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ABSTRACT

We consider three classes of bivariate counting distributions and the corresponding
compound distributions. For each class we derive a recursive algorithm for
calculating the bivariate compound distribution.
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1. INTRODUCTION

In this paper we develop recursive algorithms for bivariate compound distributions
of the type

X

(1.1) g(x, 3O = I Pin, m)f;n(x)f2*
m(y), x, y = 0, 1, ....

n, m = 0

which is the joint distribution of
N M

(X, Y) = X U,, I

where (A/, M) has a probability function (pf)

(1.2) p(n, m) = P(N = n, M = m),

and all the severities £/,-, V, are mutually independent and independent of (N, M)
with pf's

u),Mv) = P(Vi=v)

on the non-negative integers.
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36 OLE HESSELAGER

For a counting variable K we write K ~ R\(a, b) when its pf q satisfies the
recursion

(1.3) q(k) = (a + -

and K~R\ means that (1.3) holds for some constants a and b.
For a compound variable X with counting distribution R, (a, b) and severity

distribution/we remind of the fact that the pf of X can be calculated from PANJER's
(1981) recursive formula

1 J, ( bu\
(1.4) g(x) = X \a + — \f(u)g(x-u),

l f ( 0 ) { x)
when / is concentrated on the non-negative integers. Also the identity

(1-5)
n + i u=\ ix

from SCHROTER (1990, Lemma 1) will be used in the following.

In sections 2, 3 and 4 we consider three different models:

— Model A. With K = N + M it holds that (N\K=k) ~ Binomial()t, p,), and
K ~ Rt(a, b).

— Model B. N = RQ + R \ and M = R0 + R2, where /?0, 7?, and /?2 are mutually
independent and /?7 ~ Ri(cij, bj).

— Model C. N and M are conditionally independent given 8 = # and Poisson
distributed with parameters $A, and #A2, respectively. The parameter 6 has a
density « which satisfies

d I?=o *,•*'
log M (1?) = — : .

We also consider the marginal pf's

g(x) = X 9(x' y)' P(n) = X />("> w)'
>• = 0 m = 0

for X and iV, and the conditional pf's

g(y\x) = g(x, y)/g(x), p(m\n) = p(n, m)lp(n),

for (Y IX = x) and (M | A' = n). In particular, we derive recursions for the conditional
moments,

•x,

/iKx= E(Y'\x = x) = Jty'g(y\x),
y = 0

based on the auxiliary functions
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RECURSIONS FOR CERTAIN BIVARIATE COUNTING DISTRIBUTIONS 37

The bivariate recursions are of interest in prediction problems involving the
conditional pf g(y I x) of Y, given that X - x has been observed. Using the recursions
derived in this paper this will involve the calculation of g(u, y) for all u - 0, ..., x
and 3/ = 0, 1, ... It should be noted that if one is only interested in the distribution of
X+Y, then there are simpler ways of calculating this distribution than via g (x, y),
and the bivariate recursions should not be used in this case.

Model A has a natural application in claims reserving where K denotes the total
number of claims incurred in a fixed exposure period. If Wh i - 1, ..., K, denote the
waiting times until notification, which can be assumed to be iid and independent of
K ~ Rt(a, b), then the numbers of reported and outstanding claims at time z,

K K

N = X I(W,<T), M = X I(W,>T),
1=1 1=1

satisfy assumption A with p{ = P(W;^r) .
The recursion obtained in Section 2 can be viewed as a bivariate version of the

Panjer recursion).

The situation with a binomial distribution of N given N + M as assumed in
model A arises in a variety of insurance problems. Consider for instance the case
where a stop-loss contract with retention limit d has been written for a one-year
period [0, 1]. At time t e [0, 1] the aggregate claim amount has reached the level
X = x, and the problem is to determine the probability Ly>d_xg(y Ix) that the final
claim amount X+Y will exceed the limit d, given the information X-x (or to
determine the expected reinsurance recoveries 1iy>j-x(x + y -d)g(y \x) in this
case). If the claim occurrences are generated by a mixed Poisson process with
(random) intensity drj(s), 0 S i < l , then the claim numbers (N, M) occurring in
[0, t] and (t, 1] satisfy the binomial assumption of model A with p t - lorj(s)ds/
Jo V (s) ds. The recursion derived in Section 2 is then applicable if 6 has a gamma
distribution, in which case the total number of claims K = N + M has a negative
binomial distribution (e R,), and of course in the Poisson case where 6 is
degenerate. More generally, if the mixing distribution satisfies the condition given
in model C, we may use the recursion derived in Section 4 with At = Jo

f tj(s)ds and
•̂2 - J/' V (s) ds. Another application of model C arises in connection with customer

based rating where a customer with unknown risk characteristics represented by 9
has reported a total claim amount X - x on the existing policies. For a new policy,
this customer will report a claim amount of Y during the next year, and this policy
can then be rated on the basis of the experience X = x using the conditional pf
g(y\x).

The class of mixed Poisson distributions considered in Section 4 were investi-
gated by WILLMOT (1993) and HESSELAGER (1993) in the univariate case, and the
recursions derived in Section 4 give a bivariate extension of their results.

Model B uses a standard way of constructing bivariate distributions (see e.g.
KOCHERLAKOTA et al. 1992), which is useful in risk theory when two risk classes
are affected by the same events: Let /?, and R2 denote the numbers of events
causing a claim in class 1 and class 2, respectively, and let Ro denote the number of
events causing a claim to both classes.
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Model B was studied in the Poisson case where a; = 0 fory = 0, 1, 2 by TEICHER

(1954), who obtained a recursion for the bivariate pf p(n, m). In Section 3 we
extend the result of TEICHER (1954) to the more general case where Rj ~ i?,, and
derive a recursion for the corresponding compound pf g(x, y).

2. A BIVARIATE VERSION OF THE PANJER RECURSION

With K - N + M we consider the following model:

A. The conditional distribution of N given K is binomial,

(2.1) ?{N = n\K = k) =

and K~Rx{a, b).

2.1. Bivariate distributions

Let

<p(s, t) = E[sNtM] =
n, m>0

denote the pgf for (N, M), and let rp (s) = Es* be the pgf for K = N + M. From the
assumption (2.1) we find that

(2.2) q>(s, t) = EE [sNtM\K] = E [t*E [(s/tf \ K]]

= E[tK(pl(s/t) + p2)
K] = ip(pxs + p2t),

where we have made use of the fact that the pgf for the binomial distribution with
parameters (k, p) is (pz + (1 - p))k. When K ~ Rx (a, b) we also remind of the fact
that the pgf xp satisfies the differential equation

(2.3) (l-as)v»'(s) = (fl + 6 ) V ( 4

From this we readily obtain a recursion for the bivariate pf p («, m):

Theorem 2.1: Under condition A it holds that

( M
p i n , ni) = P | \a + — \ p ( n - \ , m) + ap2p(n, m - \ ) ,

V n)
( M

p(n, m) - p2\a + — \p(n, m-\) + ap\p(n-\, m),
I m)

with p(n, - 1) = p( - 1, m) = 0.

Proof. Differentiating (2.2) with respect to s yields

d
(1 -ap]s-ap2t) — <p(s, t) = {a + b)p\cp(s, t),

ds
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and with cp(s, t) - £„, mS.op(n, m)s"tm we compare the coefficients of s"~ ] tm in
this equation for n > 1 to obtain v

np(n, m) - apt(n- \)p(n— 1, m) - ap2np(n, m- 1) = (a + b)pxp(n—\, m).

This proves the first relation, and the second follows by symmetry. QED

Theorem 2.1 gives the following recursion for g(x, y):

Theorem 2.2: Under condition A it holds that

(2.4) fl(0, 0) = v ( P i / i (0) + P2/2(0)),

where xp (z) is the pgf for K. For x ^ / it holds that
x f 1 \ V

(2.5) g(x, y) = Pi 2. \a + — \fi(u)g{x-u, y) + ap2 2Jf2{v)g{x, y-v),

and for }>l , i
v / / N x

(2.6) g(x, y) = p2 2. « + — AMgfc y-v) + ap, 2, f\(u)g(x-u, y).

Proof. The initial value is

g(0, 0) = X p (n, m)f{ (0)"/2 (0)m = <p (/, (0), / 2 (0)),
«, m = 0

and (2.4) follows from (2.2). Using (1.5) for /= 1 yields

X I ( l ) /

= I />(«, m)/;("+1)(x)/2*
m(y) = X -Mu)g(x-u, y).

n, m = 0 « + 1 « = 1 X

For J : > I we then obtain from Theorem 2.1 that

9(x,y)= I I />(«, w)/;"(x)/2*
m(y)

= I X Pi[a + -}p(n-l, m) + ap2p(n, m-\) \fin (x)fim (y)

v I bu \ v
= Pi 2 . a + — / i ( « ) 5 ( ^ - « . y) + P2« l^fi{v)3{x, y-v).

a=o V JC y v=o

The second identity (2.6) follows by symmetry. QED

The bivariate compound distribution is calculated recursively from (2.5) or (2.6)
by collecting the terms involving g(x, y) on the left-hand side. It is seen that the
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number of multiplications involved with the calculation of g(u, v) for (u, v) ̂  (x, y)
is of order O(xy(x + y)). If the severity distributions /] and f2 have bounded
supports, as will typically be the case in practical applications, the number of
multiplications will be of order O (xy).

By summing (2.5) over }>>0 we obtain the Panjer recursion (1.4) for the
marginal distribution of X, and the recursion obtained from Theorem 2.2 may
therefore be viewed as a bivariate extension of the Panjer recursion.

2.2. Marginal and conditional distributions

Theorem 2.1 can also be used to identify the marginal and conditional distributions
of (N, M). We have the following:

Theorem 2.3 Under condition A it holds that

it, \a , b
\~ap2 1 - ap2.

(Af\N = n) ~ Ri(ap2, (b + an)p2).

Proof. By summing the first relation in Theorem 2.1 over m > 0 w e find that

p, ( b\
p(n) = — \a + - \p(n-l), n>l ,

\-ap2 \ n)
which proves the first assertion. For the conditional pf p (m \ n) we observe from the
second relation in Theorem 2.1 that

p(m\n) p(n, m) ( b} p(n-l,m)
= p2\a + — + aPi , m> 1.

p(m—\\ri) p{n,m—\) \ m) p(n,m-\)

Since p(n, m) - q(n + m)\ p"p2, where q is the pf for K, we have
)

that
p(n- 1, m) n p2

p(n, m- 1) m p,

which proves the result. QED

The class R\ contains the binomial distributions (a<0), the Poisson distributions
(a-0), and the negative binomial distributions ( 0 < a < l ) . It is seen from
Theorem 2.3 that the marginal and conditional distributions are binomial, Poisson
or negative binomial when the distribution of K is binomial, Poisson or negative
binomial, respectively. In particular, it is seen that N and M are independent in the
Poisson case (a = 0).

Note also from Theorem 2.3 that the marginal distribution of X and the
conditional distribution of (Y\N = n) can be calculated by use of the Panjer
recursion (1.4).
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In order to calculate the conditional pf g(u \x) for y-0, ..., ymax, one needs to
calculate pfg(u, v) for all (u, v) < (x, ymax). In some cases one may settle for an
approximation to this distribution, based on the conditional moments fik x.

Theorem 2.4 With ^ = lZ=ov'f2(v), it holds that
X / - I

(2.7) (l-ap2)flLx - api £ / , (u)fiL x_u + ap2 £ c(/, /)/!,•, xe,_h

u = 0 i = 0

c { l , i ) = a \ ' \ + b

Theorem 2.4 follows from Theorem 2.2 by straightforward calculations, and the
details can be found in Appendix A. With /2, x given by Theorem 2.4, and the
marginal pf g(x) of X being calculated from the Panjer recursion, we then have a
recursive procedure for obtaining the conditional moments //, x - /I, x/g(x).

Note that EY1 - Sx/i/, x- By summing (2.7) over x we obtain that

1 - a i = o

which is DE PRIL'S (1986) recursion for the moments of the compound distribu-

tion when M ~ R] I a £
1 - a p , 1 - a P i .

3 . BIVARIATE R2 DISTRIBUTIONS

In this section we consider the following situations:

B. N = RQ + Ri and M = Ro + R2, where Ro, Rl and R2 are mutually independent
and Rj ~ R\(ah b}).

3.1. Bivariate distributions

The case where RQ, R\ and R2 are independently Poisson distributed has previously
been considered in the literature. TEICHER (1954) (see also JOHNSON and KOTZ,

1969, p. 298) showed that this bivariate Poisson distribution satisfies the recurrence
relations

np(n, m) - l\p(n - 1, m) + Xop(n- I, m— 1),

mp(n, m) = X2p(n, m— 1) + ^op(n - 1, m— 1),

where Ao, A, and X2 denote the Poisson parameters for Ro, Rl and R2, respectively.
HOLGATE (1954) treated the estimation problems for this distribution.

Since the bivariate Poisson distribution appears as a special case of condition B
with aj = 0 and bj - A,, the following result is seen to generalize that of TEICHER (1954).
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Theorem 3.1 Under condition B it holds that

(3.1) p(n, m) = \a0 + —)p(n-l, m-\) + L, + — \p(n- 1, m)
{ ) { )

(
- \aoat

( M ( bi\
( 3 . 2 ) p ( n , m) = \ a 0 + — \ p ( n - 1, m - 1) + \ a 2 + — \ p { n , m - 1)

{ m) { m)
( a2b0 + b2aA - , . - , ,

- a0 a2 + \ p (n - 1, m - 2), m > 1,

where p(0, 0) = 7T07r|jr2, JT; = P(/?y = 0), and p(n, m) = 0 when n<0 or m<0.

Proof. The pgf for (N, M) is in this case

(3.3) <p(s, t) = E[sNtM] = E[(st)R«sR>tRi] = Vo(*OVi(s)V2(O,

where ipj denotes the pgf for Rj ~ Rt (aj, bj). Differentiating (3.3) with respect to 5
and making use of (2.3) yields

2 d

(1 -ax s - aQst + aoai ts ) — q>{s, t)
ds

= [t(l-a]s)(a0 + b0) + (a, +fo,)(l -aost)]<p(s, t),

and with q>(s, t) = £„ m s O p ( n , m)s"tm we compare the coefficients of s"~'tm in
this equation for n £ l to obtain

n p ( n , m) - a x { n - \ ) p ( n - 1, m) - a { ) { n - \ ) p ( n - 1, m - 1)

+ a0 a! (n - 2) p (n - 2, m - 1)

= (£, +fc1)p(«- 1» m) + (ao + £ o ) p ( n - 1, m - 1)

- [ax(a0 + ba) + ao(ai +&i) ]p(n-2 , w - 1).

This verifies (3.1), and (3.2) follows analogously. QED

Remark 1. Note from the proof of Theorem 3.1 that (3.1) only requires that R{) and
R\ are of class R\. If p(0, m) is known for m = 0, 1, ..., the bivariate pf p(n, m) may
therefore be calculated recursively from (3.1) even when R2 does not belong to i?,.
A similar remarks holds if R\ does not belong to Rl. •

From the recurrence relation in Theorem.3.1 we easily obtain the following
recursion for the corresponding bivariate compound distribution:
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Theorem 3.2 Assume that condition B holds true. Then

(3.4) 5(0, 0) = Vo(/. (0)/2 (0)) V, (/, (0)) V2 (fi(0)),

where tpj(z) is the pgf for Rj. For x ^ 1,

(3.5) g(x,y)= £ «i + — /i (u)g(x-u, y)
I

+ 2* L, \ao + \f\(u)f2(v)g(x-u, y-v)
u = o ,,=0 I x j

~ L L ao«i + /i (u)f2{v)g(x-u, y-v),

and for y>\,

V ( "1 v

(3.6) g(x, y) = 2 , a2 + | fi(v)g(x, y- v)
,=o 1, y

2. Z, flo + /2

£ |Q 0 Q2+ . — 1 / 2 (f)/i(M)gU-«. y-y)-

Froo/ We have that

g(0, 0) = ]_
n, m = 0

where <p(s, f) is the pgf for (̂ V, M), and (3.4) therefore follows from (3.3).
Using (1.5) we have for i > 1 andy>0 that

2 — p(n-i, m-j )/,*" (x)/2*
m (y) = 2< Zi — / i ' (M)/2*/ iv)g{x-u, y-v).

n = i, m=j n u = 0 u=0 IX

Multiplying (3.1) with/*"(x)/2
m(y) and summing over n, m then yields (3.5), and

(3.6) follows analogously from (3.2). QED

Remark 2. Since (3.5) was obtained by use of (3.1), it follows from Remark 1 that
g(x, y) may be calculated recursively from (3.5) when g(0, y) is known for y = 0, 1,
..., even if R2 does not belong to i?, . A similar remark holds if /?[ does not belong
to Rt.

It is seen from (3.5) and (3.6) that the number of multiplications involved with
the calculation of g(u, v) for (u, v) ^ (x, y) is of order O(x2y2). If the severity
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distributions / , and f2 have bounded support, as will typically be the case in
practical applications, the number of multiplications will be of order O(xy).

For the bivariate Poisson distribution corresponding to a; = 0 and bj = Xj, the
recursive formulas in Theorem 3.2 simplify substantially. In this case we have,

X x

g(x, y) = —- £ uf\(u)g(x-u, y)
X u=\

X x y

+ - I I «/i (u)f2(v)g(x -u,y-v),x>l,
X u=\ v=0

g(x, y) = — Y, vf2(v)g(x, y-v)
y v=\

X x y

+ — I Y,vfx{u)f2{v)g(x-u,y-v),y>\.
y u=o v=\

3.2. Marginal and conditional distributions

SUNDT (1992) considered the class Rk of counting distributions satisfying

(3.7) q(n)= t L + —

for suitable constants a, and j5h and showed that if q{ G Rk, q2 e Rh then the
convolution q\*q2 belongs to Ric + i- From this we observe that the marginal
distributions of N and M belong to R2 under condition B, and Theorem 3.2 may
therefore be viewed as a bivariate extension of SUNDT (1992, Theorem 9). The
representation (3.7) for the marginal distribution of N can be found in SUNDT (1992,
Corollary 4), or may be obtained by summing (3.1) over m. Similarly, a recursion
for the marginal distribution of X can be obtained from SUNDT (1992, Theorem 9),
or by summing (3.5) over y.

The following result gives a recursion for the auxiliary quantities pL\x. Since the
marginal pf g(x) can be calculated recursively from SUNDT (1992, Theorem 9) we
then have a recursive procedure for calculating the conditional moments nL x =
fij x/g(x). Theorem 3.3 follow by straightforward calculations, and the details can
be found in Appendix A.

Theorem 3.3 Assume that condition B holds true. With

='aQc2(l, i) + a2cn(l,
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// holds for I > 1 that

u = 0 i = 0

*2

/ - I

= 2 ^ C 2 ( / , OjM/, j : ^

i = 0 u = 1

1 ,, 1
c ( ) ( / , i ) e i _ j - — d ( / , * ) « , _ , - ,

2 J
and ej = Lv = av

Jf2 (v).

Remark 3. The recursion in Theorem 3.3 is obtained from (3.6), and is according to
Remarks 1 and 2 therefore also valid when /?, does not belong to / ? , . •

4. BIVARIATE MIXED POISSON DISTRIBUTIONS

Consider the following situation:

C. N and M are conditionally independent given 6 = §, with pf

(#Ai)" (ft)~\m

(4.1) /?,.,(«, m) = e~M<
n\ m\

The parameter 6 e \o{, o2], 0 S ( j | < a 2 ^ o c , has a density a which satisfies

(4.2) — log«(#)

for suitable constants a, and bh and

(4.3) 2 . fc/ #'' M (#) -» 0, # -» <j,, CT2 .
1 = 0

Let

denote the conditional pf's of X and Y and let
x

(4.4) g»(x, y) = X P#(«. »»)/•*" W/2*"10') = 3
n, m - 0

denote the joint conditional pf of (X, Y). Finally, introduce the auxiliary
functions

(4.5)

and note that g(x, y) = /IO(JC, y).

p,,2
(x, y) = 0'j

J<7,
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4.1. Bivariate distributions

The following recursion for the function ht(x, y), and hence the pf g(x, y), is a
bivariate extension of the recursion presented in HESSELAGER (1993).

Theorem 4.1 Under condition C it holds that

(4.6) MO, 0) = [ V
Jo.

«r/i A. = A, + A2, and f(0) = . For i - 0,. . . , k - 1,
A, + A2

(4.7) *,.(*, y) = A, X - / i («) /» ,> , (*-« , >0, * > 1 ,

>
(4.8) hi(x, y) = A2 X -fi{v)hi+,(x, y-v), y>l ,

v=\ y

and
x k y k

(4.9) ctAt(jc, y) = A, X /i(«) X */M*-«. 3») + ^ I / 2 W E
K = l 1 = 0 K=l 1 = 0

1 = 0

where c, = A. (1 -/(0))fe,- - a,-.

With initial values A,-(0, 0) one calculates A0(x, 0), ..., hk_, (jr, 0) from (4.7) and
/i/t(jt, 0) from (4.9) for x - 1, 2, .... For y = 1, 2, ... one calculates /?0(0, y), ...,
nk- l (0' j ) from (4.8) and hk(0, y) from (4.9). For (x, y) ^ (1, 1) one may then use
either (4.7) or (4.8) together with (4.9). The recursion is seen to be of order
O (xy (x + y)), reducing to O (xy), when the supports of / , and f2 are finite.

Proof of Theorem 4.1. Since g^ is compound Poisson with parameter A # it holds
that $>(0) = e~§x'(l -*(0)), and 3<>(0, 0) = g^(O)g^(O) = e~*ui ~Im with A. and
/ (0) as stated, and (4.6) then follows from the definition (4.5).

Under the Poisson assumption of condition C, the conditional pf g\j] (x) satisfies
the Panjer recursion,

g^\z) = #Ay X -fi(u)g^\z-u), z^hj = 1, 2,
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and from (4.4) we than have that
X

Ci V u (M
gxi(x, y) = g^'(y)ftXt 2 , - / i («) 3d (* ~ «)

«= I x
X

Y u
K = l X

and similarly,
V

g§(x, y) = ftX2 2^ —f2(v)9§(x> y~v)-> y— 1-
v=\ y

By multiplying this expression with ft' u (ft), and integrating over ft we obtain (4.7)
and (4.8).

Differentiating (4.1) wit ft yields

d
(4.10) —p,'>(n, m) = X\p#(n- 1, m) + X2pxj(n, m- 1) - X.p$(n, in),

dft

According to (4.2) it holds that u(ft)'Lk
i = oaift' = u:(ft)'Lk

i = obift', and partial
integration using (4.10) yields

2/ atft'p§(n, m)u(ft)dft = £ bi&'p#(n, m)u'(ft)dft
ia, ' = 0 ) a , 1 = 0

f

•J

ta2

~ z^b.ft'u(ft)\X\pAn-\, m) + X2p*(n, m-X) - X.nAn, m)\dft

2 , (' + 1) ft' b,• + | M (i?)p,j (n, m) <ii?

f"2 v ,
~ 2J b,ft u(ft)[Xipf>(n- I, m) + X2pxj(n, m—l) — X.p$(n, m)]dft,

»o < = 0

where the last equality follows from (4.3). Multiply on both sides with//" (x)/2
 m (y)

and sum over («, m) to obtain
A: * - 1 x k

(4.11) X a,./!,.(*, y) = - X ( '+ l ) * ( + i A,-(x, j ) - A, X / i («) X b^ix-u, y)
; = o

v=0 i = 0 i = 0

By rearranging terms we then arrive at (4.9). QED
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The expression (4.6) for the initial values is analogous to the expression given by
HESSELAGER (1993) for the univariate case, and the reader will in that paper find
explicit formulas for (4.6) for a number of cases.

It should be noted that the gamma mixing density satisfies (4.2), and the
corresponding mixed Poisson distribution can be shown to be the bivariate negative
binomial distribution treated in Section 2. For this case, the recursion in
Theorem 2.2 is simpler than the one given in Theorem 4.1, although they are both
of the same order.

The condition (4.3) may be dropped without serious consequences, and the
identity (4.9) will in this case contain an additional term as in Theorem 1 of
HESSELAGER (1993). In all of the examples considered in HESSELAGER (1993), (4.3)
is however fulfilled.

Univariate mixed Poisson distributions with a mixing density which satisfies
(4.2) were studied by WILLMOT (1993) who obtained a recurrence relation for the
counting distribution and also investigated a number of special cases where (4.2)
holds true. A recursion for the bivariate counting distribution is obtaining by letting
/,(1) = / 2 ( l ) = 1 in Theorem 4.1. In this case we may eliminate the auxiliary
functions ht(n, m) for / > 1 and obtain a recurrence relation for the pf p(n, m) =
ho(n, m), analogous to that of WILLMOT (1993):

Theorem 4.2 Under condition C it holds for n>k that
k + I

(4.12) X k\(n-i)\p(n-i, m){ak_i - Lbk-j + (n + m+ 1 -i)bk+^,} = 0,
; = o

and for m>k,
k + 1

(4.13) J J h'2{m- i)\p(n, m- i) [ak_,• - A. bk^-t + (n + m + 1 - i)bk+ , _,} = 0 ,
; = o

with the convention that a_\=b_\=bk+\=0.

Proof. W h e n / , ( 1 ) = / 2 ( l ) = 1, the relations (4.7), (4.8) become

A, A2

(4.14) hj(n, m) = —/?,+ , ( « - 1 , m), /i,(n, m) = — h i + , (n, m - 1),
n m

R e p e a t e d u se of the first re la t ion g ives /i,-(«, m) = X\'{n + i)U)p{n + i), w h e r e
(n + i)(l) = ( n + / ) ! / « ! . B y inser t ing in to (4 .11) , w h i c h in this case b e c o m e s

k k-\ k

( 4 . 1 5 ) X c i j h j i n , rri) = - £ ( / + \ ) b i + , / i , - (n , m ) - A , £ / ? , / ? , ( « - 1, m )
; = 0 ; = 0 i = o

— X2 2^ bjhjfn, m — 1) + A. 2J bjhj(n, m),
1=0 i' = 0
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we then obtain after a little rearrangement that

(4.16) 2J (ak-i ~ A.- bk-i)k\ {n - i)\p(n — i, m) =
i = 0

k

- Y, (k-i+ l)bk_i+lX\(n-i)\p(n-i, m)
i= i

(n-i-l, m)

-,^'i (« -i)]-p(n- i, m - 1).

From (4.14) it follows that

A, Xt m
p(n- i, m- I) = h\(n — i-\, m-X) = p(n — i- 1, m),

n — i (n- i) X2

which inserted into the last term in (4.16) leads to (4.12) after rearranging terms.
The relation (4.13) follows analogously. QED

The reader will notice from the proof of Theorem 4.2 that there is a whole variety
of recurrence relations for the bivariate pf p(n, m). From (4.14) we observe that

(4.17) hi{n,m) = - — — pin+j, m + i-j)

x\ v2-'>
for arbitrary j = 0, ..., /, which together with (4.15) also will give a recurrence
relation. In particular (4.16) is such a relation, which in fact is the bivariate
extension of WILLMOT'S (1993) recurrence relation for the univariate case, as one
may verify by summing (4.16) over » i>0.

4.2. Marginal and conditional distributions

The marginal distributions are in this case the mixed Poisson and the corresponding
compound mixed Poisson distributions considered by WILLMOT (1993) and HESSE-

LAGER (1993).
Since N and M are conditionally independent given 6 = &, it follows that

f (X
p(m\n) =

m\

where u(&\n) is the posterior density for 9 given N = n. When the prior density
u(§) satisfies (4.2), it was verified in HESSELAGER (1993) that u(d-\n) also satisfies
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(4.2) with updated constants dh bt. Thus, the conditional compound distribution of
Y given N=n may be calculated recursively by use of the recursion from
HESSELAGER (1993).

For the conditional distribution of Y given X = x we may multiply (4.8) and (4.9)
by yl and sum over y to obtain a recursive algorithm for the auxiliary function ji(\]x

= "Lyy
lhj(x, y). This, in particular, will give a recursion for the function jxt x — ^ix,

and hence for the conditional moments JX{ x-jil xlg(x). We state the result without
proof:

Theorem 4.3 With c, = A,£»,-( 1 - / , (0)) - a,- and e, = lvv
jf2(v) it holds that

j

APPENDIX A

Proof of Theorem 2.4. For / > 1, multiply (2.6) by y1 and sum over v to obtain

fii.x= X yl9(x, y)

X, y

l I (ay1 + bvy'-' )f2 (v)g(x, y - v)
Y = l I.= 0

V = 1 H = 0

' '

u = 0

QED
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Proof of Theorem 3.3. Multiply (3.6) by yl and sum over y to obtain for Z>1
that

i.x = Z y'd(x, y)
v = 1

"X.

= Z [a2(y + v)' + b2v(v + y)'-]]f2(v)g(x, y)
v, V = 0

+ Z X K ^ + z')' + bov(v + y)' l]f](u)f2(v)g(x-u, y)
u = 0 i>, v = 0

-u, y)

2 u = 0 v, v = 0

i = {) \l ) / = 0

a0

' f l
- aQa2 LhW Z,

u = 0 i = 0

2 « = o i =

/ - 1

= "2fii,x+ Z C2(Z' i)fii.xet-i + ao(l -a2)
i = 0 « = 0

J: / - I .

+ Z / i ( " ) Z/*/,x-Jco(/, i ) g , . , - - - d ( / , i)«;?.,•],
«=o I=o 2

and the result follows upon rearranging terms. QED
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