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1. Introduction. In [6], Blyth and Varlet characterize those algebras having only
principal congruences in some well known classes of algebras having distributive lattice
reducts. In particular, they characterize those Stone algebras having only principal
congruences. In this paper we characterize those quasi-modular p-algebras having only
principal congruences and show on specializing that distributive p-algebras having only
principal congruences can be described in exactly the same way as Blyth and Varlet
described Stone algebras having the same property. The same problem is addressed for
some distributive double p-algebras.

2. Preliminaries. A (distributive) p-algebra is an algebra (L; v, A, *,0,1) in which
the deletion of the unary operation* yields a bounded (distributive) lattice and * is the
operation of pseudocomplementation; that is, x <a* iff a Ax =0. A p-algebra is said to
be quasi-modular if it satisfies the identity

[(xAay)vz¥lax=(x Ay) v (z* Ax).

This important class of p-algebras was introduced by T. Katrifidk in [11]; it properly
contains the class of modular p-algebras and is properly contained in the class of
p-algebras satisfying the identity x = x** A (x v x*). See [12] for an overview. We assume
that the reader is familiar with the standard rules of computation in p-algebras. If, for any
p-algebra L, we write B(L)={xe L:x=x**}and D*(L)={x e L: x** =1} then (B(L);
U, A,*0,1) is a Boolean algebra when a Ub is defined to be (a* A b*)*, for any
a,beB(L), and D*(L) is a filter of L. The map f : L— B(L) defined by B(x) =x**is a
homomorphism from L onto B(L) and its kernel g is called the Glivenko congruence of L
so that a=b(¢p) iff a* = b*.

A (distributive) double p-algebra is an algebra (L; v, A,*, *,0,1) in which the
deletion of the unary operation * yields a (distributive) p-algebra and, for everyae L, a*
is the dual pseudocomplement of a; that is x =a* iff a v x = 1. For the standard rules of
computation in double p-algebras we refer the reader to [3]. For any a in a double
p-algebra L, we define elements a”**) € L by a®** =g and a**V** = g**®)** ‘for any
integer k=0. Elements a"**) are defined analogously. If L is distributive then
a" VN < g"(+ Y for any n < w, and L is said to have finite range if, for any a € L, there
exists n < @ such that @™+ = g"**); equivalently, if a"**) belongs to Cen(L), the
centre of L, for some n < w.

If, for any double p-algebra L, we write D*(L)={x e L :x** =0} then D*(L) is an
ideal of L and the set C(L)=D*(L)YND™(L) is called the core of L. A filter F in a
double p-algebra is said to be normal if f** € F whenever fe F. If F is a filter in a
p-algebra or double p-algebra L then ©(F) will denote the smallest p-algebra or double
p-algebra congruence of L collapsing F and 6,,.(F) will denote the corresponding
(lattice) congruence of the lattice reduct of L. If L is a p-algebra or double p-algebra then
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6(a, b) will denote the principal p-algebra or double p-algebra congruence collapsing a
pair a, b € L and if S is any sublattice of the lattice reduct of L then 8,, 5(a, b) will denote
the principal (lattice) congruence of § collapsing a pair a, b € S.

The relation © defined on a double p-algebra L by a=b(P) iff a*=b*anda™ =b"
is a congruence, called the determination congruence of L, and the members of L/® will
be referred to as determination classes of L. For example, if the core of L is non-empty
then it is a determination class of L. For any algebra A, be it a lattice, p-algebra or
double p-algebra, Con(A) will denote the congruence lattice of A. Given such an algebra
A, subalgebra S of A and congruence 6, of A, 6 | S will denote the restriction of 8 to §,
and [a]6 will denote the class of 6 containing a € L. A is said to have the principal join
property , abbreviated P.J.P., if the join of any pair of principal congruences of A is again
principal.

For all other unexplained notation and terminology we refer the reader to [2], [7] or
[9].

3. Some p-algebras having only principal congruences. Our objective in this section
is to describe those quasi-modular p-algebras whose congruences are all principal. In
order to effect this we will first list some key results about principal congruences on
p-algebras the proofs of which may be found in [5].

Lemma 3.1. Let L be a p-algebra, x,ye L, x <y and x = y(¢@). Then
(l) G(X,_Y) = 6latL(-x’y)
and if , in addition, L is quasi-modular then
(ii) (a) B(x,y)=0(x vx*,y vx¥*),
(b) 61 r(d,€) | D*(L) = Ba p+)(d, €), for any d, e € D*(L).

LemMma 3.2. A congruence relation of a p-algebra L is principal iff it is of the form
6(0,a) v 6(d, e), for some ae B(L), d,eec L with d<e and d=e(p). If L is quasi-
modular then d and e may be chosen from D*(L).

We are now sufficiently well-armed to tackle our immediate objective.
LemMma 3.3. If a p-algebra L has only principal congruences then B(L) is finite.

Proof. 1f L has only principal congruences then so does B(L). Indeed, B(L) is a
homomorphic image of L and it is straightforward to show that any homomorphic image
of an algebra having only principal congruences enjoys the same property. However, it is
well known that principal congruences of Boolean lattices are complemented and that the
congruence lattice of a Boolean lattice B is Boolean iff B is finite. Therefore B(L) is
finite.

Lemma 3.4. If a quasi-modular p-algebra L has only principal congruences then so
does D*(L).

Proof. Let ¢ be a congruence of D*(L) and let us define a congruence ¥ of L by
Y=v {0(d,e):d=e(y)}. By hypothesis, ¥ is principal and it is below @. Therefore
Y = 61..(p, q), for some p,q € D*(L), by Lemma 3.1(i) and (ii)(a). Thus ¢ | D*(L) =
61t 0+ (P> ), by Lemma 3.1(ii)(b).

However, on using Lemma 3.1 and the fact that D*(L) is a convex sublattice of the
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lattice reduct of L, we see that

B p (P> 9) = (V {61 L(d, €) :d =e(¥)}) [ D*(L)
=V {6u(d,e) I D*(L):d=e(yp)}
=V {Bup-w)(d, €) : d=e(Y)} = y.
Therefore D*(L) has only principal congruences.

LeEmMA 3.5. Let L be a quasi-modular p-algebra. If B(L) is finite and D*(L) has only
principal congruences then so does L.

Proof. Let 68 be a congruence of L. Then 6 is a join of principal congruences of L
and so, by Lemma 3.2, there exist a, € B(L) and d,,, e, € D*(L) with d, <e,, a €I, such
that

0=v{6(0,a,):ael}v v {6(d,,e,): xel}.
Since B(L) is finite, there is a finite subset J of I such that
v{60,a,):ael}= v {6(0,a,): xeJ}=06(0,a),

where a=(v{a,:ael})**. Also, V{0 p-w)ds er):ael}=0p-)d,e),
for some d,ee D*(L) with d=<e, since D*(L) has only principal congruences.
It is straightforward to deduce that v {0,,,(d,,e.): @€l}=06,,(d,e) and so
8= 6(0,a) v 6(d, ) which is principal by Lemma 3.2.

Summarizing the contents of Lemmas 3.3, 3.4 and 3.5 we have:

THEOREM 3.6. A quasi-modular p-algebra L has only principal congruences iff B(L)
is finite and D*(L) has only principal congruences.

There exist infinite modular p-algebras having only principal congruences; consider,
for example, any infinite bounded simple modular lattice with a new zero adjoined and
construed as a p-algebra. As we will soon see, this contrasts sharply with the situation for
distributive p-algebras. Henceforth, we will denote by J(L) the poset of non-zero
join-irreducibles of a finite distributive lattice L and write /(J(L)) for its length.

The next lemma was proved by Blyth and Varlet in [6] and its successor was proved
in [5].

LemMA 3.7. A distributive lattice L has only principal congruences iff it is finite and
lJ(L)) =1

LemMMA 3.8. A distributive p-algebra L has an (n + 1)-element chain in its poset of
prime ideals iff D*(L) has an n-element chain in its poset of prime ideals.

As an immediate consequence of Theorem 3.6, Lemma 3.7 and Lemma 3.8 we have
the following extension of Blyth and Varlet’s characterization of Stone algebras having
only principal congruences:

CoroLLARY 3.9. Let L be a distributive p-algebra. Then the following are equivalent:
(i) L has only principal congruences,

(i) L is finite and I(J(D*(L))) =<1,

(iti) L is finite and I(J(L)) <2.
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4. Some double p-algebras having only principal congruences. Unlike the situation
for distributive p-algebras, there are infinite distributive double p-algebras having only
principal congruences. Of course, if an algebra has only principal congruences then it has
the P.J.P. and if a finite algebra has the P.J.P. then it has only principal congruences.
Distributive double p-algebras having the P.J.P. have been described variously in [1] and
we record from there the following:

THEOREM 4.1. Let L be a distributive double p-algebra. Then the following are
equivalent:
(1) L has the P.J.P.,
(ii) every determination class of L has the P.J.P.,
(iii) there is no 5-element chain in the poset of prime ideals of L.

Next, we list some properties of congruences which will be required in our study of
distributive double p-algebras having only principal congruences; their proofs may be
found [4], [3], [5), [1], [5] and [1], respectively.

Lemma 4.2. Let L be a distributive double p-algebra, F be a normal filter of L and 6
be a congruence of L. Then
(1) O(F) = Oy, (F),
(it) 6 = O(cok 8) v (8 A @), where cok 6 =[1]80,
(iil) cok(6 v y)=cok 8, for any congruence p < ®,
(iv) 0 is principal iff it is of the form 6(a,1) v 6(e,f), for some ae L and e, f € L
with e < f and e = f(®),
(v) 6(a, 1) = O(N(a)), where N(a) is the principal normal filter generated by a € L,
(vi) ife,feL, e<fand e=f(®) then

B(G,f) = BlatL(e’f)
=0nf",fAf7)
=0((e*Ax)ve,(e*Ax)Vf)), foranyxel.

THEOREM 4.3. Let L be a distributive double p-algebra for which D*(L) is a principal
ideal. Then the following are equivalent:
(1) L has only principal congruences,
(2)(i) every normal filter of L is principal and
(i) every determination class of L has only principal congruences.
(3)(i) every normal filter of L is principal,
(ii) every determination class of L is finite and
(iti) there is no 5-element chain in the poset of prime ideals of L.

Proof. Suppose that (1) holds. Let F be a normal filter of L. Then ©(F) is principal
and so there exist a, e, f € L with e <f and e =f(®) such that ©(F) = 6(a, 1) v O(e, f),
by Lemma 4.2(iv). By Lemma 4.2(i), (iii) and (iv), F =cok ©(F)=cok(68(a,1)v
B(e, f)) = cok(6(a, 1)) = cok(O(N(a)) = N(a) and so (2)(i) holds.

Next, suppose that C is a determination class of L. Let y be a congruence of C and
let us define a congruence ¥ of L by ¥ =v {8(c,d):c=d(y)}. By hypothesis, ¥ is
principal and so it is compact. Therefore 9 = v {8(c;,d;): 1<i=<n}, for some ¢;, d; € L
with ¢;=d,(y) and 1<i<n. Now ¢;=d(®) and so 6(c;, d,)= 0., .(c;, d;), by Lemma
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4.2(vi). As a consequence of this and the fact that C is a convex sublattice of L, we have
Y1 C=(V {Ourlc,d):1<isn}) | C=v {O,.(c;,d) | C:1<is<n}
=V {6 lc,d):1=si<n}.

But L has the P.J.P. and therefore so does C, by Theorem 4.1. Thus, ¥ | C = 6,,,(p, q),
for some p,q € C. However, arguing as above, ¢ | C= v {0, c(c,d) :c=d(y)} = y.
Therefore ¢ = 8, (p, q). It follows that C has only principal congruences. Thus, (1)
implies (2).

Suppose now that (2) holds. Then 3(ii) holds by virtue of Lemma 3.10, and 3(iii)
holds by virtue of Theorem 4.1. Thus (2) implies (3).

Finally, suppose that (3) holds. Let 8 be an arbitrary congruence of L. By Lemma
4.2(ii), 6=0(cok 8) v (6 A D). By 3(i), cok 8§ =N(a), for some aelL, and so
O(cok 8) = 6(a, 1), by Lemma 4.2(v). Furthermore, 8 A ® is below ® and so there
is a family {(e,.fy):a€l}c® with e,<f,, for all ael, such that O AP =
v {0(es, f,) : a € I}. We can assume that e,, f, € D*(L), for all « €1, by Lemma 4.2(vi).
By hypothesis, D*(L) = (p], for some p € L, and, for each a €1, 8(e,, f,) = 0(pa, qa),
where p, = (eX Ap) ve, and q, = (el A p) v f,, by Lemma 4.2(vi). Now observe that, for
any a,Bel, p,eD*(L) and pr*=[(ex ve,) Ap]** =(ek v e,)*™ Ap**=p**  since
exve,eD(L), so that py*=pg*. Therefore {p,,q,:a€l} is contained in some
determination class of L. By 3(ii), there is a finite subset J of I such that
v{B(es, fy): wel}=v {6(pa, q.): ®€J}. However, L has the P.J.P., by 3(iii) and
Theorem 4.1, and so there exist p,gelL with p<sg and p=gq(®P) such that
v{0(ps,qs): ®€J}=6(p,q). Summarizing, we have 8 =6(a,1) v 6(p, q), which is
principal by Lemma 4.2(iv). Thus, L has only principal congruences.

COROLLARY 4.4. Let L be a distributive double p-algebra having finite range and
D™ (L) principal. Then L has only principal congruences iff the following conditions hold:

(i) Cen(L) and every determination class of L is finite,

(ii) there is no 5-element chain in the poset of prime ideals of L.

Proof. Suppose that L has only principal congruences and let 4 be a congruence of
Cen(L) Define a congruence 1/1 of L by y=v {6(a,b):a=b(y)}. We claim that

} Cen(L) = . Clearly, y <y | Cen(L). If z=w(y | Cen(L)) then there is a sequence
z—xo,x,,.. ,X,=w in L such that x;_, =x,(6(a;, b;)), for some a;, b; e Cen(L) with
a;=b(y), 1 sisn. Now, for each i with 1 <i=<n, there exists an integer m; such that
xM+*) e Cen(L), since L has finite range. Define m =max{m,:1<i<n}. Then z =
27CN =™ and, for all i with 1<i<n, x7(*=x""**(0(a;, b;)). Thus,
z=w(v {6(a,b) | Cen(L):a=b(y)}). But Cen(L) is a subalgebra of L and so
0(a, b) | Cen(L) = Bcenr)(a, b), by the congruence extension property which is known
to hold for the variety of distributive double p-algebras (see [10]). Therefore z=
w(v {BCen(L)(a b):a=0b(y)}); in other words, z =w(y). Thus, y | Cen(L) = y. How-
ever, v is principal and so it is compact. Therefore ¢ = v {6(a, b) : (a, b) € 8}, for some
finite subset 6 c . Arguing as above, we have ¥ | Cen(L) = v {Ocency(a, b) : (a, b) € 6}
and so v is a principal congruence of Cen(L), since Boolean lattices have the P.J.P..
Therefore Cen(L) has only principal congruences and so it is finite. Thus, if L has only
principal congruences then (i) and (ii) hold.
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Suppose now that (i) and (ii) hold. By Theorem 4.3, we need only show that every
normal filter of L is principal. Let F be a normal filter of L and observe that
F=v {N(a):aeF}. For each a € F there is an n < w such that a"**) € Cen(L), since L
has finite range, and so N(a)=[z), where z=a"**). Thus, F=v {[z):zeFN
Cen(L)} = N(w), where w = A (F N Cen(L)) which exists, since Cen(L) is finite.

CoROLLARY 4.5. Let L be a distributive double p-algebra whose p-algebra reduct is
Stone. Then L has only principal congruences iff there exists t€ DT(L) such that
D™ (L) c (t**] and conditions (i) and (ii) in the statement of Corollary 4.4 hold.

Proof. First, observe that L has finite range. Indeed, for any ae L, a** € Cen(L)
and so a** =a***), since the p-algebra reduct of L is Stone. Now suppose that L has
only principal congruences. It is clear, on examination of the proof of Corollary 4.4, that
(i) and (ii) hold. Furthermore, if 3 = v {6(0,s):s € D*(L)} then v is principal and so
compact. Therefore there is a finite subset S of D™(L) such that p = v {6(0,s5) :5€ S} =
6(0,¢), where t=v SeD*(L). However, 8(0,t)=0(t*,1)= 6,,,.(t* 1), since t*e
Cen(L) and it is easily verified that 6, ,(z, 1) preserves * and * whenever z € Cen(L).
Consequently, for any s € D*(L), we have s A t* =0, by the well known description of
principal congruences of distributive lattices. Therefore D*(L) < (t**].

To prove the converse, we need only examine the proof of Corollary 4.4 to realize
that it suffices to show that, given any family {(e,,f,): « €I} c® with e, <f, e D*(L),
we can find {(p,, g.): @ € I} with p, <gq, such that, for all @ €I, B(e,, f,) = 0(Ps, Ga)
and {(pq,pg):a,Bel} c®. Foreach ael,letp,=(ex At)ve,and g, = (e} nt) v f,.
Then, forall « €1, p, < g, and 8(e,, f,) = 6(Pa>, 4), by Lemma 4.2(vi). Furthermore, for
all wel, p,eD*(L) and pi*=[(elve)A(tve)]** =(tve)* =1** vel*=t**
since e, <t**, so that {(pa,pg): a, Bel} cP.

We point out that there are infinite distributive double p-algebras whose p-algebra
reduct is Stone and which have only principal congruences; for example, any infinite
Boolean algebra with a new zero adjoined and construed as a double p-algebra. In sharp
contrast we have:

CoroLLARY 4.6. A double Stone algebra L has only principal congruences iff L is
finite and I(J(L)) < 3.

Proof. If L is a double Stone algebra having only principal congruences then L/®,
being a homomorphic image of L, is a regular double Stone algebra (alias, a 3-valued
Lukasiewicz algebra) having only principal congruences. Now, Cen(L/®) is finite, by
Corollary 4.5, and so L/® is finite, by Corollary 3 in [3]. However, every member of L/®
is finite, by Corollary 4.5, and therefore L is finite.

Distributive double p-algebras whose core is non-empty play an important role in the
general theory. For such algebras significant improvements of Theorem 4.3 and Corollary
4.4 are attainable. Henceforth L will denote a distributive double p-algebra having
non-empty core C(L).

The next two lemmas are proved in [1] and are the vital ingredients in our
simplifications.
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LeMMa 4.7. A congruence of L below ® is principal iff it is of the form 6(k, 1), for
some k,le C(L) with k <.

LemMa 4.8. For L, the following are equivalent:
(i) L has the P.J.P.,
(ii) C(L) has the P.J.P.,
(iii) there is no 3-element chain in the poset of prime ideals of C(L).

THEOREM 4.9. L has only principal congruences iff
(i) every normal filter of L is principal and
(it) C(L) has only principal congruences.

Proof. If L has only principal congruences then (i) and (ii) can be proved as in
Theorem 4.3.

Suppose that (i) and (ii) hold. Let 8 be a congruence of L. Using (i) we can prove,
exactly as in the proof of Theorem 4.3, that

6=0(a,1)v v{0(esf.) a€l},

for some a € L and {(e,,f,): a €I} c ® with e, <f, for all € I. By Lemma 4.7, we can
assume that e,, f, € C(L) for all « € . However, by Lemma 3.7 and (ii), C(L) is finite
and has the P.J.P.. Therefore L has the P.J.P., by Lemma 4.8, and so v {f(e,,f,): @ €
I} = 6(k, 1), for some k,l e C(L) with k </. Thus 8 is principal by Lemma 4.2(iv).

On examining the proof of Corollary 4.4 and bearing Lemma 3.7 in mind, we obtain

CoroLLARY 4.10. If L has finite range then it has only principal congruences iff
Cen(L) and C(L) are finite and [(J(C(L))) <1.

CONCLUDING REMARKS

(i) It may be instructive to consider the distributive double p-algebra L, associated
with the double p-space depicted in Example 2 of Section 3 in [8]. The congruence lattice
of L, is a 3-element chain and so L, has only principal congruences. Furthermore, L,
does not have finite range, ® = w, D*(L,) is non-principal and C(L,) is empty.

(ii) We have been concerned with distributive lattices having no n-element chain,
where n =3, 4 or §, in their poset of prime ideals. For intrinsic characterizations of such
lattices we refer the reader to {1].
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