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Abstract

Scheduling methods are important for effective production and logistics management, where
tasks need to be allocated and performed with limited resources. In particular, the Job-shop
Scheduling Problem (JSP) is a well known and challenging combinatorial optimization problem
in which tasks sharing a machine are to be arranged in a sequence such that encompassing
jobs can be completed as early as possible. Given that already moderately sized JSP instances
can be highly combinatorial, and neither optimal schedules nor the runtime to termination
of complete optimization methods is known, efficient approaches to approximate good-quality
schedules are of interest. In this paper, we propose problem decomposition into time windows
whose operations can be successively scheduled and optimized by means of multi-shot Answer
Set Programming (ASP) solving. From a computational perspective, decomposition aims to split
highly complex scheduling tasks into better manageable subproblems with a balanced number of
operations so that good-quality or even optimal partial solutions can be reliably found in a small
fraction of runtime. Regarding the feasibility and quality of solutions, problem decomposition
must respect the precedence of operations within their jobs and partial schedules optimized by
time windows should yield better global solutions than obtainable in similar runtime on the
entire instance. We devise and investigate a variety of decomposition strategies in terms of the
number and size of time windows as well as heuristics for choosing their operations. Moreover, we
incorporate time window overlapping and compression techniques into the iterative scheduling
process to counteract window-wise optimization limitations restricted to partial schedules. Our
experiments on JSP benchmark sets of several sizes show that successive optimization by multi-
shot ASP solving leads to substantially better schedules within the runtime limit than global
optimization on the full problem, where the gap increases with the number of operations to
schedule. While the obtained solution quality still remains behind a state-of-the-art Constraint
Programming system, our multi-shot solving approach comes closer the larger the instance size,
demonstrating good scalability by problem decomposition.
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1 Introduction

Effective scheduling methods are essential for complex manufacturing and transportation

systems, where allocating and performing diverse tasks within resource capacity limits is

one of the most critical challenges for production management (Uzsoy and Wang 2000).

The Job-shop Scheduling Problem (JSP) (Baker 1974; Taillard 1993) constitutes a well-

known mathematical abstraction of industrial production scheduling in which sequences

of operations need to be processed by machines such that a given objective, like the

makespan for completing all jobs or their tardiness w.r.t. deadlines, is minimized. Finding

optimal JSP solutions, determined by a sequence of operations for each machine, is an

NP-hard combinatorial problem (Garey et al. 1976; Lenstra et al. 1977; Liu et al. 2008).

Therefore, optimal schedules and termination guarantees can be extremely challenging

or even unreachable for complete optimization methods already for moderately sized

instances. For example, it took about 20 years to develop a search procedure able to

find a (provably) optimal solution for an instance called FT10 with 10 jobs (Adams et al.

1988; Zhang and Wu 2010), each consisting of a sequence of 10 operations to be processed

by 10 machines.

In real-world production scheduling, the number of operations to process can easily go

into tens of thousands (Da Col and Teppan 2019; Kopp et al. 2020; Kovács et al. 2021),

which exceeds exact optimization capacities even of state-of-the-art solvers for Answer Set

Programming (ASP), Mixed Integer Programming (MIP), or Constraint Programming

(CP) (Daneshamooz et al. 2021; Francescutto et al. 2021; Shi et al. 2021). Hence, more

efficient approaches to approximate good-quality schedules instead of striving for optimal

solutions have attracted broad research interest. On the one hand, respective methods

include greedy and local search techniques such as dispatching rules (Blackstone et al.

1982), shifting bottleneck (Adams et al. 1988) and genetic algorithms (Pezzella et al.

2008). On the other hand, problem decomposition strategies based on a rolling horizon

(Singer 2001; Liu et al. 2008) or bottleneck operations (Zhang and Wu 2010; Zhai et al.

2014) have been proposed to partition large-scale instances into better manageable sub-

problems, where no single strategy strictly dominates in minimizing the tardiness (Ovacik

and Uzsoy 2012).

While decision versions of scheduling problems can be successfully modeled and solved

by an extension of ASP with Difference Logic (DL) constraints (Gebser et al. 2016), im-

plemented by clingo[DL] on top of the (multi-shot) ASP system clingo (Gebser et al.

2019), the optimization capacities of clingo[DL] come to their limits on moderately

sized yet highly combinatorial JSP instances (El-Kholany and Gebser 2020), for some of

which optimal solutions are so far unknown (Shylo and Shams 2018). Successful applica-

tions in areas beyond JSP include industrial printing (Balduccini 2011), team-building

(Ricca et al. 2012), shift design (Abseher et al. 2016), course timetabling (Banbara et al.

2019), lab resource allocation (Francescutto et al. 2021), and medical treatment planning

(Dodaro et al. 2021), pointing out the general attractiveness of ASP for modeling and

solving scheduling problems.

In this paper, we significantly extend our preliminary study (El-Kholany and Gebser

2020) on problem decomposition into time windows and successive schedule optimization

through multi-shot ASP modulo DL solving with clingo[DL]. The goal of the decompo-

sition is to split highly complex scheduling tasks into balanced portions for which partial
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schedules of good quality can be reliably found within tight runtime limits. Then, the

partial schedules are merged into a global solution of significantly better quality than

obtainable in similar runtime with single-shot optimization on the entire problem. In

this process, problem decomposition must satisfy two criteria: (i) the precedence of op-

erations within their encompassing jobs to guarantee the feasibility of partial schedules

and (ii) the ordering by time windows of operations sharing a machine should come close

to the sequences of operations in (unknown) optimal schedules. We address computa-

tional efficiency as well as solution quality by devising and investigating decomposition

strategies regarding the size of time windows and heuristics to choose their operations.

The contributions of our work going beyond the study in El-Kholany and Gebser (2020)

are

• In addition to problem decomposition based on the earliest starting times of op-

erations, we consider the most total work remaining criterion and refinements of

both strategies by bottleneck machines. We encode static as well as dynamic de-

composition variants, the latter taking partial schedules for operations of previous

time windows into account, by stratified ASP programs (without DL constraints).

• Since a decomposition into time windows may be incompatible with the optimal se-

quences of operations sharing a machine, we incorporate overlapping time windows

into the iterative scheduling process to offer a chance for revising “decomposition

mistakes.” Moreover, the makespan objective, which we apply to optimize (partial)

schedules, tolerates unnecessary idle times of machines as long as they do not yield

a greater scheduling horizon. Therefore, we devise a stratified ASP encoding to

postprocess and compress partial schedules by reassigning operations to earlier idle

slots available on their machines.

• We experimentally evaluate decomposition strategies varying the number of oper-

ations per time window, as well as multi-shot ASP, solving augmented with over-

lapping and compression techniques on JSP benchmark sets of several sizes. In

particular, our experiments demonstrate that successive optimization by multi-shot

ASP solving leads to substantially better schedules within tight runtime limits than

global optimization on the full problem, where the gap increases with the number of

operations to schedule. While the state-of-the-art CP system OR-tools (Perron and

Furnon 2019) is still ahead regarding the solution quality, our multi-shot solving

approach comes the closer the larger the instance size gets.

The paper is organized as follows: Section 2 briefly introduces ASP along with the

relevant extensions of multi-shot solving and DL constraints. In Section 3, we present

our successive optimization approach and detail the ASP programs encoding problem

decomposition or iterative scheduling by time windows, respectively. Section 4 provides

experimental results on JSP benchmark sets, assessing different decomposition strategies

as well as the impact of overlapping and compression techniques. Conclusions and future

work are discussed in Section 5.

2 Preliminaries

ASP (Lifschitz 2019) is a knowledge representation and reasoning paradigm geared for

the effective modeling and solving of combinatorial (optimization) problems. A (first-

https://doi.org/10.1017/S1471068422000217 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000217


4 Mohammed M. S. El-Kholany et al.

order) ASP program consists of rules of the form h :- b1,. . . ,bn., in which the head

h is an atom p(t1,. . . ,tm) or a choice {p(t1,. . . ,tm)} and each body literal bi is an

atom p(t1,. . . ,tm), possibly preceded by the default negation connective not and/or

followed by a condition : c1,. . . ,cl, a built-in comparison t1 ◦ t2 with ◦ ∈ {<, =}, or
an aggregate t0 = #count{t1,. . . ,tm : c1,. . . ,cl}. Each tj denotes a term, that is, a

constant, variable, tuple, or arithmetic expression, and each element ck of a condition

is an atom that may be preceded by not or a built-in comparison. Roughly speaking,

an ASP program is a shorthand for its ground instantiation, obtainable by substituting

variables with all of the available constants and evaluating arithmetic expressions, and

the semantics is given by answer sets, that is, sets of (true) ground atoms such that all

rules of the ground instantiation are satisfied and allow for deriving each of the ground

atoms in the head of some rule whose body is satisfied. The syntax of the considered

ASP programs is a fragment of the modeling languages described in Calimeri et al.

(2020); Gebser et al. (2015), the ground instantiation process is detailed in Kaminski

and Schaub (2021), and the answer set semantics is further elaborated in Gebser et al.

(2015); Lifschitz (2019).

Multi-shot ASP solving (Gebser et al. 2019) allows for iterative reasoning processes by

controlling and interleaving the grounding and search phases of a stateful ASP system.

For referring to a collection of rules to instantiate, the input language of clingo supports

#program name(c). directives, where name denotes a subprogram comprising the rules be-

low such a directive and the parameter c is a placeholder for some value, for example,

the current time step in case of a planning problem, supplied upon instantiating the

subprogram. Moreover, #external h : b1,. . . ,bn. statements are formed similar to rules

yet declare an atom h as external when the body is satisfied: such an external atom can

be freely set to true or false by means of the Python interface of clingo, so that rules

including it in the body can be selectively (de)activated to direct the search.

ASP modulo DL integrates DL constraints (Cotton and Maler 2006), that is, expres-

sions written as &diff{t1 - t2} <= t3, in the head of rules. With the exception of the

constant 0, which denotes the number zero, the terms t1 and t2 represent DL variables

that can be assigned any integer value. However, the difference t1 - t2 must not exceed

the integer constant t3 if the body of a rule with the DL constraint in the head is sat-

isfied. That is, the DL constraints asserted by rules whose body is satisfied restrict the

feasible values for DL variables, and the clingo[DL] system extends clingo by checking

the consistency of DL constraints imposed by an answer set. If these DL constraints are

satisfiable, a canonical assignment of smallest feasible integer values to DL variables can

be determined in polynomial time and is output together with the answer set.

3 Multi-shot JSP solving

This section describes our successive optimization approach to JSP solving by means of

multi-shot ASP with clingo[DL]. We start with specifying the fact format for JSP in-

stances, then detail problem decomposition based on earliest starting times of operations,

present our ASP encoding with DL constraints for optimizing the makespan of partial
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operation (1,1,1,3). operation (1,2,2,3). operation (1,3,3,1).

operation (2,1,2,4). operation (2,2,1,6). operation (2,3,3,2).

operation (3,1,3,9). operation (3,2,1,3). operation (3,3,2,8).

Listing 1. Example JSP instance

Fig. 1. Optimal schedule for example JSP instance

schedules, and finally outline the iterative scheduling process along with the incorporation

of time window overlapping and compression techniques.

3.1 Problem instance

Each job in a JSP instance is a sequence of operations with associated machines and

processing times. Corresponding facts for an example instance with three jobs and three

machines are displayed in Listing 1.

An atom of the form operation(j,s,m,p) denotes that the step s of job j needs to be

processed by machine m for p time units. For example, the second operation of job 3 has a

processing time of 3 time units on machine 1, as specified by the fact operation(3,2,1,3).

The operation cannot be performed before the first operation of job 3 is completed, and

its execution must not intersect with the first operation of job 1 or the second operation

of job 2, which need to be processed by machine 1 as well. That is, a schedule for the

example instance must determine a sequence in which to process the three mentioned

operations on machine 1, and likewise for operations sharing machine 2 or 3, respectively.

Figure 1 depicts a schedule with the optimal makespan, that is, the latest completion

time of any job/operation, for the JSP instance from Listing 1. The J-S pairs in horizontal

bars indicated for the machines 1, 2, and 3 identify operations by their job J and step

number S. For each machine, observe that the bars for operations it processes do not

intersect, so that the operations are performed in sequential order. Moreover, operations

belonging to the same job are scheduled one after another. For example, the second

operation of job 3 is only started after the completion of the predecessor operation at

time 9, regardless of the availability of its machine 1 from time 3 on. As the precedence

of operations within their jobs must be respected and the sum of processing times for

operations of job 3 matches the makespan 20, it is impossible to reduce the scheduling

horizon any further, which in turn means that the schedule shown in Figure 1 is optimal.

3.2 Problem decomposition

Since JSP instances are highly combinatorial and the ground representation size can also

become problematic for large real-world scheduling problems, achieving scalability of
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1 #const n = 2.

2 width ((N + n - 1) / n) :- N = #count{J,S : operation(J,S,M,P)}.

4 est(J,1,P,0) :- operation(J,1,M,P).

5 est(J,S,P,P’ + T) :- operation(J,S,M,P), est(J,S - 1,P’,T).

7 index(J,S,N) :- est(J,S,P,T),

8 N = #count{J’,S’ : est(J’,S’,P’,T’), (T’,P’,J’) < (T,P,J)}.

10 window(J,S,(N + W) / W) :- index(J,S,N), width(W).

Listing 2. J-EST decomposition encoding

complete optimization methods necessitates problem decomposition. In order to enable

a successive extension of good-quality partial schedules to a global solution, we consider

strategies for partitioning the operations of JSP instances into balanced time windows,

each comprising an equal number of operations such that their precedence within jobs is

respected. In the following, we first detail problem decomposition based on the earliest

starting times of operations, and then outline further strategies that can be encoded by

stratified ASP programs as well.

Our encoding for Job-based Earliest Starting Time (J-EST) decomposition in Listing 2

takes a JSP instance specified by facts over operation/4 as input. In addition, a con-

stant n, set to the default value 2 in line 1, determines the number of time windows

into which the given operations shall be split. As we aim at time windows of (roughly)

similar size, the target number of operations per time window is in line 2 calculated by

�N/n�, where N is the total number of operations. For example, we obtain width(5) for

partitioning the nine operations of the JSP instance in Listing 1 into two time windows.

The rules in lines 4 and 5 encode the J-EST calculation per operation of a job, given by

the sum of processing times for predecessor operations belonging to the same job. This

yields, for example, est(3,1,9,0), est(3,2,3,9), and est(3,3,8,12) for the three opera-

tions of job 3 in our example instance, where the third argument of an atom over est/4

provides the processing time and the fourth the earliest starting time of an operation.

Note that the obtained earliest starting times match the first feasible time points for

scheduling operations and do thus constitute an optimistic estimation of when to process

the operations.

With the earliest starting times of operations at hand, the rule in lines 7-8 determines

a total order of operations in terms of consecutive indexes ranging from 0. That is, each

operation is mapped to the number of operations with (i) a smaller earliest starting

time, (ii) the same earliest starting time and shorter processing time, or (iii) a smaller

job identifier as a tie-breaker in case of similar earliest starting and processing times.

For the example JSP instance in Listing 1, we obtain the indexes 0 to 2 for the first

operations of the three jobs, the indexes 3 and 4 for the second operation of job 1 or 2,

respectively, in view of their earliest starting times 3 and 4, and indexes from 5 to 8 for

the remaining operations. A relevant condition that is guaranteed by such a total order

is that indexes increase according to the precedence of operations within their jobs, given

that the earliest starting times grow along the sequence of operations in a job.

The last rule in line 10 inspects the total order of operations to partition them into

time windows of the size W determined by width(W), where only the last time window
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window (1,1,1). window (2,1,1). window (3,1,1).

window (1,2,1). window (2,2,1). window (3,2,2).

window (1,3,2). window (2,3,2). window (3,3,2).

Listing 3. Example time windows

may possibly include fewer operations in case the split is uneven. As the ASP program

encoding problem decomposition is stratified, its ground instantiation can be simplified

to (derived) facts, as shown in Listing 3 for our example instance. Time window numbers

from 1 to n = 2 are given by the third argument of atoms over window/3, so that the

second operation of job 3 and the third operation of each job form the time window 2,

while time window 1 consists of the five other operations.

In addition to J-EST decomposition, we have devised a similar ASP program for Job-

based Most Total Work Remaining (J-MTWR) decomposition, where the total order of

operations is decreasing by the sum of processing times for an operation and its successors

in a job. For example, we obtain the J-MTWR values 7, 12, and 20 for the first operation

of job 1, 2, or 3, respectively, for the JSP instance in Listing 1, matching the time for

executing all three operations of each job. Hence, the first operation of job 3 is considered

as the most important and is associated with the index 0. The other operations follow the

total order taken for partitioning into time windows. As J-MTWR values are decreasing

along the sequence of operations in a job, the obtained time windows also respect the

precedence of operations.

Beyond partitioning operations in a purely Job-based fashion, we have encoded

Machine-based decompositions M-EST and M-MTRW in which an operation from a

bottleneck machine with the greatest sum of processing times for yet unordered oper-

ations is considered next. For our example instance, the sum of processing times for

operations is 12, 15, or again 12, respectively, for the machines 1, 2, and 3. Hence, the

operation to be inserted into the total order first is picked from machine 2, where the

smallest M-EST or greatest M-MTWR value is used for choosing a particular job/opera-

tion. Unlike Job-based decompositions, this may lead to the choice of an operation such

that predecessor operations processed by other machines are yet unordered. In this case,

they are inserted into the total order directly before the operation from a bottleneck

machine, and all machine loads are reduced by processing times before determining the

next machine to consider.

Moreover, we have devised dynamic versions of the Job- and Machine-based decompo-

sition strategies in which partial schedules are taken into account, and already scheduled

operations from previous time windows may change the EST and MTWR values used

to order the yet unscheduled operations. However, the principle of applying a stratified

ASP program to determine operations for the time window to schedule next is similar

for all decomposition strategies, and we experimentally evaluate them in Section 4.

3.3 Problem encoding

Given a JSP instance as in Listing 1 along with facts like those in Listing 3 providing

a decomposition into time windows, the idea of successive schedule optimization is to

consider time windows one after the other and gradually extend a partial schedule that
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fixes the operations of previous time windows. In this process, we adopt the makespan as

optimization objective for scheduling the operations of each time window, thus applying

the rule of thumb that small scheduling horizons for partial schedules are likely to lead

towards a global solution with short makespan. While we use DL variables to compactly

represent the starting times of operations to schedule, we assume that a partial schedule

for the operations of previous time windows is reified in terms of additional input facts

of the form start((j,s),t,w)., where t is the starting time scheduled for the step s of

job j at the previous time window indicated by w.

The step(w) subprogram until line 27 in Listing 4 constitutes the central part of our

multi-shot ASP modulo DL encoding, whose parameter w stands for consecutive integers

from 1 identifying time windows to schedule. Auxiliary atoms of the form use(m,w′,w),

supplied by the rules in lines 3 and 4, indicate the latest time window 1 ≤ w′ ≤ w

including some operation that needs to be processed by machine m. The next rule in

lines 6-10 identifies pairs (j1,s1) and (j2,s2) of operations sharing the same machine m,

where (j2,s2) belongs to the time window w and (j1,s1) is either (i) contained in the

latest time window 1 ≤ w′ < w indicated by use(m,w′,w − 1) or (ii) also part of the

time window w, in which case j1 < j2 establishes an asymmetric representation for the

pair of operations in derived atoms share((j1,s1),(j2,s2),p1,p2,x,w). If the flag x = 1

signals that (j1,s1) belongs to a previous time window w′, the rule in line 12 derives the

atom order((j1,s1),(j2,s2),p1,w) to express that (j1,s1) needs to be completed before

performing (j2,s2), that is, the execution order must comply with the decomposition

into time windows. The rule in lines 13–14 yields a similar atom when (j1,s1) is the

predecessor operation s1 = s2 − 1 of (j2,s2) in the same job j1 = j2. In contrast to

the cases in which (j1,s1) must be processed before (j2,s2), the choice rule in line 16

allows for performing two operations sharing a machine in the lexicographic order of their

jobs if the operations belong to the same time window. In case the atom representing

execution in lexicographic order is not chosen, the rule in lines 17 and 18 derives an atom

expressing the inverse, given that the operations must not intersect and some sequence

has to be determined. Note that applications of the rules in lines 16–18 for choosing an

execution order require that the operations (j1,s1) and (j2,s2) are part of the same

time window w and belong to distinct jobs, so that (j1,s1) and (j2,s2) are out of scope

of the rules imposing a fixed order in lines 12–14.

While the rules up to line 18 yield atoms of the form order(o1,o2,p1,w), expressing

the hard requirement or choice to perform an operation o1 with processing time p1 before

the operation o2 belonging to time window w, the remaining rules assert corresponding

DL constraints. To begin with, the starting times of operations o from the previous time

window w−1 (if any) are in the lines 20 and 21 fixed by restricting them from above or be-

low, respectively, to the value t in an (optimized) partial schedule for time window w−1,

as supplied by reified facts start(o,t,w−1). In line 23, the lower bound 0 is asserted for

the starting time of the first operation of some job, included in the time window w for

which a partial schedule is to be determined next. In addition, constraints reflecting the

order of performing operations are imposed in line 24, which concerns operations sharing

a machine as well as successor operations within jobs. Since such constraints trace the

sequence of operations in a job, they establish the earliest starting time, considered for

problem decomposition in Section 3.2, as lower bound for scheduling an operation, and

the execution order on the machine processing the operation can increase its starting
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1 #program step(w).

3 use(M,w,w) :- operation(J,S,M,P), window(J,S,w).

4 use(M,W,w) :- use(M,W,w-1), not window(J,S,w) : operation(J,S,M,P).

6 share ((J1 ,S1),(J2 ,S2),P1 ,P2,X,w) :- operation(J1 ,S1 ,M,P1),

7 operation(J2 ,S2 ,M,P2),

8 window(J1 ,S1 ,W),

9 window(J2 ,S2 ,w), (W,J1) < (w,J2),

10 use(M,W,w - X), X = 0..1.

12 order(O1 ,O2 ,P1 ,w) :- share(O1 ,O2 ,P1 ,P2 ,1,w).

13 order ((J,S1),(J,S2),P,w) :- operation(J,S1 ,M,P), window(J,S2 ,w),

14 S1 = S2 - 1.

16 {order(O1 ,O2 ,P1 ,w)} :- share(O1 ,O2 ,P1 ,P2 ,0,w).

17 order(O2 ,O1 ,P2 ,w) :- share(O1 ,O2 ,P1 ,P2 ,0,w),

18 not order(O1 ,O2 ,P1 ,w).

20 &diff{O - 0} <= T :- start(O,T,w - 1).

21 &diff{0 - O} <= -T :- start(O,T,w - 1).

23 &diff{0 - (J,1)} <= 0 :- window(J,1,w).

24 &diff{O1 - O2} <= -P :- order(O1 ,O2 ,P,w).

26 &diff{(J,S) - makespan} <= -P :- operation(J,S,M,P), window(J,S,w),

27 not window(J,S + 1,w).

29 #program optimize(m).

30 #external horizon(m).

32 &diff{makespan - 0} <= m :- horizon(m).

Listing 4. Multi-shot ASP modulo DL encoding

time further. The last rule of the step(w) subprogram in lines 26 and 27 asserts that

the value for the DL variable makespan cannot be less than the completion time of any

operation of the time window w. That is, the least feasible makespan value provides the

scheduling horizon of a partial schedule for operations of time windows up to w.

The task of optimizing the horizon of a (partial) schedule means choosing the exe-

cution order of operations of the latest time window sharing a machine such that the

value for the makespan variable is minimized. In single-shot ASP modulo DL solving

with clingo[DL], the minimization can be accomplished via the command-line option

--minimize-variable=makespan. This option, however, is implemented by means of a fixed

control loop that cannot be combined with (other) multi-shot solving methods. For the

successive optimization by time windows, where the scheduling horizon gradually in-

creases, we thus require a dedicated treatment of DL constraints limiting the value for

makespan. To this end, the optimize(m) subprogram below line 29 declares an external

atom horizon(m) for controlling whether a DL constraint asserted in line 32 is active and

limits the makespan value to an integer supplied for the parameter m.
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Fig. 2. Control loop for successive schedule optimization by multi-shot ASP modulo DL
solving.

3.4 Iterative scheduling

The main steps of our control loop for successive schedule optimization by multi-shot ASP

modulo DL solving, implemented by means of the Python interface of clingo[DL], are dis-

played in Figure 2 and further detailed in the following. When launching the optimization

process for a new time window, any instance of the horizon(m) atom introduced before is

set to false in step 1 for making sure that some (partial) schedule X is feasible. No such

atoms have been introduced yet for the first time window w = 1, where the static (de-

fault) subprogram called base, supplying a JSP instance along with its decomposition in

terms of facts over window/3, and the step(1) subprogram for operations of the first time

window are instantiated in steps 2 and 3. Once some schedule X with a horizon h + 1

is found in step 4a, the step 4b consists of instantiating the subprogram optimize(h)

on demand, that is, in case h has not been passed as a value for m before, and the

corresponding horizon(h) atom is set to true in step 4c for activating the DL constraint

reducing the admitted scheduling horizon to h. The step 4 of successively reducing the

horizon h in order to find better partial schedules stops when the imposed makespan value

turns out to be infeasible, meaning that an optimal partial schedule has been found. As

already mentioned above, the introduced instances of the external horizon(m) atom are

then set to false in step 1, and the successive optimization proceeds by in steps 2 and 3

instantiating the step(w + 1) subprogram for the next time window w + 1 (if any) and

also supplying the determined starting times of operations from time window w by reified

facts. The described control loop for successively extending good-quality partial schedules

to a global solution can be configured with a time limit, included as secondary stopping

condition in step 4, to restrict the optimization efforts per time window and thus make

sure that the iterative scheduling progresses.

For illustrating some phenomena going along with problem decomposition and itera-

tive scheduling, let us inspect the schedule in Figure 3 that can be obtained with the

decomposition into windows given in Listing 3. The separation between the two time win-

dows is indicated by bold double lines marking the completion of the latest operation of

the first time window on each of the three machines. Notably, the partial schedule for the

first time window as well as its extension to the second time window are optimal in terms

of makespan. However, the obtained global solution has a makespan of 21 rather than

just 20 as for the optimal schedule in Figure 1. The reason is that the second operation
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Fig. 3. Decomposed schedule for example JSP instance.

of job 3 would need to be scheduled before the second operation of job 2 on machine 1,

while the decomposition into time windows dictates the inverse order and necessitates

the later completion of job 3. Given the resulting buffer for scheduling operations with

comparably short processing times on machine 3, the third operation of job 1 can be

performed after the third operation of job 2 without deteriorating the makespan, yet

introducing an unnecessary idle time of machine 3 from 9 to 10 that could be avoided

by choosing the inverse execution order. Even though this may seem negligible for the

example instance at hand, idle slots can potentially propagate when a partial schedule

gets extended to later time windows.

In order to counteract limitations of window-wise successive optimization due to

“decomposition mistakes” and unnecessary idle times that do not directly affect the

makespan to some extent, we have devised two additional techniques that can be incor-

porated into the iterative scheduling process. The first extension is time window over-

lapping, where a configurable percentage of the operations per time window can still

be rescheduled when proceeding to the next time window. To this end, an (optimized)

partial schedule is postprocessed and the configured number of operations to overlap are

picked in decreasing order of starting times. For example, if one operation from the first

time window is supposed overlap for the decomposed schedule in Figure 3, the second

operation of job 2 whose starting time 4 is latest may be chosen, which in turn enables its

processing after the second operation of job 3 by rescheduling together with operations

of the second time window. The addition of overlapping operations to the encoding in

Listing 4 requires handling them similar to operations of the time window to schedule,

that is, enabling the choice of an execution order by the rules in lines 16-18 rather than

fixing the order by the rule in line 12. As the second extension, we can make use of a

stratified ASP program to postprocess an (optimized) partial schedule by inspecting op-

erations of the latest time window in the order of starting times whether idle slots on their

machines allow for an earlier execution. The starting times obtained by the compression

are then taken instead of those calculated in the actual schedule optimization, and, for

example, the starting time 12 of the third operation of job 1 would be turned into 9

to fill the idle slot available on machine 3 when compressing the decomposed schedule

displayed in Figure 3.

4 Experiments

In order to evaluate our multi-shot ASP modulo DL approach to JSP solving, we ran

experiments on JSP benchmark sets by Taillard (1993) of several sizes, considering ten

instances each with 50 × 15, 50 × 20, or 100 × 20 jobs and machines. These are the

largest instances provided by common JSP benchmark sets, so that complete optimiza-

tion methods do not terminate within tight runtime limits and the amount of opera-
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Table 1. Experiments varying the number of time windows on JSP benchmark sets of

three sizes

Size Average 1 2 3 4 5 6 10

50 × 15 Makespan 3542.1 3149.7 3083.8 3110.7 3213.6 3225.3 3524.9
Time 1000.0 1000.0 1000.0 934.4 615.5 243.8 18.5
Interrupts 1.0 2.0 3.0 3.6 2.7 1.0 0.1

50 × 20 Makespan 3879.4 3479.4 3290.5 3260.3 3355.5 3414.8 3793.1
Time 1000.0 1000.0 1000.0 944.9 583.4 321.5 33.3
Interrupts 1.0 2.0 3.0 3.5 2.5 1.6 0.1

100 × 20 Makespan 46786.1 26210.4 7201.5 6288.7 6106.1 6031.9 6234.0
Time 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 861.8
Interrupts 1.0 2.0 3.0 4.0 5.0 6.0 7.9

tions makes problem decomposition worthwhile. The instances are generated such that

each job includes one operation per machine, for example, 15 operations in case of the

50 × 15 instances, where the sequence in which the operations of a job are allocated

to machines varies. In our experiments, we assess decomposition strategies presented

in Section 3.2 with different number and size of time windows as well as the impact

of time window overlapping and compression techniques described in Section 3.4. For

the comparability of results between runs with a different number of time windows and

respective optimization subproblems addressed by multi-shot solving, we divide the total

runtime limit of 1000 s for clingo[DL] (version 1.3.0) by the number of time windows to

evenly spend optimization efforts on subproblems. Our experiments have been run on an

Intel R© CoreTM i7-8650U CPU Dell Latitude 5590 machine under Windows 10.1

Our first experiments, shown in Table 1, concern instances with 50 × 15, 50 × 20, and

100 × 20 jobs and machines with 750, 1000, or 2000 operations, respectively. These oper-

ations were split into time windows with the M-EST decomposition strategy as a baseline

because it leads to more robust solution quality than Job-based problem decompositions.

For each of the three problem sizes, we report the average makespan over ten instances,

where smaller values indicate better schedules, the average runtime of clingo[DL], and

the average number of interrupted optimization runs on subproblems. Each run was ex-

ecuted with a total timeout of 1000 s, where each of n subproblems got at most 1000/n

s computation time.

For every set of instances, we gradually increase the number of time windows from 1

to 6 and additionally include results for 10 time windows to outline the trend of degrad-

ing solution quality when the partition into time windows becomes too fragmented for

merging (optimized) partial schedules into proficient global solutions. In fact, the shortest

makespans, highlighted in boldface, were obtained with problem decomposition into 3, 4,

or 6 time windows, respectively, for the instances of size 50 × 15, 50 × 20, and 100 × 20.

Compared to the results for 1 time window, which represent global optimization on the

full problem, we observe substantial makespan improvements, amounting to almost one

1 The benchmarks and our implementation are available at: https://github.com/prosysscience/
Job-Shop-Scheduling/tree/master/ICLP%20Paper/Implementation
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Table 2. Experiments comparing Job- and Machine-based problem decomposition

strategies

50 × 15 50 × 20 100 × 20

Size Strategy Makespan Time Ints Makespan Time Ints Makespan Time Ints

J-EST 3524.8 1000.0 2.0 3540.8 1000.0 2.0 6964.4 1000.0 4.0
J-MTWR 3456.2 1000.0 2.0 3561.0 1000.0 2.0 7149.6 1000.0 4.0

M-EST 3083.8 1000.0 3.0 3260.3 944.9 3.5 6031.9 1000.0 6.0
M-MTWR 3060.3 1000.0 3.0 3287.9 986.1 3.9 5948.6 1000.0 7.0

M-EST d 3098.4 1000.0 3.0 3309.5 1000.0 4.0 6115.1 1000.0 7.0

M-MTWR d 3041.6 1000.0 3.0 3287.0 980.4 3.9 6167.3 1000.0 5.0

order of magnitude for the largest instances with 100 × 20 jobs and machines. These

advantages are not surprising, considering that the JSP instances are highly combinato-

rial (Shylo and Shams 2018) and each global optimization run times out with a more or

less optimized solution, where a good-quality schedule is the more challenging to find,

the greater the number of operations gets. Except for about 12% completed optimization

runs in multi-shot solving with 4 time windows on the 50 × 20 instances, the best sched-

ules were obtained with optimization runs timing out on subproblems. Nevertheless, they

resulted in good-quality partial schedules that can be merged into better global solutions

than achievable with more time windows, which become smaller and easier to solve but

also cut off good-quality schedules.

In Table 2, we provide a comparison of the Job- and Machine-based EST and MTWR

approaches with dynamic versions of M-ESTd and M-MTWR d that determine M-EST

and M-MTWR values w.r.t. partial schedules from previous time windows. For each de-

composition strategy and JSP instance size, we present results for the number of time

windows, which amounts to the next greater integer of the average number of interrupted

optimization runs in columns headed by Ints, leading to the shortest average makespan.

The considerably increased average makespans in the first two rows clearly indicate that

time windows determined with Job-based decomposition strategies are less adequate than

those investigating bottleneck machines in the first place, and then picking their oper-

ations based on the smallest EST or greatest MTWR value as a secondary criterion.

While Machine-based decomposition turns out to be advantageous, there is no clear gap

between the static M-EST and M-MTWR variants as well as their dynamic versions M-

EST d and M-MTWR d, and the same indifference applies to Job-based decomposition

strategies whose dynamic counterparts are thus omitted. That is, the heuristic to schedule

operations from highly loaded machines as soon as possible works well for decomposing

the considered JSP instances, yet further solution quality differences due to minor de-

viations in the decomposition strategy or optimization performance of clingo[DL] are

negligible.

Focusing again on the static M-EST decomposition strategy, Table 3 assesses different

percentages of overlapping operations from previous time windows as well as the impact

of compressing (optimized) partial schedules in a postprocessing phase. The baseline
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Table 3. Experiments comparing time window overlapping and compression techniques

50 × 15 50 × 20 100 × 20

Size Overlap Makespan Time Ints Makespan Time Ints Makespan Time Ints

0% 3083.8 1000.0 3.0 3260.3 944.9 3.5 6031.9 1000.0 6.0
10% 3050.0 1000.0 3.0 3194.9 1000.0 4.0 5979.9 1000.0 6.0
20% 3046.0 1000.0 3.0 3200.6 1000.0 4.0 5954.3 1000.0 6.0
30% 3051.2 1000.0 3.0 3451.8 1000.0 4.0 6933.3 1000.0 6.0

0% 3010.3 907.5 3.4 3174.5 839.6 3.0 5671.9 1000.0 7.0
10% 2960.6 989.4 3.9 3154.6 956.4 3.9 5637.5 1000.0 7.0
20% 2946.9 1000.0 4.0 3120.3 1000.0 4.0 5640.7 1000.0 7.0
30% 2932.9 1000.0 4.0 3169.0 1000.0 4.0 5722.7 1000.0 7.0

approach as above is included in the first row with 0% of the operations per time window

overlap and without the use of compression. The next three rows exclude compression as

well but introduce 10%, 20%, or 30% of overlapping operations that can be rescheduled

together with operations of the next time window. In view of the considered number

of time windows, picked according to the shortest average makespan achieved with 0%

overlap, between 18 and 35 operations constitute an overlap of 10%, so that 30% range

up to more than 100 operations. Such non-negligible amounts can make the optimization

of subproblems for time windows harder, while the moderate overlaps of 10% or 20%

manage to consistently improve the solution quality. Even more significant advantages

are obtained by applying compression in the last four rows, where the average makespan

gets already shorter with 0% overlap. Further improvements of roughly 2% in solution

quality are achieved with 20% overlap, which yield consistently better schedules than

the smaller overlap of 10% and avoid deteriorations as observed with 30% overlap on

the largest instances with 100 × 20 jobs and machines. In summary, a Machine-based

problem decomposition strategy along with postprocessing to compress partial schedules

as well as a modest overlap of about 20% of the time window size turn out to be most

successful for the JSP benchmark sets under consideration.

For putting our results, obtained with single-shot ASP modulo DL solving (1 time

window in Table 1) and the best-performing multi-shot solving approach indicated in

the lower half of Table 3, in relation, we also ran the state-of-the-art CP system OR-

tools (version 9.2) with a timeout of 1000 s, using the JSP encoding provided by Tassel

et al. (2021). The respective average makespans and distances to the known optima re-

ported by Taillard (1993) are shown in Table 4. Notably, the optimal schedules from

the literature have been determined by greedy or local search techniques, which can in

general not compute (provably) optimal solutions, yet the optimality of their schedules

is guaranteed by theoretical lower bounds that were not supplied as background knowl-

edge to clingo[DL] and OR-tools. As a consequence, all runs of the complete OR-tools

and clingo[DL] solvers are interrupted at the runtime limit and do thus not yield opti-

mality proofs. However, we observe that the schedules of OR-tools are of high quality
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Table 4. Comparison of single- and multi-shot ASP modulo DL solving approaches to

OR-tools

OR-tools Multi-shot Single-shot

Size Optima Makespan Distance Makespan Distance Makespan Distance

50 × 15 2773.8 2778.8 5.0 2932.9 159.1 3542.1 768.3
50 × 20 2843.9 2914.3 70.4 3120.3 276.4 3879.4 1035.5
100 × 20 5365.7 5559.3 193.6 5637.5 271.8 46786.1 41420.4

and come close to the optima for the instances of size 50 × 15. The larger the instances

get, the closer is our decomposition and multi-shot solving approach, while it remains

behind OR-tools. On the one hand, this can be due to “decomposition mistakes” of our

method, deteriorating the quality of the resulting global solutions. On the other hand,

the CP encoding taken for OR-tools features dedicated interval variables and global con-

straints, which are tailored to scheduling problems and give it an advantage over the

use of DL constraints. Nevertheless, the improvements due to problem decomposition

and multi-shot solving are apparent relative to the single-shot solving approach, which

is significantly behind for each of the three problem sizes.

5 Conclusions

Our work develops multi-shot ASP modulo DL methods for JSP solving, based on prob-

lem decomposition into balanced time windows that respect the operation precedence

within jobs and successive makespan optimization while extending partial schedules to

a global solution. We demonstrate that splitting highly complex JSP instances into bal-

anced portions, for which partial schedules of good quality can be reliably found within

tight runtime limits, leads to significantly better global solutions than obtainable with

single-shot ASP modulo DL optimization in similar runtime. Related works taking ad-

vantage of single- (Abels et al. 2021) and multi-shot solving (Francescutto et al. 2021)

by clingo[DL] to tackle real-world scheduling problems evaluate threshold values on DL

variables and perform optimization by means of common #minimize statements of clingo

rather than minimizing the value of a DL variable like makespan in Listing 4. Applying a

similar approach can be advantageous in our future work as it may potentially improve

computational efficiency as well as solution quality further and is even a necessity to

switch from the makespan as optimization objective to tardiness w.r.t. deadlines, which

are crucial in many application areas. While Machine-based decomposition turned out

to be helpful for finding better schedules, the strategies presented in Section 3.2 can be

regarded as naive heuristics based on straightforward instance properties, and incorpo-

rating machine-learning approaches (El-Kholany et al. 2022; Tassel et al. 2021) for more

adept partitioning is another promising direction for future work. Provided the adjust-

ment of problem decomposition strategies, our multi-shot solving methods can also be

applied to the Flow-shop and Open-shop Scheduling Problems (Taillard 1993). Moreover,

we aim to generalize our methods further, for example, by considering flexible machine
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allocations and varying processing times, and scale them up to large real-world scheduling

problems with an order of magnitude more operations than in synthetic benchmarks.
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