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Abstract 

A wave optical calculation of the probe size of a low energy scanning electron microscope is presented. 

The resolution for the optimal aperture was computed and compared with results of standard 

approaches. The effect of deflection aberrations is also considered, and it was found to be critical for the 

landing energies below 5eV and fields of view larger than 100 × 100 μm2.  

 

Introduction 

The resolution of the scanning electron microscope (SEM) depends on the probe size and on the 

interaction volume of the electrons within a sample. As the interaction volume depends on the sample 

type, it was not considered it in the study. Hence the probe size expresses the best possible resolution a 

system can have. The interaction volume decreases with decreasing landing energy, and for landing 

energies less than 10 eV the probe size corresponds to the resolution very accurately.  

 

There are several ways of determining the probe size. A very popular approach is the work by Barth & 

Kruit [1], which allows computing the probe size containing a given fraction of current (FC) of a round 

beam. Even if this approach is in a good agreement with wave optical calculations and experiments, it is 

not optimized for the use at very low energies of several eV, for which the effect of the chromatic 

aberration is more critical. 

 

Thus a complete wave optical calculation covering the second order chromatic aberration and the 

chromaticity of the spherical aberration seems necessary to determine the spot size correctly for low 

energies. The calculation also needs to include the effect of the deflection aberrations that become 

critical for low energies, mainly the effect of the dispersion increases.  

 

Wave optical calculation of the probe size 

We used wave optical calculations covering the effect of the axial aberrations of an electron beam of a 

finite brightness. As the resolution is mainly influenced by chromatic aberrations, we consider them up 

to the second degree, but only the effect of the primary geometrical aberrations is needed. We set from 

the current density generated by a point source in the object plane  𝒒𝑜 = (𝑥𝑜 , 𝑦𝑜) - the point spread 

function (PSF), 𝑗𝑃𝑆𝐹 ∝ |𝜓|2. In the vicinity of the paraxial image 𝒒𝑖𝑝 = (𝑥𝑖𝑝, 𝑦𝑖𝑝) of the point 𝒒𝑜 the 

wave function 𝜓 can be written in the form [2,3]: 

𝜓(𝒒𝒊𝒑 + 𝒅) = 𝐶 ∬ exp (−
𝑖

ℏ
𝑔𝑖𝜒(𝒒𝒐, 𝒒𝒊𝒑

′ )) 𝑒
𝑖
ℏ

𝑔𝑖𝒒𝑖𝑝
′ 𝒅d𝒒𝑖𝑝

′  ,
 

𝐴𝑛𝑔.

 

where 𝑔𝑖 is the kinetic momentum in the image, 𝒒𝑖𝑝
′ = (𝑥𝑖𝑝

′ , 𝑦𝑖𝑝
′ ) is the paraxial slope in the image and 𝒅 

is the deviation of the point where the PSF is evaluated from the paraxial image 𝒒𝑖𝑝 in the image plane. 

The aberration function 𝜒 has a direct relationship with the aberration polynomial in the 

parameterization by the position in the object and the paraxial slope in the image 
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Δ𝒒𝑖(𝒒𝑜 , 𝒒𝑖𝑝) =
𝜕𝜒(𝒒𝑜 , 𝒒𝑖𝑝

′ )

𝜕𝒒𝑖𝑝
′  

 

Using the standard complex notation 𝑤 = 𝑥 + 𝑖𝑦 and 𝜔 = 𝑥𝑖𝑝
′ + 𝑖𝑦𝑖𝑝

′ , the aberration function for the 

axial point in the image reads [3]: 

𝜒 = ℛ {𝐴𝑜�̅� +
1

2
𝐶1𝜔�̅� +

1

2
𝐴1�̅�2 + 𝐵2𝜔2�̅� +

1

3
𝐴2�̅�3 +

1

4
𝐶3(𝜔�̅�)2 +

1

4
𝐴3�̅�4 + 𝑆3𝜔3�̅�} , 

where the notation by Haider for the axial aberration coefficients is followed.  

 

The real electron source has an energy spread, which affects the system properties with chromatic 

aberrations. The formula for the aberration function must be extended to cover the chromatic aberration 

effect. It can be simply done by replacing the deflection coefficient 𝐴0 by 𝐴0 − 𝐶𝑑𝛿, defocus coefficient 

𝐶1 by 𝐶1 − 𝐶𝐶𝛿 − 𝐶𝐶2𝛿2 and the spherical aberration coefficient 𝐶3 by 𝐶3 − 𝐶3𝐶𝛿. 𝛿 denotes relative 

energy width in the image 𝛿 = Δ𝐸/𝐸 and the standard notation for the dispersion (𝐶𝑑), the chromatic 

aberration of the first (𝐶𝐶) and second order (𝐶𝐶2) and for the chromaticity of the spherical aberration 

(𝐶3𝐶) was used. We can assume that the electrons emitted with different energies are incoherent. The 

resulting PSF for the point source with the energy density function 𝜌(𝐸) takes the form 

𝑗𝑃𝑆𝐹(𝒒) =  ∫ 𝜌(𝐸)𝑗𝑃𝑆𝐹(𝐸; 𝒒)d𝐸
 

𝐸

 

 

The real source has also a nonzero diameter, which increases the final probe size. In that case the current 

density in the image can be expressed by the integration through the distribution in the source 𝜌(𝒒𝑜) 

𝑗(𝒒) = ∫ 𝑗𝑃𝑆𝐹(𝒒𝑜; 𝒒)𝜌(𝒒𝑜)𝑑2𝒒𝑜
𝑠𝑜𝑢𝑟𝑐𝑒

 

As the size of the source is very small, the effect of the off-axial aberrations can be neglected and the 

previous formula is reduced to a simple 2D convolution of the PSF with the paraxial image of the 

distribution in the object  𝜌𝑝(𝒒) =  𝜌(𝒒/𝑀):  

𝑗(𝒒) = ∫ 𝑗𝑃𝑆𝐹(�̃�)𝜌𝑝(𝒒 − �̃�)𝑑2�̃� 
𝑠𝑜𝑢𝑟𝑐𝑒

= 𝑗𝑃𝑆𝐹 ∗ 𝜌𝑝 

 

For the axially symmetrical system the aberration function is reduced to: 

𝜒𝑎(|𝜔|, 𝛿) = ℛ {
1

2
(𝐶1 − 𝐶𝐶𝛿 − 𝐶𝐶2𝛿2)𝜔�̅� +

1

4
(𝐶3 − 𝐶3𝐶𝛿)(𝜔�̅�)2} 

 

and the diffraction integral after the integration over the azimuthal angle reduces to [4]: 

𝜓(𝐸; 𝑟) = ∫ exp (−
𝑖

ℏ
𝑔𝑖𝜒𝑎(𝜗, 𝛿)) 𝐽0 (

𝑔𝑖𝜗𝑟

ℏ
)  𝑑𝜗 

𝛼

0

 

with 𝑟 = 𝑥2 + 𝑦2 being the distance from the axis in the image and 𝜗 = √𝜔�̅�. Moreover, if the 

Gaussian distribution in the virtual source is assumed, it is possible to reduce the convolution to the form 

of a simple 1-D integral 

𝑗(𝑟) = 𝑒−𝑟2/2𝜎2
∫ 𝑗𝑃𝑆𝐹(�̃�)𝑒

−�̃�2

2𝜎2 𝐽0 (
𝑖𝑟�̃�

𝜎2
) �̃�d�̃�

∞

0

 

The calculation procedure was implemented in Matlab and tested for a SLEEM system from the ISI. 
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Optimal aperture of the SLEEM 

For the calculation of the optimal aperture only axially symmetrical aberrations are relevant. The system 

we tested the algorithms on is a SLEEM developed at the ISI in cooperation with Delong Instruments. It 

consists of a magnetic condenser lens and an electrostatic objective lens; the presence of the magnetic 

field on the sample is undesirable (Figure 1). The electrons can be decelerated between the objective 

lens and the sample from the 5 keV to units of volts. The Schottky emission source with the energy 

width of 0.8 eV and the diameter of 20 nm is used. The optical properties of the system were calculated 

using the differential algebra (DA) method [5,6]. High order axial field derivatives needed by the DA 

was computed using the method described in [7]. 

 
 

Figure 1. Design of the condenser magnetic lens and the objective electrostatic lens with the 

electrostatic double deflection system. 

 

The typical longitudinal profiles are in Figure 2. The probe size is computed from the minimum of the 

curve 𝑟50 defining the part of the beam containing 50% of the current. These profiles were calculated for 

several values of the aperture angle in the vicinity of the optimal aperture given by the Barth & Kruit’s 

approach to find the optimal aperture. The results are presented together with the optical properties of 

the system in the Table 1 and Figure 3. We can see that values of the optimal aperture angle computed 

from the wave optical agree with results of B&K method. On the other hand the values of 𝑑50 differ for 

small landing energies by about 40 %. It is caused mainly by the effect of the chromatic aberration of the 

second order which is not included in the B&K approach and which is negative for low landing energies. 

 

 
 

Figure 2. Examples of the longitudinal beam profile. The profile on the left was computed for the 

landing energy of 3 keV and is influenced mainly by the spherical aberration, the other was computed 

for the landing energy of 3 eV is influenced mainly by the chromatic aberrations 
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𝑬 [𝑽] 𝒅𝟓𝟎𝒘[𝒏𝒎] 𝜶𝒘[𝒓𝒂𝒅] 𝒅𝟓𝟎𝑩𝑲[𝒏𝒎] 𝜶𝑩𝑲[𝒓𝒂𝒅] 𝑪𝟑[𝒎] 𝑪𝑪[𝒎] 𝑪𝑪𝟐[𝒎] 

5000 4.80 0.0029 5.4428 0.0033 3.22E-01 9.84E-03 1.94E-02 

3000 5.40 0.0034 6.1115 0.0038 2.35E-01 5.81E-03 6.35E-03 

1000 6.43 0.0052 7.3893 0.0055 9.08E-02 1.75E-03 4.17E-04 

500 7.10 0.0070 8.1088 0.0071 4.35E-02 8.03E-04 2.16E-05 

100 8.33 0.0128 9.8154 0.0136 6.04E-03 1.33E-04 -2.06E-05 

50 9.40 0.0167 10.7572 0.0176 2.40E-03 6.22E-05 -1.15E-05 

25 10.13 0.0175 11.9341 0.0219 9.23E-04 2.95E-05 -6.03E-06 

10 11.09 0.0247 13.8967 0.0281 2.54E-04 1.12E-05 -2.47E-06 

5 12.05 0.0324 15.7424 0.0336 9.46E-05 5.42E-06 -1.24E-06 

3 12.89 0.0386 17.3430 0.0382 4.55E-05 3.20E-06 -7.48E-07 

2 13.58 0.0419 18.7810 0.0423 2.54E-05 2.11E-06 -4.99E-07 

1 14.64 0.0508 21.6337 0.0503 9.42E-06 1.04E-06 -2.50E-07 

 

Table 1. Optical properties of the SLEEM with respect to the landing energies 

 
Figure 3. Comparison of the results from the wave optical calculations with those by the Bart & Kruit 

formulas. 

 

Influence of the deflection aberrations 

The axial probe size determines the best possible resolution of the SEM, but it does not include the 

effect of the beam deflection during scanning the sample. The deflection is realized by the dipole fields 
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that also influence the probe size. The effect depends on the field of view (FoV) – the larger FoV the 

higher deflection is necessary, the stronger dipole field must be applied. The standard double deflection 

electrostatic system was assumed (Figure 1, right). The voltage of the deflector is set in such a way that 

the pivot point coincides with image nodal point of the objective. 

 

A rigorous analysis of the deflection aberrations can be found in [8,9]. The aberration polynomial has an 

analogical form to the off-axial lens aberration polynomial, but the distance from the axis in the object is 

substituted by the deflection in the image. We will not derive the deflection aberration in this sense; we 

just calculate their effect for several FoVs. For each deflection the required deflection voltage is 

calculated, which is used for calculation of the axial aberrations. They are substituted to the general form 

of the aberration function and the PSF is calculated. Figure 4 shows typical current density profiles, the 

original symmetrical profile is blurred in the deflection direction. The effect increases with increasing 

FoV and decreasing landing energy as a result of the increasing dispersion effect, Figure 5. 

 
Figure 4. Current density beam profiles of the deflected beams in the plane of least confusion. The 

landing energy is 3 keV and the FoV 100 × 100 𝜇m2. 
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Figure 5. Influence of the deflection aberrations on the probe size for different energies and FoV (left) 

and the effect of the dispersion for the FoV 100 × 100 μm2 (right). 

 

Conclusion 

A wave-optical calculation of the probe size for the SLEEM was done. The comparison with the widely-

used Barth and Kruit’s approximation shows a very good agreement for high landing energies but there 

are higher differences in the low energy range. The disagreement can be, to the greater degree, explained 

by the influence of the second order chromatic aberration. The analysis of the deflection aberration was 

also carried out. It was shown that deflection aberrations reduce the number raster lines in a 100 ×
100 μm2 FoV to about 500 for the landing energy of 1 eV. [10] 
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