as ni(X

δ) = Y1 + Y2 + · · · + Yk

where Yj is the number of time-δ bandits which begin in state j at time 0 and end in state i at
time δ. Writing Pji(a

∗, δ) for the probability that a bandit in state j at time 0 is in state i at
time δ under constant action level a∗ then Yj ∼ Bin(nj (x), Pji(a

∗, δ)).
Over the time interval of length δ only ‘no change’, or ‘a single state change’ are the

events with probabilities not o(δ); in particular, the probabilities are e−δ = 1 − δ + o(δ)

and δe−δ = δ + o(δ), respectively. If we introduce the notation pji(a) for the jump-chain
probability under action a, conditioned on there being one ‘event’ in [0, δ] (note that pjj (a)

may be strictly positive), then we can also find expressions for the expectation and variance of
ni(X

δ) by repeated use of the identity Pji(a
∗, δ) = 1{j=i}(1 − δ) + δpji(a

∗
j ) + o(δ), where 1

is an indicator.
We have

E[ni(X
δ)] = ni(x)Pii (a

∗, δ) +
∑
j �=i

nj (x)Pji(a
∗, δ)

= ni(x)(1 − δ) + δni(x)pii(a
∗
i ) +

∑
j �=i

nj (x)δpji(a
∗
j ) + no(δ).

But x is an equilibrium state satisfying the detailed balance equations and so

∑
j �=i

nj (x)pji(a
∗
j ) = ni(x)(1 − pii(a

∗
i )), (7)

from which it easily follows that E[ni(X
δ)] = ni(x) + no(δ). Similarly, simplification allows

us to write var(ni(X
δ)) = ∑

i var(Yi) = 2δni(x)[1 − pii(a
∗
i )] + no(δ) with use of (7). These

allow us to deduce that

E[d(x, Xδ)] = 1

2

∑
i

E|ni(x) − ni(X
δ)|,

≤ 1

2

∑
i

√
var(ni(Xδ)) + no(δ)

= 1

2

∑
i

√
2δni(x)[1 − pii(a

∗
i )] + no(δ)

≤ B
√

δn + no(δ) (8)

for some constant B. Therefore, we have obtained a bound on E[d(x, Xδ)] which is of order
√

n.
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Consider now x, y with d(x, y) = 1 and suppose that xl �= yl . Further introduce the
notation σ h

opt for an optimal policy for P n
h (β). Now apply σ h

opt, starting in state x, and couple
the actions with those acting on state y. After the first transition (real or virtual) of bandit l,
the interpretation of the bias function as the difference in long-term rewards between different
starting states yields

b(x) − b(y) ≥ −G + Eσ h
opt

[b(x̂) − b(ŷ)], (9)

where x̂ and ŷ are the states after the first transition. Since we coupled the processes, we know
that d(x̂, ŷ) ≤ 1 almost surely. We would like P(x̂l = ŷl) > 0 but with one transition this may
not be true. Assumed irreducibility ensures that there exists r ∈ Z

+ such that after r transitions
there is a path of positive probability from xl to yl . Thus, if we denote by x̂(r) the system state
after r iterations (starting from state x) of potential state l changes then we can find a constant
0 < ω = P(x̂

(r)
l = ŷ

(r)
l ). Indeed uniformization, and, therefore, null transitions, ensure that for

r , we can choose ω = minx,y : d(x,y)=1 P(x̂
(r)
l = ŷ

(r)
l ). Also, the r-step version of (9) is

b(x) − b(y) ≥ −rG + Eσ h
opt

[b(x̂(r)) − b(ŷ(r))].
By considering the pair (x, y) which minimise the left-hand side of this equation, we obtain

min
x,y : d(x,y)=1

{b(x) − b(y)} ≥ − rG

ω
.

To extend to more general (x, y) with d(x, y) = d > 1, we merely construct a sequence
of vectors x = v0, v1, v2, . . . , vd−1, vd = y with d(vi , vi+1) = 1 for all i. Then expand
b(x) − b(y) as b(v0) − b(v1) + b(v1) − b(v2) + · · · − b(vd) to yield

b(x) − b(y) ≥ − rGd(x, y)

ω
. (10)

Combining (6), (8), and (10), and dividing through by nδ, we have

R
(n)
opt(β)

n
≥ r(β) − δG + Ea∗ [b(Xδ) − b(x)]

nδ

≥ r(β) − δG −
(

rG

ω

)
1

nδ
Ea∗ [d(Xδ, x)]

= r(β) − δG − rG

ω

(
o(δ)

δ
+ B√

nδ

)
.

Thus, choosing small δ and then letting n → ∞ (through appropriate values), we obtain
lim R

(n)
opt(β)/n ≥ r(β), from which we deduce equality since we already know that R

(n)
opt(β) ≤

nr(β).

Remark 1. One real difference of note from the account of [19] is the correction that two states
x and y with d(x, y) = 1 need not have a positive probability of single-step intercommunica-
tion. This cannot be remedied by a perturbation of the 1-step transition matrix (replacing all 0
entries by ε) since then ω−1 may be unbounded.

Remark 2. We thus know that the solutions to P n
h (β) and P n

r (β) agree, on a ‘per bandit’
average reward scale. The important outstanding question, and the harder question, is whether
implementing a greedy index-based heuristic, when the bandits are indexable, achieves the
same asymptotic performance of average reward per bandit per unit time.

https://doi.org/10.1239/aap/1444308876 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1444308876


660 D. J. HODGE AND K. D. GLAZEBROOK

Notationally, since we shall treat all bandits of identical state identically we change our state
variable from x ∈ {1, . . . , k}n to z(n) ∈ [0, 1]k where z

(n)
i is the proportion of the n-bandits

which are in state i. The action space can appropriately be rewritten too in terms of actions
taken as functions of the bandit state i, not bandit number l.

For a quick example, suppose that β = 0.45, k = 4, and A = 2 with I4(1) > I4(2) >

I3(1) > I2(1) > I3(2) > I1(1) > I2(2) > I1(2). Suppose that the system is in state
z(n) = {0.3, 0.4, 0.2, 0.1}, then the basic action under the greedy index policy is {0, 0, 1, 2}
since 0.1 + 0.1 + 0.2 < 0.45 < 0.1 + 0.1 + 0.2 + 0.4 and a randomly chosen bandit in state 2
would randomize between action 1 and action 0. The exact nature of the extra action would
depend upon n, but would involve some bandits in state 2 taking action a = 0 and some taking
action a = 1 and possibly one randomizing between the two actions.

We now introduce a result of Mitra and Weiss [12], which we shall use later in the exposition,
but appears now to contextualize the approach. This is a result bounding the time-average
deviation from an equilibrium distribution of a family of continuous-time Markov chains. The
family of processes is that which arises by speeding up time and scaling down jump sizes
accordingly (speed up time by factor n (the number of bandits) and scale down jump sizes to
1/n) from a single chain. We consider the evolution of the processes (z(n)) described above as
n → ∞ under application of the greedy index policy, using this result. For fixed n, and each
system state z(n), we introduce the notation �ij (z

(n)) for the individual rate at which one of the
n-bandits transitions from i �→ j under the actions taken by greedy index policy σind in state
z(n). We further write �(z(n)) for the matrix of values {�ij (z

(n))}. We shall show that the fluid
limit of the z(n) processes exists and satisfies the equation dz/dt = �(z)z, given explicitly in
(13), below.

Theorem 2. (Mitra and Weiss [12].) Suppose that there exists a probability distribution ζ such
that for every initial probability distribution z(0) the fluid approximation dz/dt = �(z)z has
z(t) → ζ , and the transition rates �ij (z) are bounded and Lipschitz-continuous. Then for
every ε > 0 there exist positive constants c1 and c2 such that for any initial state z(0),

lim
t→∞

1

t

∫ t

0
P(‖z(n)(u) − ζ‖2 > ε | z(0)) du ≤ c1 exp(−nc2).

We will use this to show that if all paths in the fluid limit process of the system evolving under
the greedy index policy tend to a unique equilibrium then asymptotically the average reward
per bandit under σind approaches the average reward in the fluid limit problem. Finally, we can
then observe that the fluid limit problem has r(β) as its limiting average reward.

Theorem 3. Let π be the equilibrium distribution of a single bandit operated under the relaxed-
constraint optimal policy σrel. Suppose that the σind fluid limit differential equation (13) has
a global attractor. Then if the n-bandits are indexable, (13) has the unique fixed point π and
z(t) → π for all z(0). Furthermore, we have R

(n)
ind(β)/n → r(β) as n → ∞, β ∈ (0, A).

Proof. In contrast to [19, Theorem 2], we have β ∈ (0, A) as opposed to (0, 1), but more
importantly the natural greedy index policy is not just a decision of which bandits to activate.

Given an ordering on indices, such as the one above, we define a sequence of linear functions
f a

i (z) as follows:

f a
i (z) =

k∑
j=1

c(i, a, j)zj ,
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where c(i, a, j) = ∑A
â=1 1{Ij (â)>Ii (a)} . In words, c(i, a, j) is the number of state j indices

which are greater than Ii(a). Thus, in the example above, f 1
4 (z) = 0, f 2

4 (z) = z4, and
f 2

2 (z) = 2z4 + 2z3 + z2 + z1. If we write pa
i (z) for the probability that a randomly chosen

bandit in state i receives an activation level of at least a, in system state z, then

pa
i (z) = min{zi, max[0, β − f a

i (z)]}
zi

for zi > 0, (11)

setting pa
i (z) = 0 when zi = 0 for completeness. Note that pa

i (z) is decreasing in a. Since
f a+1

i (z) − f a
i (z) is a nonzero polynomial in zi with nonnegative coefficients, if zi > 0 then

pa
i (z) ∈ [0, 1) implies that pa+1

i (z) = 0.
The expected activation level applied to a state i bandit under σind, and, therefore, to all

bandits in zi is then given by

ui(z) :=
A∑

a=1

pa
i (z).

For a vector h ∈ R
A, we now define

φi(z, h) =
A∑

a=1

[pa
i (z) − pa+1

i (z)]ha, (12)

then
∑

i φi(z
(n)(t), g(i, ·)) is the instantaneous reward rate at time t , under the greedy index

heuristic σind.
To identify the fluid limit model, we note that transitions in z(n) are all of the form z(n) �→

z(n) + (1/n)eij for some bandit states i and j , and where eij is a vector with −1 in the ith
component and +1 in the j th component. If transitions occur at rate λij (a) for a bandit in state
i under action a, then the rate of eij transitions under σind will be

nz
(n)
i

∑
a

[pa
i (z) − pa+1

i (z)]λij (a) = nz
(n)
i φi(z

(n), λij (·)),

writing λij (·) for the vector {λij (1), λij (2), . . . , λij (A)}. Since the n-dependence in all rates
is purely linear, the relationship between z(n) and z(2n), for example, is that the latter has jumps
at twice the rate of the former, but jumps are half the size. The natural limiting process of the
sequence of z(n)(t) is then determined by the differential equation

dz

dt
=

∑
i,j

ziφi(z, λij (·))eij . (13)

We note in passing, with a slight abuse of notation, that starting from z := π , dz/dt = 0 is just
the detailed balance equations of the relaxed policy on a single bandit since from π the relaxed
policy uses an expected β resources per bandit at all times. So π is a stationary point of (13).

We shall see that the constraint that a policy uses nβ resource on average per unit of time
uniquely identifies an index policy implementation. It will then follow that there can only exist
one stationary point of (13) and, hence, that we have a unique equilibrium distribution for the
optimal index policy for the relaxed problem. By being a 0 of the right-hand side of (13),
we necessarily have a solution to the detailed balance equations of the relaxed policy with nβ

constraint, and, thus, an equilibrium distribution for the relaxed policy. Any such 0 of (13) is,
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therefore, an optimal equilibrium of a W -charge problem, in particular a W for which nβ is
the resulting resource usage per unit time. Recall that the gradient of the W -charge problem
solution (in W ) is the resource used, and as such is decreasing in β since r(β) is concave in β

and our randomizations induce resource usages strictly decreasing in β. The W -charge problem
decomposes as n single bandits, each evolving under an optimal W -charge policy. Here, we
may use the assumption, that the induced chain under the optimal index policy is irreducible,
to deduce our desired unique equilibrium.

Now we may use our assumption that the limit set is a global attractor to invoke Theorem 2,
taking ζ = π . We start by observing that the term in the integrand

∑k
i=1 φi(z

(n)(s), g(i, ·))
below yields the instantaneous σind rewards, which are piecewise-linear with only finitely
many changes in gradient and, thus, clearly satisfy the continuity conditions of Theorem 2.
Furthermore, the entire integrand below is bounded, since rewards themselves are bounded.
We now consider

R
(n)
ind(β)

n
− r(β) = lim

t→∞
1

t

∫ t

0

k∑
i=1

[φi(z
(n)(s), g(i, ·)) − φi(π , g(i, ·))] ds.

Now, given η > 0, the continuity of φ means we can find an ε > 0 such that

sup
z:‖z−π‖<ε

k∑
i=1

|φi(z, g) − φi(π , g)| <
η

2
.

Using this ε > 0 in Theorem 2, we have

lim
t→∞

1

t

∫ t

0
P(‖z(n)(u) − π‖2 > ε | z(0)) du ≤ c1 exp(−nc2)

for some positive constants c1, c2. Thus, the time-averaged proportion of time that a z(n) path
spends outside a small region around π decays exponentially with n. Then we just choose large
enough n0 such that Gc1 exp(−n0c2) < η/2, and obtain

∣∣∣∣R
(n)
ind(β)

n
− r(β)

∣∣∣∣ < η for all n > n0.

Thus, we have shown that limn→∞ R
(n)
ind(β)/n = r(β). This concludes the proof of Theorem 3.

In conclusion, we have seen that under the condition that (13) has a single-point limit set,
and assuming the bandits are indexable, the asymptotic performance of the greedy index policy
agrees with both the original hard constraint problem and the relaxed problem:

lim
n→∞

R
(n)
ind(β)

n
= lim

n→∞
R

(n)
opt(β)

n
= r(β).

4. Optimality in three dimensions

Having established Theorem 3, we are now able to present a concrete set of problems for
which asymptotic optimality of index policies can be demonstrated to hold. We shall do this
by way of a study of the resulting fluid limit differential equation, establishing that the unique
stationary point is indeed a global attractor. The beginning of this section is thus an extension
of [20] to our multi-action bandits.
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We consider bandits evolving on just k = 3 states. We know from [19] that when k = 4, even
for A = 1 there are examples where asymptotic optimality does not hold with index policies
and indexable bandits, so there is no hope of proving universal optimality of index policies
for k > 3. Although we restrict ourselves to k = 3, we will, however, permit any number of
possible activity levels A.

What follows is therefore an extention of Weber and Weiss [20], in which the authors prove
that for three-state, two-action bandits, indexability is a sufficient condition for asymptotic
optimality of the greedy index heuristic. We do this by establishing the globally attractive nature
of the unique solution to the fluid limit equation, and, therefore, are able to invoke Theorem 3.
The irreducibility assumption is still required; however reducible three-state bandits are clearly
uninteresting in this problem. We show for any value of A, and any resource constraint value
β ∈ (0, A), that in the case of indexable bandits the greedy index heuristic achieves the
asymptotically optimal reward.

Lemma 1. With n bandits in a normalized system state z(n) = {z(n)
1 , z

(n)
2 , z

(n)
3 } the net rate

of flow into (or out of) state 1 is an affine function of z
(n)
1 , z

(n)
2 , and z

(n)
3 . Furthermore, after

substituting z
(n)
2 = 1 − z

(n)
1 − z

(n)
3 , the coefficient of the z

(n)
1 term is nonpositive.

Proof. For a given state z(n), the rate of flow out of state 1 is

z
(n)
1 φ1(z

(n), λ12(·)) + z
(n)
1 φ1(z

(n), λ13(·)),
and the rate of flow into state 1 is

z
(n)
2 φ2(z

(n), λ21(·)) + z
(n)
3 φ3(z

(n), λ31(·)).
The form of φi , given in (11) and (12), is such that for any vector z, ziφi(z, ·) is affine in the
components of z. This establishes the first claim of the lemma.

For the second part, suppose that in state z the greedy index action is a = {a1, a2, a3} then
net flow into state 1 is

(λ31(a3)z3 + λ21(a2)z2) − (λ12(a1)z1 + λ13(a1)z1)

= (λ31(a3) − λ21(a2))z3 + λ21(a2) − λ21(a2)z1 − λ12(a1)z1 − λ13(a1)z1.

As all z1 terms have nonpositive coefficients, this proves the result.

The z1 coefficient of flow into state 1 could be 0 even when z1 �= 0 if λ21(a2) = λ12(a1) =
λ13(a1) = 0. However, the z1 coefficient out of state 1 and the z3 coefficient out of state 3 cannot
simultaneously be 0 as then we would have zero rate of flow out of state 2 too (i.e. λ21(a2) =
λ23(a2) = 0) and we would be in a state where all transition rates were 0, contradicting our
irreducibility assumption.

Theorem 4. Assume that we have n copies of an indexable bandit on three states (k = 3), with
any fixed β ∈ (0, A). Then the fluid limit approximation for z, (13), has a globally attractive
fixed point. Therefore, the proposed greedy index policy is asymptotically optimal as n → ∞.

Proof. We shall consider the solutions to (13), noting that z(t) = {z1(t), z2(t), z3(t)} with
z1(t)+z2(t)+z3(t) = 1, so we can eliminate z2(t) and regard z(t) as a two-dimensional vector.
Having assumed an indexable bandit we can order the 3A indices, I1 ≥ I2 ≥ · · · I3A, where
each In = Ii(a) for some i ∈ {1, 2, 3} and some a ∈ {1, 2, . . . , A}. The form of φ (see (11)
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and (12)) is such that there are 3A regions of distinct affine forms taken by the derivatives of
z1 and z3, determined by which In lie above or below the service charge W which describes a
particular greedy action. The form of (13) is such that on each of these 3A regions we have a
constant 2-vector cm and constant 2 × 2-matrix Am, with m = {1, 2, . . . , 3A}, satisfying

(
ż1

ż3

)
= cm + Am

(
z1

z3

)
. (14)

Now, by Lemma 1, (Am)11 ≤ 0, and by the same argument we also have (Am)22 ≤ 0.
The comment after the lemma allows us to invoke Bendixson’s criterion which says that if
ż = (f1(z1, z3), f2(z1, z3)) (for continuously differentiable f ) and ∇ · f < 0 then there exist
no periodic solutions. The observation that net flows on the boundary are always strictly towards
the interior of the state-space guarantees that no trajectories ever leave it. An application of
the Poincaré–Bendixson theorem in the plane (which classifies solution trajectories) together
with the fact that there are no limit cycles, excludes every case except that the already identified
unique stationary point must be the limit of all trajectories. Thus, the asymptotic performance
under the greedy index policy is optimal, by Theorem 3.

4.1. Two worked examples

As a demonstration of these results, we now present two examples of three-state irreducible
and indexable bandits for which the greedy index heuristic is now known to be optimal. Consider
a collection of n identical bandits on states i ∈ {1, 2, 3}. Each bandit has three levels of action,
named a ∈ {0, 1, 2}. Thus, if all bandits receive maximal actions we would use 2n units of
resource per unit time. In these examples we shall use β = 5

4 . The only particularly observable
impact of a choice of β is that together with the index ordering it determines which of the 3A

potential regions of differing behaviour (identified in (14)) have full rank and which are empty.
This setup models, for example, a scenario where bandit states can represent current tasks of
three potential priority types: high, medium, and low. Furthermore, resources can be prioritized
to work at differing rates on the different bandits, perhaps to prioritize finishing high-priority
jobs earlier.

Example 1. For each bandit we need to describe two functions: the transition rates between
all pairs of states as functions of actions, and the reward rates for each state and action. We
shall use

λij (a) = α(a)vj + i

3
, (15)

where v ≡ { 1
4 , 1

2 , 1
4 } and {α(0), α(1), α(2)} ≡ {1, 2, 5}. The α(·) function respresents the rate

at which those actions complete work at the bandits, then after service is complete the vector
v respresents the differing probabilities with which the bandit transitions. The additional term
on the end of (15) could be seen as a state-dependent abandonment rate.

Secondly, we need to define the reward rates which we take to be g(i, a) = giα(a), where
g ≡ {1, 2, 5}.

Under these choices we find the following index ordering:

I3(1) > I2(1) > I3(2) > I1(1) > I2(1) > I1(2),

in particular we have index values given in Table 1. The table also provides the optimal policies
σW for the W -charge problem for the ranges of W determined by successive index values.
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Table 1: Index values and optimal policies for the W -charge problem.

Index name W -value Policy σW

— −∞ 2, 2, 2
I1(2) 0.965 1, 2, 2
I2(2) 1.083 1, 1, 2
I1(1) 1.857 0, 1, 2
I3(2) 1.951 0, 1, 1
I2(1) 2.159 0, 0, 1
I3(1) 4.288 0, 0, 0

— ∞ —

Figure 1: Phase plane diagram of (z1, z3) with fixed point around (0.422, 0.158) from Example 1.

There are a number of ways to calculate the index values in Table 1. For an example as
small as this it is feasible for the reader to enumerate the 27 stationary deterministic policies
π1, . . . , π27 for a single bandit and for a given W value find the optimal policy from

max
1≤j≤27

[R(πj ) + WA(πj )],

where R(π) is the expected long-run reward under π and A(πj ) is the long-run average action
level used under π .

Under these circumstances we solve the fluid limit differential equation (in GNU OCTAVE),
over four distinct regions. The constraint β = 5

4 ensures there is always greedily allocated
resource for the first unit in state 1 and state 2 bandits, but then there are two further potential
regions of different behaviour of the fluid limit differential equation.

Keeping the same notation of (z1, z2, z3) for the proportions of bandits in each of the three
states, and reducing to two states by using z2 = 1 − z1 − z3, the resulting phase plane diagram
of solutions in the (z1, z3) plane is shown in Figure 1, with a single global attractor.
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Example 2. As a second example we modify the transition rates to make the abandonment rate
multiplicative with the natural rate v associated with the states. We therefore use

λij (a) = (α(a) + i)vj

instead, with the parameters as defined in Example 1. This modification leads to no change in
the relative ordering of the six indices, though it does, of course, give rise to a new (but similar)
phase plane diagram. Again, by Theorem 4 the observed stationary point is a global attractor
and the greedy index policy is asymptotically optimal.

5. Conclusion

We have taken the approaches set forth in [19], and extended them to a much wider range
of problems. Specifically, we show that in problems for which multiple activation levels are
permitted at any bandit, indexability (in the new extended multi-action sense) is a critically
useful property in finding asymptotically optimal policies. One question we have addressed
is the stability of the unique solution to the proposed fluid limit differential equation. We
know it is not always a global attractor, but we also know that finding counterexamples even
in the single-action cases considered by Weber and Weiss is challenging. We have, however,
extended their later result [20] to the multi-action case. So we do know that on three-state
bandits indexability suffices to establish asymptotic optimality of the greedy index heuristic.

Of those works which have drawn on [19] since its publication as support for their approaches,
a significant number make only a cursory reference because of the required simplification of
their own problem to one with an ‘active or passive’ action set. In expanding the scope of
the result to a wider class of restless bandit problems, we present a theoretical grounding
for observed excellent performances of index-based heuristics in a large variety of problems
observed in the literature. This is particularly the case in recent work of [6] on multi-action
RBs where performance of greedy index heuristics has been seen, at times, to be astonishingly
strong even for small numbers of bandits.

A final note on an extension to our main result is that our assumption of identical bandits
is not necessary. If our n (as n → ∞) bandits are drawn from a finite (d , say) collection of
different bandit types, then it is apparent that we could instead define z(n) not as (z1, z2, . . . , zk)

but instead take a vector in [0, 1]kd keeping track of proportions of the n-bandits of each type
in each state. Since the optimal solution to the relaxed problem, when the bandits are all
indexable, is still of the same greedy index form and the form of our greedy index heuristic is
unchanged, we obtain the same results where we effectively just have z(n) defined on a state
space of dimension kd instead of k and we have A indices identical for all bandits represented
in each of these kd components. The only requirement we need make is that as n → ∞ then
the proportions of the n-bandits of each type remain constant, so that the z(n) processes can
indeed be seen as sped up copies of each other with smaller jumps—all under our greedy index
policy.
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