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A NOTE ON COMBINATORIAL IDENTITIES FOR 
PARTIAL SUMS 

BY 

S. G. MOHANTY 

1. Introduction. For a sequence v=(x1,..., xn) of real numbers, let ai9 and a* 
respectively denote the cyclic permutation (xi,xi + 1,...,xi-1) and the reverse 
cyclic permutation (xy, x ;_ l 5 . . . , xj+1), and let 5,

fc = 25;=i x,. Also denote by Mrj{a) 
and mrj(o) the rth largest and the rth smallest numbers respectively, among the 
first y partial sums sl9 s2,..., Sj for 1 <r<j<n. As usual, let the superscripts + and 
— respectively mean maximize and minimize with zero. In a paper of Harper [3], 
the main result which generalizes earlier results of Dwass [1] and Graham [2], is as 
follows : 

THEOREM. 

(1) 2 [MrKad + mrlirt)] = U-r+ IK-
i = l 

The proof mainly depends on the following identities: 

(2) ^rK*«) + ̂ ("*+y-i) = M+-1,j-1(ai)+mr-1,J-1(af+J-1) 

and 

(3) Mffad + mlfaT+j-i) = sj. 

In this note, we give a generalization of this theorem and interpret the result for 
a sequence of vectors in real Hilbert space. 

2. The main result. Let 
b 2b+ c ub + (u-l)c 

o(u) = 2 xi+ 2 **+••• + 2 *f 
i = l i = b + c + l i = (u-l)(& + c) + l 

Suppose màXi<,u<.}(yu) and minÇ^^y (yu) represent the rth largest and the rth 
smallest numbers respectively amongyuy2,.. .,yj. Then we define 

M(r, b, cj; a) = m a x ^ * , [<J(U)] 

m(r, b, cj\ a) = minfU^y M»] 
where 

jb + (j-l)c < n and 1 < r < j . 

Note that M(r, 1,0,./; o) = Mrj{o) and m(r, 1,0,./; o)=mri{o). 
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THEOREM 1. 

n 

(4) 2 [M+(r> b> cj; °d+m~(r, b, c,j; af)] = (j-r+ l)bsn. 
i = l 

Proof. The proof follows the same line of argument as in [3] and therefore 
consists of obtaining the generalized form of (2) and (3). The corresponding iden
tities are 

M+(r, b, c,j; ort)+ m"(r, b, c,j; cr*6+<j-i)C+i-i) 
(5) 

= M+(r-1, b, c,j-1 ; aj + m ( r - 1 , b, cj-1 ; afb+a_1)c + i_1) 

and 

M + ( l , b, c9j; o-j) + m-( l , è, c j ; <4 + a-i)C + i-i) 
(6) 

6 + 1 - 1 2& + c + i - l ;& + ( / - l ) c + i - l 

fc = i Jc = b + c + i fc = ( ; - l ) ( b + c) + i 

where xn+u = xu. 
Introducing 

^ = M(k, b, c,j-1 ; a) and Z>„ = m(fc, b, c,j-1 ; ofb+(J_1)c) 

and proceeding exactly the same way as in [3], (5) can be checked. A simple veri
fication establishes (6). The left-hand side of (4), with the help of (5) and (6), 
reduces to 

n r b + i - 1 2b + c + i - l ( ; - r + l ) b + a - r ) c + i - 1 "i 

2 2 x*+ 2 **+•••+ 2 XA =(j-r+\)bsn. 
i = l L k = i k = b + c + i fc = (;*-r)(& + c) + i J 

This completes the proof. 
The generalized expressions for (6) in [3] are 

(7) 2 [M(r, b, c,j; *d + m(r, b, cj; af)] = (j+ \)bsn 
i = l 

and 

(8) 2 l\M(r9 b, cj; *t)\ - \m(r, b, cj; a?)| ] = ( y - 2 r + \)bsn. 
i = l 

3. Concluding remarks. The method used in the proof suggests that the above 
results should be true for a sequence of vectors instead of real numbers. Let H 
be an arbitrary Hilbert space over the reals and let a = (x1,..., xn) be a sequence 
with xt e H. For each i= 1, 2 , . . . , « , we can write xi = x[Jrx'l where x\ and x'{ are, 
respectively, the perpendicular and projection of x{ on the one-dimensional sub-
space spanned by sn. Furthermore, xj'can be written as Xte, where e = sn/\\$n\\. We 
say that vector xt is larger or smaller than vector Xj in relation to the subspace 
spanned by sn, according as Xi>Xj or Ay> Xt. M+(r, b, c9j; o-*) and m~(r, b9 c,j; at) 
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for vectors are defined as before. Then, the above results are also valid for vectors 
in H. Note that we can take e— —snj\sn\9 without altering anything. 
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