A NOTE ON COMBINATORIAL IDENTITIES FOR PARTIAL SUMS

BY
S. G. MOHANTY

1. Introduction. For a sequence $\sigma=\left(x_{1}, \ldots, x_{n}\right)$ of real numbers, let σ_{i}, and σ_{j}^{*} respectively denote the cyclic permutation $\left(x_{i}, x_{i+1}, \ldots, x_{i-1}\right)$ and the reverse cyclic permutation ($x_{j}, x_{j-1}, \ldots, x_{j+1}$), and let $s_{k}=\sum_{j=1}^{k} x_{j}$. Also denote by $M_{r j}(\sigma)$ and $m_{r j}(\sigma)$ the r th largest and the r th smallest numbers respectively, among the first j partial sums $s_{1}, s_{2}, \ldots, s_{j}$ for $1 \leq r \leq j \leq n$. As usual, let the superscripts + and - respectively mean maximize and minimize with zero. In a paper of Harper [3], the main result which generalizes earlier results of Dwass [1] and Graham [2], is as follows:

Theorem.

$$
\begin{equation*}
\sum_{i=1}^{n}\left[M_{r j}^{+}\left(\sigma_{i}\right)+m_{r j}^{-}\left(\sigma_{i}^{*}\right)\right]=(j-r+1) s_{n} . \tag{1}
\end{equation*}
$$

The proof mainly depends on the following identities:

$$
\begin{equation*}
M_{r j}^{+}\left(\sigma_{i}\right)+m_{r j}^{-}\left(\sigma_{i+j-1}^{*}\right)=M_{r-1, j-1}^{+}\left(\sigma_{i}\right)+m_{r-1, j-1}^{-}\left(\sigma_{i+j-1}^{*}\right) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{1 j}^{+}\left(\sigma_{i}\right)+m_{1 j}^{-}\left(\sigma_{i+j-1}^{*}\right)=s_{j} . \tag{3}
\end{equation*}
$$

In this note, we give a generalization of this theorem and interpret the result for a sequence of vectors in real Hilbert space.
2. The main result. Let

$$
\sigma(u)=\sum_{i=1}^{b} x_{i}+\sum_{i=b+c+1}^{2 b+c} x_{i}+\cdots+\sum_{i=(u-1)(b+c)+1}^{u b+(u-1) c} x_{i} .
$$

Suppose $\max _{1 \leq u \leq j}^{(r)}\left(y_{u}\right)$ and $\min _{1 \leq u \leq j}^{(r)}\left(y_{u}\right)$ represent the r th largest and the r th smallest numbers respectively among $y_{1}, y_{2}, \ldots, y_{j}$. Then we define

$$
\begin{aligned}
M(r, b, c, j ; \sigma) & =\max _{1 \leq u \leq j}^{(r)}[\sigma(u)] \\
m(r, b, c, j ; \sigma) & =\min _{1 \leq u \leq j}^{(r)}[\sigma(u)]
\end{aligned}
$$

where

$$
j b+(j-1) c \leq n \quad \text { and } \quad 1 \leq r \leq j
$$

Note that $M(r, 1,0, j ; \sigma)=M_{r j}(\sigma)$ and $m(r, 1,0, j ; \sigma)=m_{r i}(\sigma)$.

Received by the editors May 6, 1970.

Theorem 1.

$$
\begin{equation*}
\sum_{i=1}^{n}\left[M^{+}\left(r, b, c, j ; \sigma_{i}\right)+m^{-}\left(r, b, c, j ; \sigma_{i}^{*}\right)\right]=(j-r+1) b s_{n} . \tag{4}
\end{equation*}
$$

Proof. The proof follows the same line of argument as in [3] and therefore consists of obtaining the generalized form of (2) and (3). The corresponding identities are

$$
\begin{align*}
& M^{+}\left(r, b, c, j ; \sigma_{i}\right)+m^{-}\left(r, b, c, j ; \sigma_{j b+(j-1) c+i-1}^{*}\right) \tag{5}\\
& \quad=M^{+}\left(r-1, b, c, j-1 ; \sigma_{i}\right)+m^{-}\left(r-1, b, c, j-1 ; \sigma_{j b+(j-1) c+i-1}^{*}\right)
\end{align*}
$$

and

$$
\begin{align*}
M^{+}\left(1, b, c, j ; \sigma_{i}\right)+m^{-}(1, b, & \left., j ; \sigma_{j b+(j-1) c+i-1}^{*}\right) \\
& =\sum_{k=i}^{b+i-1} x_{k}+\sum_{k=b+c+i}^{2 b+c+i-1} x_{k}+\cdots+\sum_{k=(j-1)(b+c)+i}^{j b+(j-1) c+i-1} x_{k} \tag{6}
\end{align*}
$$

where $x_{n+u} \equiv x_{u}$.
Introducing

$$
a_{k}=M(k, b, c, j-1 ; \sigma) \quad \text { and } \quad b_{k}=m\left(k, b, c, j-1 ; \sigma_{j b+(j-1) c}^{*}\right)
$$

and proceeding exactly the same way as in [3], (5) can be checked. A simple verification establishes (6). The left-hand side of (4), with the help of (5) and (6), reduces to

$$
\sum_{i=1}^{n}\left[\sum_{k=i}^{b+i-1} x_{k}+\sum_{k=b+c+i}^{2 b+c+i-1} x_{k}+\cdots+\sum_{k=(j-r)(b+c)+i}^{(j-r+1) b+(j-r) c+i-1} x_{k}\right]=(j-r+1) b s_{n} .
$$

This completes the proof.
The generalized expressions for (6) in [3] are

$$
\begin{equation*}
\sum_{i=1}^{n}\left[M\left(r, b, c, j ; \sigma_{i}\right)+m\left(r, b, c, j ; \sigma_{i}^{*}\right)\right]=(j+1) b s_{n} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=1}^{n}\left[\left|M\left(r, b, c, j ; \sigma_{i}\right)\right|-\left|m\left(r, b, c, j ; \sigma_{i}^{*}\right)\right|\right]=(j-2 r+1) b s_{n} \tag{8}
\end{equation*}
$$

3. Concluding remarks. The method used in the proof suggests that the above results should be true for a sequence of vectors instead of real numbers. Let H be an arbitrary Hilbert space over the reals and let $\sigma=\left(x_{1}, \ldots, x_{n}\right)$ be a sequence with $x_{i} \in H$. For each $i=1,2, \ldots, n$, we can write $x_{i}=x_{i}^{\prime}+x_{i}^{\prime \prime}$ where x_{i}^{\prime} and $x_{i}^{\prime \prime}$ are, respectively, the perpendicular and projection of x_{i} on the one-dimensional subspace spanned by s_{n}. Furthermore, $x_{i}^{\prime \prime}$ can be written as $\lambda_{i} e$, where $e=s_{n} /\left\|s_{n}\right\|$. We say that vector x_{i} is larger or smaller than vector x_{j} in relation to the subspace spanned by s_{n}, according as $\lambda_{i}>\lambda_{j}$ or $\lambda_{j}>\lambda_{i} . M^{+}\left(r, b, c, j ; \sigma_{i}\right)$ and $m^{-}\left(r, b, c, j ; \sigma_{i}\right)$
for vectors are defined as before. Then, the above results are also valid for vectors in H. Note that we can take $e=-s_{n} /\left\|s_{n}\right\|$, without altering anything.

REFERENCES

1. M. Dwass, A fluctuation theorem for cyclic random variables, Ann. Math. Statist. 33 (1962), 1450-1454.
2. R. L. Graham, A combinatorial theorem for partial sums, Ann. Math. Statist. 34 (1963), 1600-1602.
3. L. H. Harper, A family of combinatorial identities, Ann. Math. Statist. 37 (1966), 509-512. McMaster University,

Hamilton, Ontario

