
J. Inst. Math. Jussieu (2016) 15(3), 613–623

doi:10.1017/S1474748014000449 c© Cambridge University Press 2014

613

THE DERIVED CATEGORY OF AN ÉTALE EXTENSION AND THE
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1. Introduction

Our purpose is to prove two theorems of independent interest, one about derived

categories in algebraic geometry and the other about general triangulated categories.

If U ↪→ X is a Zariski open subscheme, it is well known that the derived category of U
can be described out of that of X via Bousfield localization, that is, via a purely triangular

construction, not resorting to models. We generalize this result to an étale morphism V →
X by replacing Bousfield localization by a more powerful triangular construction, namely

separable extension of triangulated categories in the sense of [1]. This is Theorem 3.5.

Summarizing the scope of separable extensions of triangulated categories, they now cover

the following.

(a) Bousfield localizations (see Example 3.2 for explanations).

(b) Etale extensions in algebraic geometry (the above-mentioned Theorem 3.5).

(c) Restriction to subgroups in equivariant stable homotopy categories, in equivariant

KK-theory, and in equivariant derived categories, by [3].

This profusion of sources motivates the study of separable extensions of triangulated

categories per se.
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614 P. Balmer

Thus stimulated, and in view of the importance of Brown representability, we prove a

general result about separable extensions of compactly generated triangulated categories,

extending the Neeman–Thomason localization theorem. This is Theorem 4.2, where we

give a simple criterion for such a separable extension to remain compactly generated,

and describe what happens on compact objects.

2. Compact reminder

Convention 2.1. All our schemes are assumed quasi-compact and quasi-separated, even

when not repeated. This is a very light assumption, satisfied by any Noetherian or any

affine scheme, for instance. Recall that a topological space is quasi-separated if it admits

a basis of quasi-compact open subsets. For a scheme, it means that the intersection of

any two affine open subsets remains quasi-compact.

For a quasi-compact and quasi-separated scheme X , let us denote by Dqcoh(X) the

derived category of complexes of OX -modules with quasi-coherent homology. If the

reader wants to assume X separated, then Dqcoh(X) is simply the derived category of

quasi-coherent OX -modules itself; see [4, Corollary 5.5]. Let us recall two important

properties of the triangulated category Dqcoh(X).
First of all, for a quasi-compact open subscheme j : U ↪→ X , the derived category

Dqcoh(U ) of the subscheme is a smashing Bousfield localization of Dqcoh(X). This

means that the restriction functor j∗ : Dqcoh(X)→ Dqcoh(U ) admits a fully faithful

right adjoint j∗ : Dqcoh(U )→ Dqcoh(X) which commutes with arbitrary coproducts. In

other words, if Z = X −U denotes the closed complement of U , we can identify

Dqcoh(U ) as the Verdier localization Dqcoh(X)/Dqcoh
Z (X) of the ambient category by

its subcategory Dqcoh
Z (X) := Ker( j∗) = {x ∈ Dqcoh(X)

∣∣ x|U ∼= 0 in Dqcoh(U )
}

supported

on Z ; furthermore, the endofunctor L := j∗ j∗ on Dqcoh(X), which receives the identity

IdDqcoh(X)
λ−→ j∗ j∗, is a Bousfield localization functor (i.e., Lλ = λL : L

∼→ L2) and L is

moreover smashing, i.e., L commutes with coproducts. Perhaps we should also remind

the reader that localization of triangulated categories (i.e., inverting a class of maps)

is equivalent to annihilating a subcategory of objects (the cones of those maps). Hence

the traditional notation with a quotient ‘Dqcoh(X)/Dqcoh
Z (X)’ to mean localization. These

ideas are completely standard nowadays (see [20]), and a good survey can be found in [12].

In short, the derived category of an open subscheme U ⊂ X can be described by a

purely triangular construction (localization) out of the derived category of X .

The second general fact we want to remind the reader about is that the category

Dqcoh(X) is compactly generated, in the following sense; see details in [20].

Definition 2.2. Let S be a triangulated category admitting all small coproducts. An object

c ∈ S is called compact if any morphism from c to a coproduct
∐

i∈I xi factors via a

finite subcoproduct. The category S is called compactly generated if there exists a set of

compact objects G ⊂ S such that, for every x ∈ S, the property HomS(g, x) = 0 for all g ∈
G forces x = 0. In this case, the subcategory Sc of compact objects is an essentially small

thick triangulated subcategory of S, which is exactly Sc = thick(G), the thick envelope
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The étale Neeman–Thomason theorem 615

of G. Also, the smallest localizing subcategory of S which contains Sc is the whole S.

(A triangulated subcategory L ⊂ S is localizing if it is closed under coproducts.) Hence

the name ‘compactly generated’ and the formula: Loc(Sc) = S.

In the geometric example of Dqcoh(X), the compact objects are exactly the

perfect complexes Dqcoh(X)c = Dperf(X), that is, those complexes which are locally

quasi-isomorphic to bounded complexes of vector bundles. These results were first

established by Neeman [19] for X separated, and in the above generality by Bondal

and van den Bergh [5, § 3].

Compactly generated triangulated categories form an important class of ‘big’

triangulated categories, way beyond algebraic geometry. Their most remarkable

properties are the Brown representability theorem and its dual ([20, Chapter 8] and

[11, § 2]), which ensure that every (co)homological functor which maps (co)products to

products is (co)representable. This beautiful theory has its roots in topology but branched

out to many other settings, including motivic homotopy theory or various equivariant

stable homotopy theories. In algebraic geometry, Neeman applied Brown representability

to Grothendieck duality; see [19].

Let us now recall the interaction between the two facts recorded above.

In the landmark paper [21], Thomason proved the following result, with some

ectoplasmic help from Trobaugh. Let U ⊂ X be a quasi-compact open subscheme and

Z = X −U its closed complement. Then the subcategory of compact objects Dperf(U )
is the idempotent completion (−)\ of the Verdier localization Dperf(X)/Dperf

Z (X) of the

ambient Dperf(X) by the thick subcategory Dperf
Z (X) supported outside U . We know

that Dperf(U ) cannot be a localization of Dperf(X) in general, because the map on

Grothendieck groups K0(X)→ K0(U ) is not always surjective. Thomason’s breakthrough

was to understand that this is the only obstruction. In summary, on the ‘big’ categories,

we have the natural localization but on the compact parts we need an idempotent

completion:

Dqcoh(U ) = Dqcoh(X)

Dqcoh
Z (X)

whereas Dperf(U ) =
(

Dperf(X)

Dperf
Z (X)

)\
.

This interplay between Bousfield localization and compact-generation was then isolated

by Neeman in the following abstract result (which recovers the above by plugging S =
Dqcoh(X) and Rc = Dperf

Z (X)).

Theorem 2.3 (Neeman–Thomason localization theorem [18, Theorem 2.1]). Let S be a

compactly generated triangulated category. Let Rc ⊂ Sc be a thick subcategory of compact

objects and R = Loc(Rc) the localizing subcategory it generates. Then the smashing

Bousfield localization T = S/R remains compactly generated, and its subcategory of

compact objects Tc is canonically the idempotent completion of the corresponding Verdier

localization on compacts: (Sc/Rc)\
'−→Tc.

We want to extend this theory from Bousfield localizations in the Zariski topology to

separable extensions in the étale topology.
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616 P. Balmer

3. Separable extensions and the étale topology

The Neeman–Thomason theory recalled in § 2 works well for smashing Bousfield

localization of compactly generated triangulated categories. Its incarnation in algebraic

geometry covers restriction to Zariski open subschemes.

However, smashing Bousfield localization has its limits. In algebraic geometry, it can

essentially describe nothing else than Zariski localization. Furthermore, if we work with

equivariant triangulated categories, Bousfield localization does not produce restriction to

subgroups. For instance, in modular representation theory, if S = Stab(kG) is the stable

module category of a finite group G over a field k, there is no way to obtain the stable

category T = Stab(kH) of a subgroup H 6 G by means of a localization S/R (except of

course in the trivial cases where T = S or T = 0). And similarly for equivariant stable

homotopy categories: restriction SH(G)→ SH(H) is never a localization. A solution

to this problem has been one of the first nice applications of separable extensions of

triangulated categories, in the sense of [1]. Indeed, we first proved in [2] that restrictions

to subgroups are separable extensions in modular representation theory. Then, in the

recent paper [3], we proved similar results in many other equivariant settings, including

equivariant stable homotopy theory SH(G), or Kasparov’s equivariant KK-theory of

C*-algebras, or equivariant derived categories of schemes. Here, we want to include étale

morphisms of schemes to this list of examples.

It is high time we recall those separable extensions of triangulated categories.

Definition 3.1. Let S be a triangulated category (in the precise sense of [1, 13, 15], which

covers all stable homotopy categories in Nature). Consider a monad A : S→ S, that is, an

endofunctor equipped with multiplication µ : A ◦A→ A and two-sided unit η : IdS→ A
satisfying the usual rules of associative and unital ring multiplication (µ ◦Aµ = µ ◦µA
and id = µ ◦Aη = µ ◦ ηA). This is a classical notion; see [17, Chapter VI]. Also recall that

the monad A is called separable if it satisfies the analogue of the commutative algebra

definition of separability, namely if there exists a section σ : A→ A2 of multiplication

(µ ◦ σ = id) which is A-linear on both sides (Aµ ◦ σA = σµ = µA ◦Aσ ). In our case, S

is triangulated; hence one assumes A to be exact and σ : A→ A2 to be compatible with

suspension.

Example 3.2. Suppose that the multiplication µ : A2 → A is an isomorphism. Then A is

separable, with σ = µ−1. This is admittedly the ‘trivial’ case of separability. And yet it

is already an interesting case, since it is easy to see that µ is an isomorphism if and only

if Aη and ηA are equal isomorphisms (both equal to µ−1). This means that IdS
η→ A is

a Bousfield localization functor (and µ is forced to be (Aη)−1). So, Bousfield localization

functors are special cases of separable monads.

Remark 3.3. The main result of [1] is that, under the assumption that A is exact and

separable, the category of A-modules in S remains triangulated. Let us explain this

statement. Thinking of a monad as a functorial version of a ring in S, one defines an

A-module in S as an object x ∈ S equipped with a morphism ρ : Ax → x such that
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ρ ◦ ηx = idx and ρ ◦Aρ = ρ ◦µx . These axioms express the usual rules for modules:

1m = m and a(bm) = (ab)m, respectively. In the same vein, a morphism (x, ρ)→ (x ′, ρ′)
of A-modules in S is simply a morphism f : x → x ′ in S such that ρ′ ◦A f = f ◦ ρ.

This yields the category A - ModS of A-modules in S. The resulting Eilenberg–Moore

adjunction has been around for half a century [6]:

S

FA ��
A - ModS

UA

OO
(3.4)

The extension-of-scalars functor FA maps x ∈ S to the free A-module (Ax, µx ). Its right

adjoint UA forgets the A-action (x, %) 7→ x . The theorem of [1] says that, when A is exact

and separable, A - ModS admits a unique triangulation which makes FA and UA exact.

When η : Id→ A is a Bousfield localization functor (see Example 3.2), this re-proves

the well-known fact that the Bousfield localization A - ModS ∼=
{

x ∈ S
∣∣ x is A-local, i.e.,

ηx isom.
} ∼= S/Ker(L) is triangulated. In that case, the functor UA : A - ModS→ S is fully

faithful. For a general separable extension as in (3.4), the functor UA is only faithful, i.e.,

FA is surjective up to direct summands, i.e., every A-module x is a direct summand of a

free one x 6 FAUA(x).

We are now ready to state our first result, which extends [1, Corollary 6.6] beyond

the affine and finite case. Recall that a scheme morphism f : V → X is separated if the

diagonal 1f : V → V ×X V is a closed immersion. This is a rather weak condition on

a morphism which should not be confused with the separability of Definition 3.1. As

we shall see, the latter is actually more strongly related to the fact that f : V → X is

unramified.

Theorem 3.5. Let f : V → X be a separated étale morphism of quasi-compact and

quasi-separated schemes. Then the monad A f := R f∗ ◦ f ∗ on Dqcoh(X) is exact and

separable (Definition 3.1), and there is a unique equivalence of triangulated categories

E : Dqcoh(V )
∼−→ A f - ModDqcoh(X) (3.6)

between the derived category of V and the category of A f -modules in the derived category

of X , under which f ∗ : Dqcoh(X)→ Dqcoh(V ) becomes isomorphic to extension-of-scalars

FA f along A f and R f∗ : Dqcoh(V )→ Dqcoh(X) becomes isomorphic to UA f ; see (3.4).

Also, the monad A f commutes with arbitrary coproducts.

Proof. Details about the derived categories Dqcoh(X) and the adjunction f ∗ a R f∗ can

be found in Lipman [14]. It is a classical fact of adjunctions [17, Theorem VI.3.1]

that the ( f ∗,R f∗)-adjunction compares to the Eilenberg–Moore adjunction (3.4) for the

associated monad A f = R f∗ ◦ f ∗ on Dqcoh(X), via a unique functor E

https://doi.org/10.1017/S1474748014000449 Published online by Cambridge University Press
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618 P. Balmer

Dqcoh(X)
f ∗

{{ FA f %%
Dqcoh(V )

R f∗

;;

E
// A f - ModDqcoh(X)

UA f

ee

which is a morphism of adjunctions, meaning that E ◦ f ∗ = FA f and UA f ◦ E = R f∗.
Explicitly, E is given by the formula

E(y) = (R f∗(y),R f∗(εy)
)

(3.7)

for all y ∈ Dqcoh(V ), where εy : f ∗R f∗(y)→ y is the counit of the ( f ∗,R f∗)-adjunction.

Note that R f∗(εy) is a morphism A f (R f∗(y)) = R f∗ f ∗R f∗(y)
R f∗(ε)−→ R f∗(y) which indeed

describes an A f -action on the object R f∗(y) of Dqcoh(X).
In this situation, by [2, Lemma 2.10], we can prove simultaneously that A f is separable

and that E is an equivalence by showing that the counit ε : f ∗R f∗→ IdDqcoh(V ) is a split

epimorphism, that is, there exists a natural transformation ξ : IdDqcoh(V )→ f ∗R f∗ such

that ε ◦ ξ = id. Let us do that here.

Since f is étale, it is unramified. By EGA [8, IV.17.4.2, p. 65], this implies that the

diagonal 1f : V → V ×X V is an open immersion. On the other hand, since we assume

f separated, 1f is also closed, and hence 1f : V ↪→ V ×X V is an isomorphism onto

a closed and open subscheme. In other words, there is a disconnected decomposition

V ×X V ' V t Z for some scheme Z , in such a way that 1f : V → V ×X V is the inclusion

of V in V t Z . Since the two projections pri : V ×X V → V satisfy pri ◦1f = idV , we have

the following Cartesian diagram

V ×X V ∼= V t Z

pr1=(id p1)

��

pr2=
(id p2)

// V

f

��
V

f // X

for some morphisms p1, p2 : Z → V . We want to use flat base change on this square. Note

that, since f is étale, it is also flat. Since X and V are quasi-compact and quasi-separated

(‘concentrated’ in Lipman’s terminology), then so is f by [7, Corollary I.6.1.10]. Hence

we can apply base change [14, Proposition 3.9.5], which gives us a natural isomorphism

θ : f ∗R f∗
∼−→Rpr1∗ pr2

∗ defined as follows:

θ : f ∗R f∗
η2−→ f ∗R f∗ Rpr2∗ pr2

∗ ∼= f ∗R f∗ Rpr1∗ pr2
∗ ε−→Rpr1∗ pr2

∗,

where η2 is the unit of the (pr2
∗,Rpr2∗)-adjunction (on which one applies f ∗R f∗), where

ε is our counit (applied to Rpr1∗ pr2
∗) and where the middle canonical isomorphism

comes from f pr1 = f pr2. On the other hand, we have in our case that Rpr2∗ pr2
∗ ∼=

R(id p2)∗ (id p2)
∗ ∼= Id⊕Rp2∗ p2

∗, and similarly Rpr1∗ pr2
∗ ∼= Id⊕Rp1∗ p2

∗. Under this

decomposition, η2 becomes
(

id
?

)
(where ? is the unit of the (p2

∗,Rp2∗)-adjunction). So,

the above isomorphism θ is the following composition:

f ∗R f∗

(
id
?

)
−→ f ∗R f∗⊕ f ∗R f∗ Rp2∗ p2

∗
(

id 0
0 ∼=

)
−→ f ∗R f∗⊕ f ∗R f∗ Rp1∗ p2

∗
(
ε 0
0 ε

)
−→ Id⊕Rp1∗ p2

∗.
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The fact that this composite is an isomorphism proves that ε (in the upper-left corner

of the last map) is a split epimorphism, as wanted.

Finally, both f ∗ and R f∗ preserve coproducts (for the latter, one can use that its left

adjoint f ∗ preserves compacts). Hence so does A f = R f∗ ◦ f ∗.

Note that the above result implies that R f∗ is faithful, as is every UA. However, it

is not fully faithful in general, unlike what happens for j∗ : Dqcoh(U )→ Dqcoh(X) in the

case of a Zariski open immersion j : U ↪→ X .

Remark 3.8. The adjunction f ∗ : Dqcoh(X)� Dqcoh(V ) : R f∗ satisfies the projection

formula R f∗(y)⊗ x
∼→ R f∗(y⊗ f ∗(x)) for all y ∈ Dqcoh(V ) and x ∈ Dqcoh(X); see [14,

3.9.4]. Here, ⊗ denotes the respective left derived functors of ⊗OX and ⊗OV . This formula

implies that the monad A f is actually isomorphic to the monad R f∗(OV )⊗− induced

by the ring object A f := R f∗(OV ) in Dqcoh(X), obtained by evaluating the monad at

the ⊗-unit. See details in [3, Lemma 2.7]. One can therefore rephrase Theorem 3.5 with

modules over the ring object A f = A f (1) instead of the monad A f . This is left to the

interested reader.

Echoing [2, Question 4.7], one may wonder if the above A f are essentially the only

possible commutative separable monoids (also known as ‘tt-rings’) in Dqcoh(X).

We have chosen to follow a tensor-free treatment to avoid overloading the discussion.

There are two reasons for this choice. First, even in the Zariski case one often considers

j∗ and j∗ instead of the ring object j∗OU . But more importantly, the results of

this section are a (further) motivation to study separable extensions of triangulated

categories, be they tensor triangulated categories or not. For instance, the generalized

Neeman–Thomason theorem of the next section will hold for general monads, not only

for ring objects. In particular, it does not require a tensor structure. Summarizing

the examples of separable extensions of triangulated categories, we know at this stage

that they include Bousfield localizations, étale morphisms in algebraic geometry, and,

thanks to [3], restriction to subgroups in a broad variety of equivariant stable homotopy

categories.

4. The Neeman–Thomason theorem for separable extensions

The broad array of examples summarized at the end of the previous section invites us

to study separable extensions of triangulated categories for themselves. In this section,

we prove a generalization of the Neeman–Thomason theorem 2.3 in that setting. Let us

start with the only ‘new’ definition (of sorts) of the paper.

Definition 4.1. A monad A : S→ S is smashing if it commutes with coproducts.

In view of Example 3.2, this notion extends the usual notion of smashing Bousfield

localization functor. The localization associated to a subcategory R = Loc(Rc) as in

the Neeman–Thomason theorem 2.3 is smashing. This classical result is attributed to

Ravenel, Adams, and Bousfield in Neeman [18], although we follow Hovey et al. [10],
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who refer to Miller [16]. In algebraic geometry, we have seen in Theorem 3.5 that the

monad A f which describes an étale extension is also smashing. Definition 4.1 is clearly

the right one for our purposes.

Theorem 4.2. Let S be a compactly generated triangulated category (Definition 2.2), and

let A : S→ S be a separable exact monad (Definition 3.1) which is smashing in the above

sense. Then the triangulated category T = A - ModS of A-modules in S (Remark 3.3) is

also compactly generated, and the subcategory of compact objects Tc coincides with the

thick subcategory generated by the image of Sc under extension-of-scalars FA : S→ T

along A:

Tc = thick(FA(S
c)). (4.3)

If, moreover, A preserves compacts, i.e., A(Sc) ⊆ Sc, then we have an equality

(A - ModS)c = A - ModSc

of subcategories of T = A - ModS. In that case, every compact object of T is a direct

summand of the image FA(c) of a compact object c ∈ Sc.

Lemma 4.4 (See [9, Lemma 8.2]). Let F : S� T : U be an adjunction of exact functors

between triangulated categories with arbitrary coproducts, and suppose that S is compactly

generated. If the right adjoint U preserves arbitrary coproducts, then F preserves compact

objects. If, moreover, U is conservative (i.e., U (t) = 0⇒ t = 0 for any object t ∈ T), then

T is also compactly generated, and Tc = thick(F(Sc)).

Proof. The first statement is [19, Theorem 5.1]. So, let us assume that U is conservative,

and let G ⊂ Sc be a set of compact generators. By the first part, the set F(G) consists of

compact objects. Suppose now that t ∈ T is such that HomT(F(g), t) = 0 for all g ∈ G;

then HomS(g,U (t)) = HomT(F(g), t) = 0 by adjunction. Since G generates S, we have

U (t) = 0, and therefore t = 0, since U is conservative. Hence the set F(G) generates T,

and therefore Tc = thick F(G) ⊆ thick F(Sc) ⊆ Tc.

Proof of Theorem 4.2. First, observe that the category of A-modules T = A - ModS
admits arbitrary coproducts in the obvious way:

∐
i∈I (xi , ρi ) =

(∐
i∈I xi ,

∐
i∈I ρi

)
, using

that A commutes with coproducts for
∐

i ρi to be an A-action on
∐

i xi . This is where we

use that A is smashing. In particular, we see that FA (unsurprisingly for a left adjoint)

and UA both preserve coproducts; for UA, it follows from the above explicit formula for

coproducts in T. We thus fall within the general assumptions of Lemma 4.4, and conclude

that T is compactly generated and that Tc = thick FA(Sc).

Now, suppose moreover that A preserves compact objects, so that A : Sc → Sc is a

separable exact monad on Sc. In particular, we can form the triangulated category

A - ModSc of A-modules in Sc, which is a full subcategory of A - ModS = T in the obvious

canonical way. This subcategory A - ModSc is idempotent complete, as it is the idempotent

completion of the category FA(Sc) of free A-modules in Sc (see [1, Theorem 5.17] again). It

follows that A - ModSc = thick FA(Sc) = Tc by the above discussion. Hence Tc = FA(Sc)\,

as claimed.
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The étale Neeman–Thomason theorem 621

Remark 4.5. Although we do not use Neeman’s theorem in our proof, we do use several

of his results about compactly generated categories. Hence our work does not supersede

Neeman’s, but truly expands it to new territories. The separable statement (4.3) is

slightly more complicated than the Neeman–Thomason counterpart, but this is the

price for increased generality. Actually, we can sketch a proof of Neeman’s theorem 2.3

from Theorem 4.2 as follows. If Rc ⊂ Sc, then R = Loc(Rc) is a smashing subcategory

of S by Miller [16] and family. Hence the associated Bousfield localization L : S→ S

commutes with coproducts, i.e., L is a smashing separable monad. By the above

Theorem 4.2, T = L - ModT ∼= S/R is compactly generated, and its compact part is

Tc = thick(FL(S
c)), where FL : S→ T is the quotient functor. Now, one verifies that

the induced functor Sc/Rc → Tc is fully faithful by playing around with fractions and

the fact [20, Theorem 4.3.3] that any morphism c→ x in S with c compact and

x ∈ R = Loc(Rc) must factor via an object of Rc. Combining the above results, Sc/Rc

can be identified with a triangulated subcategory of Tc = (Tc)\, and Tc = thick(Sc/Rc) ∼=
(Sc/Rc)\, since Sc/Rc is already triangulated. This implies that (Sc/Rc)\ ↪→ Tc is an

equivalence.

Remark 4.6. Following up on Remark 3.8, we can consider the situation where the

compactly generated category S is a tensor triangulated category, such that ⊗ commutes

with coproducts in each variable. The latter is automatic if S admits an internal hom

functor S
op × S→ S, right adjoint to the tensor. If A ∈ S is a separable ring object in S,

then the associated monad A⊗− : S→ S is therefore automatically smashing in the sense

of Definition 4.1. Hence the category A - ModS is automatically compactly generated

in that case. Assuming that A⊗− preserves compacts simply means that A itself is

compact, at least in the common case where the ⊗-unit 1 is compact. In that case, we

get (A - ModS)c = A - ModSc .

Remarks 4.7. Some comments on the interaction of Theorems 3.5 and 4.2 are in order.

(1) Let f : V → X be a separated étale morphism. Then, by Theorems 3.5 and 4.2,

Dperf(V ) is the thick subcategory of Dqcoh(V ) generated by f ∗(Dperf(X)). In

particular, there exists a perfect complex G over X such that f ∗(G) is a perfect

generator of Dqcoh(V ), using [5, Theorem 3.1.1].

(2) The above fact is known more generally for f quasi-affine, at least as folklore. The

reason is that, for f quasi-affine, R f∗ is conservative, and we can apply Lemma 4.4,

without the need for R f∗ to be faithful.

(3) The above does not hold for a general morphism though, not even a smooth

one. Already for projective space f : P1
k→ Spec(k), for k a field, the subcategory

thick( f ∗(Dperf(k))) is only a proper part of Dperf(P1
k), equivalent to Dperf(k)

under R f∗. For instance, the object OP1(1) does not belong to it.

Corollary 4.8. If f : V → X is finite and étale, then Dperf(V ) ∼= A f - ModDperf(X).

Proof. In that case, f is affine, and hence exact, and A f = R f∗(OV ) = f∗(OV ) is a flat

and locally finitely generated OX -module, and hence a vector bundle on X . In particular,
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A f ∼= A f ⊗− preserves perfect complexes, and we can apply the ‘moreover part’ of

Theorem 4.2.
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