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Abstract

Logic programs with ordered disjunction (LPODs) extend classical logic programs with the ca-
pability of expressing alternatives with decreasing degrees of preference in the heads of program
rules. Despite the fact that the operational meaning of ordered disjunction is clear, there exists
an important open issue regarding its semantics. In particular, there does not exist a purely
model-theoretic approach for determining the most preferred models of an LPOD. At present,
the selection of the most preferred models is performed using a technique that is not based
exclusively on the models of the program and in certain cases produces counterintuitive results.
We provide a novel, model-theoretic semantics for LPODs, which uses an additional truth value
in order to identify the most preferred models of a program. We demonstrate that the pro-
posed approach overcomes the shortcomings of the traditional semantics of LPODs. Moreover,
the new approach can be used to define the semantics of a natural class of logic programs
that can have both ordered and classical disjunctions in the heads of clauses. This allows pro-
grams that can express not only strict levels of preferences but also alternatives that are equally
preferred.

KEYWORDS: ordered disjunction, answer sets, logic of here-and-there, preferences

1 Introduction

Logic programs with ordered disjunction (LPODs) extend classical logic programs with
the capability of expressing ordered alternatives in the heads of program rules. In par-
ticular, LPODs allow the head of a program rule to be a formula C1 × · · · × Cn, where
“×” is a propositional connective called “ordered disjunction” and the Ci’s are literals.
The intuitive explanation of C1× · · ·×Cn is “I prefer C1; however, if C1 is impossible, I
can accept C2; · · · ; if all of C1, . . . , Cn−1 are impossible, I can accept Cn”. Due to their
simplicity and expressiveness, LPODs are a widely accepted formalism for preferential
reasoning, both in logic programming and in artificial intelligence.
At present, the semantics of LPODs is defined (Brewka 2002; Brewka et al . 2004)

based on the answer set semantics, using a two-phase procedure. In the first phase,
the answer sets of the LPOD are produced. This requires a modification of the standard
definition of answer sets. In the second phase, the answer sets are “filtered”, and we obtain
the set of “most preferred” answer sets, which are taken as the meaning of the initial
program. Notice that both phases are not purely model-theoretic: the first one requires
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the construction of the reduct of the program and the second one is performed using the
so-called “degree of satisfaction of rules”, a concept that relies on examining the rules
of the program to justify the selection of the most preferred answer sets. Apart from its
logical status, the current semantics of LPODs produces in certain cases counterintuitive
most preferred answer sets. This discussion leads naturally to the question: “Is it possible
to specify the semantics of LPODs in a purely model-theoretic way?”.

An important first step in this direction was performed by Cabalar (2011), who used
Equilibrium Logic (Pearce 1996) to logically characterize the answer sets produced in the
first phase described above. However, to our knowledge, the second phase (namely the
selection of the most preferred answer sets), has never been justified model-theoretically.
We consider this as an important shortcoming in the theory of LPODs. Apart from its
theoretical interest, this question also carries practical significance, because, as we are
going to see, the present formalization of the second phase produces in certain cases
counterintuitive (and in our opinion undesirable) results. The main contribution of the
present paper is to provide a purely model-theoretic characterization of the semantics of
LPODs. The more specific contributions are the following:

• We propose a new semantics for LPODs which uses an additional truth value
in order to select as most preferred models those in which a top preference fails
only if it is impossible to be satisfied. We demonstrate that the proposed approach
overcomes the shortcomings of the traditional semantics of LPODs. In this way, the
most preferred models of an LPOD can be characterized by a preferential ordering
of its models.
• We demonstrate that our approach can be seamlessly extended to programs that
allow both ordered and classical disjunctions in the heads of clauses. In particular,
we define a natural class of such programs and demonstrate that all our results
about LPODs transfer, with minimal modifications, to this new class. In this way
we provide a clean semantics for a class of programs that can express not only strict
levels of preference but also alternatives that are equally preferred.

Section 2 introduces LPODs and gives relevant background. Sections 3 and 4 describe
the shortcomings of LPOD semantics and give an intuitive presentation of the proposed
approach for overcoming these issues. The remaining sections give a technical exposition
of our results. The proofs of all results have been moved to corresponding appendices.

2 Background on LPODs

LPODs are an extension of the logic programs introduced by Gelfond and Lifschitz (1991),
called extended logic programs, which support two types of negation: default (denoted by
not) and strong (denoted by ¬). Strong negation is useful in applications but it is not
very essential from a semantics point of view: a literal ¬A is semantically treated as
an atom A′. For the basic notions regarding extended logic programs, we assume some
familiarity with the work of Gelfond and Lifschitz (1991).

Definition 1
A (propositional) LPOD is a set of rules of the form:

C1 × · · · × Cn ← A1, . . . , Am,not B1, . . . ,not Bk,

where the Ci, Aj , and Bl are ground literals.

https://doi.org/10.1017/S1471068421000235 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000235


A Logical Characterization of the Preferred Models of LPODs 631

The intuitive explanation of a formula C1 × · · · × Cn is “I prefer C1; however, if C1 is
impossible, I can accept C2; · · · ; if all of C1, . . . , Cn−1 are impossible, I can accept Cn”.

An interpretation of an LPOD is a set of literals. An interpretation is called consistent
if there does not exist any atom A such that both A and ¬A belong to I. The notion of
model of an LPOD is defined as follows.

Definition 2
Let P be an LPOD and M an interpretation. Then, M is a model of P iff for every rule

C1 × · · · × Cn ← A1, . . . , Am,not B1, . . . ,not Bk,

if {A1, . . . , Am} ⊆M and {B1, . . . , Bk} ∩M = ∅ then there exists Ci ∈M .

To obtain the preferred answer sets of an LPOD, a two-phase procedure was intro-
duced by Brewka (2002). In the first phase, the answer sets of the LPOD are produced.
This requires a modification of the standard definition of answer sets for extended logic
programs. In the second phase, the answer sets are “filtered”, and we obtain the set of
“most preferred” ones. The first phase is formally defined as follows.

Definition 3
Let P be an LPOD. The ×-reduct of a rule R of P of the form:

C1 × · · · × Cn ← A1, . . . , Am,not B1, . . . ,not Bk,

with respect to a set of literals I, is denoted by RI
× and is defined as follows:

RI
× = {Ci ← A1, . . . , Am | Ci ∈ I and I ∩ {C1, . . . , Ci−1, B1, . . . , Bk} = ∅}.

The ×-reduct of P with respect to I is denoted by P I
× and is the union of the reducts

RI
× for all R in P .

Definition 4
A set M of literals is an answer set of an LPOD P if M is a consistent model of P and
M is the least model of PM

× .

The second phase produces the “most preferred” answer sets using the notion of the
degree of satisfaction of a rule. Formally:

Definition 5
Let M be an answer set of an LPOD P . Then, M satisfies the rule:

C1 × · · · × Cn ← A1, . . . , Am,not B1, . . . ,not Bk,

• to degree 1 if Aj �∈M , for some j, or Bi ∈M , for some i,
• to degree l, 1 ≤ l ≤ n, if all Aj ∈M , no Bi ∈M , and l = min{r | Cr ∈M}

The degree of a rule R in the answer set M is denoted by degM (R).

The satisfaction degrees of rules are then used to define a preference relation on the
answer sets of a program. Given a set of literalsM , let M i(P ) = {R ∈ P | degM (R) = i}.
The preference relation is defined as follows.

Definition 6
Let M1,M2 be answer sets of an LPOD P . Then, M1 is inclusion-preferred to M2 iff
there exists k ≥ 1 such that Mk

2 (P ) ⊂Mk
1 (P ), and for all j < k, M j

2 (P ) =M j
1 (P ).
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Example 1
Consider the program:

wine × beer.

The above program has the answer sets {wine} and {beer}. The most preferred one
is {wine} because it satisfies the unique fact of the program with degree 1 (while the
answer set {beer} satisfies the fact with degree 2). Consider now the program:

wine × beer.

¬wine.
This has the unique answer set {beer} (the set {wine,¬wine} is rejected due to its
inconsistency). Therefore, {beer} is also the most preferred answer set.

Notice that Brewka (2002) originally defined only the preference relation of Definition 6.
In the follow-up paper (Brewka et al . 2004) two more preference relations were introduced,
namely the cardinality and the Pareto, in order to treat cases for which the inclusion
preference did not return the expected results. All these relations do not rely exclusively
on the models of the source program, and are therefore subject to similar criticism. For
this reason, in this paper we focus attention on the inclusion preference relation.

3 Some issues with the semantics of LPODs

From a foundational point of view, the main issue with the semantics of LPODs is
that, in its present form, it is not purely model-theoretic. Despite the simplicity and
expressiveness of ordered disjunction, one cannot characterize the meaning of a program
by just looking at its set of models. Recall that this principle is one of the cornerstones of
logic programming since its inception: the meaning of positive logic programs is captured
by their minimum Herbrand model (van Emden and Kowalski 1976) and the meaning
of extended logic programs is captured by their equilibrium models (Pearce 1996). How
can the most preferred models of LPODs be captured model-theoretically? The existing
issues regarding the semantics of LPODs are illustrated by the following examples.

3.1 The logical status of LPODs

Consider the following two programs:

a × b.

and:

b × a.

According to Definition 2, both programs have exactly the same models, namely {a},
{b}, and {a,b}. Moreover, both have the same answer sets, namely {a} and {b}. However,
there is no model-theoretic explanation (namely one based on just the sets of models of
the programs) of why the most preferred model of the first program is {a} while the most
preferred model of the second program is {b}. As a conclusion, in order for the semantics
of LPODs to be properly specified, a model-based approach needs to be devised.

3.2 Inaccurate preferential ordering of answer sets

Apart from the fact that Definition 5 is not purely model-theoretic, in many cases it also
gives inaccurate preferential orderings of answer sets. Such inaccurate orderings have

https://doi.org/10.1017/S1471068421000235 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000235


A Logical Characterization of the Preferred Models of LPODs 633

already been reported in the literature (Balduccini and Mellarkod 2003). The following
program illustrates one such simple case.

Example 2
Consider the following program1 whose declarative reading is “I prefer to buy a Mercedes
than a BMW. In case a Mercedes is available, I prefer a gas model to a diesel one. A gas
model (of Mercedes) is not available”.

mercedes × bmw.

gas mercedes × diesel mercedes ← mercedes.

¬gas mercedes.

The program has two answers sets:M1 = {mercedes, diesel mercedes,¬gas mercedes}
andM2 = {bmw,¬gas mercedes}.M1 satisfies the first rule with degree 1, the second rule
with degree 2, and the third rule with degree 1. M2 satisfies the first rule with degree 2,
the second rule with degree 1 (because the body of the rule evaluates to false), and the
third rule with degree 1. According to Definition 6, the two answer sets are incomparable.
However, it seems reasonable that the most preferred model is M1: the first rule, which
is a fact, specifies unconditionally a preference; the preferences of the second rule seem
to be secondary, because they depend on the choice that will be made in the first rule.

The problems in the above example appear to be related to Definition 5: it assigns
degree 1 in two cases that are apparently different: a rule that has a false body gets the
same degree of satisfaction as a rule with a true body in whose head the first choice is
satisfied. These are two different cases which, however, it is not obvious how to handle if
we follow the satisfaction degree approach of Definition 5.

3.3 Unsatisfiable better options

It has been remarked (Brewka et al . 2004, discussion in page 342) that the inclusion pref-
erence is sensitive to the existence of unsatisfiable better options. The following example,
taken from the paper by Brewka et al . (2004), motivates this problem.

Example 3
Assume we want to book accommodation for a conference (in the post-COVID era). We
prefer a 3-star hotel from a 2-star hotel. Moreover, we prefer to be in walking distance
from the conference venue. This can be modeled by the program:

walking × ¬walking.
3-stars × 2-stars.

Consider now the scenario where the only available 3-star hotel (say hotel1), is not in
walking distance. Moreover, assume that the only available 2-star hotel (say hotel2),
happens to be in walking distance. According to Definition 6, these two options are
incomparable because hotel1 satisfies the first rule to degree 2 and the second rule
to degree 1, while hotel2 satisfies the first rule to degree 1 and the second rule to
degree 2.

1 Our example is identical (up to variable renaming) to an example given by Balduccini and Mellarkod
(2003). This work was brought to our attention by one of the reviewers of the present paper.
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Assume now that the above program is revised after learning that there also exists a
4-star hotel, which however is not an option for us (due to restrictions imposed by our
funding agencies). The new program is:

walking × ¬walking.
4-stars × 3-stars × 2-stars.

¬4-stars.
In the new program, hotel1 satisfies the first rule to degree 2 and the second rule to
degree 2, while hotel2 satisfies the first rule to degree 1 and the second rule to degree 3.
According to Definition 6, hotel2 is our preferred option.

The above example illustrates that under the “degree of satisfaction of rules” semantics,
a small (and seemingly innocent) change in the program, can cause a radical change in
the final preferred model. This sensitivity to changes is another undesirable consequence
that stems from the fact that the second phase of the semantics of LPODs is not purely
model-theoretic.

4 An intuitive overview of the proposed approach

The main purpose of this paper is to define a model-theoretic semantics for LPODs. In
other words, we would like to be able to choose the most preferred answer sets of a
program using preferential reasoning on the answer sets themselves. Actually, such an
approach should also be applicable directly on the models of the source program, without
the need to first construct the answer sets of the program. We would expect that such
an approach would also provide solutions to the shortcomings of the previous section.
But on what grounds can we compare the answer sets (or, even better, the models) of

a program and decide that some of them satisfy in a better way our preferences than the
others? This seems like an impossible task because the answer sets (or the models) do not
contain any information related to the ordered disjunction preferences of the program.
It turns out that we can introduce preferential information inside the answer sets of

a program by slightly tweaking the underlying logic. The answer sets of extended logic
programs are two-valued, i.e., a literal is either T (true) or F (false). We argue that in
order to properly define the semantics of LPODs, we need a third truth value, which we
denote by F ∗. The intuitive reading of F ∗ is “impossible to make true”.

To understand the need for F ∗, consider again the intuitive meaning of C1 × C2: we
prefer C2 only if it is impossible for us to get C1. Impossible here means that if we try
to make C1 true, then the interpretation will become inconsistent. Therefore, we seem to
need two types of false, namely F and F ∗: F means “false by default” while F ∗ means
“impossible to make true”. The following example demonstrates these issues.

Example 4
Consider the program:

wine × beer.

¬wine.
As we are going to see in the coming sections, the most preferred answer set according to
our approach is {(wine, F ∗), (beer, T ), (¬wine, T )}. Notice that wine receives the value
F ∗ because if we tried to make wine equal to T , the interpretation would become incon-
sistent (because ¬wine is T ). Notice also that, as we are going to see, the interpretation
{(wine, F ), (beer, T ), (¬wine, T )} is not a model of the program.
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The above discussion suggests the following semantics for “×” in the proposed logic.
Let u, v ∈ {F, F ∗, T}. Then:

u× v =

{
v, if u = F ∗

u, otherwise

The intuition of the above definition is that we return the value v only if it is impossible
to satisfy u; in all other cases, we return u.

We now get to the issue of how we can use the value F ∗ to distinguish the most
preferred answer sets: we simply identify those answer sets that are minimal with respect
to their sets of atoms that have the value F ∗. As we have mentioned, the value F ∗ means
“impossible to make true”. By minimizing with respect to the F ∗ values, we only keep
those answer sets in which a top preference fails only if it is impossible to be satisfied.

The above discussion gives a description of how we can select the “most preferred
(three-valued) answer sets” of an LPOD. However, it is natural to wonder whether it is
possible to also characterize the answer sets model-theoretically, completely circumvent-
ing the construction of the reduct. A similar question was considered by Cabalar (2011),
who demonstrated that the (two-valued) answer sets of an LPOD coincide with the equi-
librium models of the program. We adapt Cabalar’s characterization to fit in our setting.
More specifically, we extend our three-valued logic to a four-valued one by adding a new
truth value T ∗, whose intuitive meaning is “not false but its truth cannot be established”.
We then demonstrate that the three-valued answer sets of an LPOD P are those models
of P that are minimal with respect to a simple ordering relation and do not contain any
T ∗ values. In this way we get a two-step, purely model-theoretic characterization of the
most-preferred models of LPODs: in the first step we use the T ∗ values as a yardstick to
identify those models that correspond to answer sets, and in the second step we select
the most preferred ones, by minimizing with respect to the F ∗ values.

Finally, we consider the problem of characterizing the semantics of logic programs that
contain both disjunctions and ordered disjunctions in the heads of rules. This is especially
useful in cases where some of our preferences are equally important. For example:

(wine ∨ beer) × (soda ∨ juice).

states that wine and beer are our top preferences (but we have no preference among
them), and soda and juice are our secondary preferences. We consider the class of
programs in which the heads of rules consist of ordered disjunctions where each ordered
disjunct is an ordinary disjunction (as in the above program). We demonstrate that the
theory of these programs is very similar to that of LPODs. All our results for LPODs
transfer with minimal modifications to this extended class of programs. This suggests
that this is a natural class of programs that possibly deserves further investigation both
in theory and in practice.

5 Redefining the answer sets of LPODs

In this section we provide a new definition of the answer sets of LPODs. The new defini-
tion is based on a three-valued logic which allows us to discriminate the most preferred
answer sets using a purely model-theoretic approach. In Section 6 we demonstrate that
by extending the logic to a four-valued one, we can identify directly the most preferred
models of a program (without first producing the answer sets).
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Definition 7
Let Σ be a nonempty set of propositional literals. The set of well-formed formulas is
inductively defined as follows:

• Every element of Σ is a well-formed formula,
• The 0-place connective F ∗ is a well-formed formula,
• If φ1 and φ2 are well-formed formulas, then (φ1∧φ2), (φ1∨φ2), (not φ1), (φ1 ← φ2),

and (φ1 × φ2), are well-formed formulas.

The meaning of formulas is defined over the set of truth values {F, F ∗, T} which are
ordered as F < F ∗ < T . Given two truth values v1, v2, we write v1 ≤ v2 iff either v1 < v2
or v1 = v2.

Definition 8
A (three-valued) interpretation I is a function from Σ to the set {F, F ∗, T}. We can
extend I to apply to formulas, as follows:

I(F ∗) = F ∗

I(not φ) =

{
T, if I(φ) ≤ F ∗

F, otherwise

I(φ← ψ) =

{
T, if I(φ) ≥ I(ψ)
F, otherwise

I(φ1 ∧ φ2) = min{I(φ1), I(φ2)}
I(φ1 ∨ φ2) = max{I(φ1), I(φ2)}
I(φ1 × φ2) =

{
I(φ2), if I(φ1) = F ∗

I(φ1), otherwise.

It is straightforward to see that the meanings of “∨”, “∧”, and “×” are associative and
therefore we can write I(φ1∨· · ·∨φn), I(φ1∧· · ·∧φn), and I(φ1×· · ·×φn) unambiguously
(without the need of extra parentheses). Moreover, given literals C1, . . . , Cn we will often
write I(C1, . . . , Cn) instead of I(C1 ∧ · · · ∧ Cn).

The ordering < (respectively, ≤) on truth values extends in the standard way on
interpretations: given interpretations I1, I2 we write I1 < I2 (respectively, I1 ≤ I2), if for
all literals L ∈ Σ, I1(L) < I2(L) (respectively, I1(L) ≤ I2(L)).
When we consider interpretations of an LPOD program, we assume that the underlying

set Σ is the set of literals of the program. The following definition will be needed.

Definition 9
An interpretation I is a model of an LPOD P if every rule of P evaluates to T under I.
An interpretation I of P is called consistent if there do not exist literals A and ¬A in P
such that I(A) = I(¬A) = T .

We can now give the new definitions for reduct and answer sets for LPODs.

Definition 10
Let P be an LPOD. The ×-reduct of a rule R of P of the form:

C1 × · · · × Cn ← A1, . . . , Am,not B1, . . . ,not Bk,

with respect to an interpretation I, is denoted by RI
× and is defined as follows:
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• If I(Bi) = T for some i, 1 ≤ i ≤ k, then RI
× is the empty set.

• If I(Bi) �= T for all i, 1 ≤ i ≤ k, then RI
× is the set that contains the rules:

C1 ← F ∗, A1, . . . , Am

· · ·
Cr−1 ← F ∗, A1, . . . , Am

Cr ← A1, . . . , Am

,

where r is the least index such that I(C1) = · · · = I(Cr−1) = F ∗ and either r = n
or I(Cr) �= F ∗.

The ×-reduct of P with respect to I is denoted by P I
× and is the union of the reducts

RI
× for all R in P .

The major difference of the above definition from that of Definition 3, are the clauses
of the form Ci ← F ∗, A1, . . . , Am. These clauses are included so as that the value F ∗ can
be produced for Ci when I(A1) = · · · = I(Am) = T . Notice that if these clauses did not
exist, there would be no way for the value F ∗ to be produced by the reduct.

Definition 11
Let P be an LPOD and M an interpretation of P . We say that M is a (three-valued)
answer set of P if M is consistent and it is the ≤-least model of PM

× .

Notice that the least model of PM
× in the above definition, can be constructed using the

following immediate consequence operator TPM
×

: (Σ→ {F, F ∗, T})→ (Σ→ {F, F ∗, T}):

TPM
×
(I)(C) = max{I(B1, . . . , Bn) | (C ← B1, . . . , Bn) ∈ PM

× }.
Notice that since the set {F, F ∗, T} is a complete lattice under the ordering ≤, it is easy
to see that the set of interpretations is also a complete lattice under the ordering ≤.
Moreover, the operator TPM

×
is monotonic over the complete lattice of interpretations;

this follows from the fact that the meanings of conjunction (namely, min) and that of
disjunction (namely, max), are monotonic. Then, by Tarski’s fixed-point theorem, TPM

×
has a least fixed-point, which can be easily shown to be the ≤-least model of PM

× .
The following lemma guarantees that our definition is a generalization of the well-

known one for extended logic programs (Gelfond and Lifschitz 1991).

Lemma 1
Let P be a consistent extended logic program. Then the three-valued answer sets of P
coincide with the standard answer sets of P .

The following lemmas, which hold for extended logic programs, also extend to LPODs.

Lemma 2
Let P be an LPOD and let M be an answer set of P . Then, M is a model of P .

Lemma 3
Let M be a model of an LPOD P . Then, M is a model of PM

× .

The answer sets of extended logic programs are minimal with respect to the classical
truth ordering F < T . As it turns out, the answer sets of LPODs are minimal but with
respect to an extended ordering, which is defined below.
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Definition 12
The ordering ≺ on truth values is defined as follows: F ≺ T and F ≺ F ∗. For all
u, v ∈ {F, F ∗, T}, we write u � v if either u ≺ v or u = v. Given interpretations
I1, I2, we write I1 ≺ I2 (respectively, I1 � I2) if for all literals L ∈ Σ∗, I1(L) ≺ I2(L)
(respectively, I1(L) � I2(L)).

Lemma 4
Every (three-valued) answer set M of an LPOD P , is a �-minimal model of P .

As in the case of the original semantics of LPODs, we now need to define a preference
relation over the answer sets of a program. Intuitively, we prefer those answer sets that
maximize the prospect of satisfying our top choices in ordered disjunctions. This can be
achieved by minimizing with respect to F ∗ values. More formally, we define the following
ordering:

Definition 13
Let P be an LPOD and let M1,M2 be answer sets of P . Let M∗

1 and M∗
2 be the sets of

literals in M1 and M2 respectively that have the value F ∗. We say that M1 is preferred
to M2, written M1 �M2, if M

∗
1 ⊂M∗

2 .

Definition 14
An answer set of an LPOD P is called most preferred if it is minimal among all the
answer sets of P with respect to the � relation.

The intuition behind the definition of � is that we prefer those answer sets that minimize
the need for F ∗ values. In other words, an answer set will be most preferred if all the
literals that get the value F ∗, do this because there is no other option: these literals
must be false in order for the program to have a model. We now examine the examples
of Section 3 under the new semantics introduced in this section.

Example 5
Consider again the two programs discussed in Subsection 3.1. Under the pro-
posed approach, the first program has two answer sets, namely {(a, T ), (b, F )} and
{(a, F ∗), (b, T )}, and the most preferred one (i.e., the minimal with respect to �) is
{(a, T ), (b, F )}. The second program also has two answer sets, namely {(a, F ), (b, T )}
and {(a, T ), (b, F ∗)}, and the most preferred one is {(a, F ), (b, T )}. Notice that now the
two programs have different sets of models and different answer sets and therefore it is
reasonable that they have different most preferred ones.

Example 6
Consider the “cars” program of Subsection 3.2. It is easy to see that it has two answer
sets, namely:

M1 = {(mercedes, T ), (bmw, F ), (gas mercedes, F ∗),
(diesel mercedes, T ), (¬gas mercedes, T )}

M2 = {(mercedes, F ∗), (bmw, T ), (gas mercedes, F ∗),
(diesel mercedes, F ∗), (¬gas mercedes, T )}

.

According to the � ordering, the most preferred answer set is M1.

Example 7
Consider the “hotels” program from Subsection 3.3. Under the restriction that there does
not exist any 3-star hotel in walking distance and also there does not exist any 2-star
hotel outside walking distance, we get the two incomparable answer sets:
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M1 = {(walking, T ), (¬walking, F ), (3-stars, F ∗), (2-stars, T )},
M2 = {(walking, F ∗), (¬walking, T ), (3-stars, T ), (2-stars, F )}.

Consider now the modified program given in Subsection 3.3 (which contains the unsatis-
fiable better option of a 4-star hotel). Under the same restrictions as above, we get the
two answer sets:

M ′
1 = {(walking, T ), (¬walking, F ), (3-stars, F ∗), (2-stars, T ),

(4-stars, F ∗), (¬4-stars, T )}
M ′

2 = {(walking, F ∗), (¬walking, T ), (3-stars, T ), (2-stars, F ),
(4-stars, F ∗), (¬4-stars, T )}.

Under the proposed approach, the above two answer sets are also incomparable, and the
problem identified in Subsection 3.3 no longer exists.

We close this section by stating a result that establishes a relationship between the answer
sets produced by our approach (Definition 4) and those ones produced by the original
formulation (Brewka 2002; Brewka et al . 2004).

Definition 15
Let I be a three-valued interpretation of LPOD P . We define collapse(I) to be the set
of literals L in P such that I(L) = T .

Lemma 5
Let P be an LPOD and M be a three-valued answer set of P . Then, collapse(M) is an
answer set of P according to Definition 4.

Lemma 6
Let N be an answer set of P according to Definition 4. There exists a unique three-valued
interpretation M such that N = collapse(M) and M is a three-valued answer set of P .

In other words, there is a bijection between the answer sets produced by our approach
and the original ones. Moreover, each three-valued answer set only differs from the corre-
sponding two-valued one in that some literals of the former may have a F ∗ value instead
of an F value. However, these F ∗ values play an important role because they allow us to
distinguish the most preferred answer sets.

6 A new logical characterization of the answer sets of LPODs

In this section we demonstrate that the answer sets of LPODs can be characterized
in a purely logical way, namely without even the use of the reduct. In particular, we
demonstrate that the answer sets of a given program P coincide with a well-defined
subclass of the minimal models of P in a four-valued logic. This logic is an extension of
the three-valued one introduced in Section 5 and minimality is defined with respect to a
four-valued relation � that extends the three-valued one of Definition 12. The new logic
is based on four truth values, ordered as follows:

F < F ∗ < T ∗ < T.

The value T ∗ can be read as “not false but its truth cannot be established”. The connec-
tions of this logic with Equilibrium Logic (Pearce 1996) are discussed in Section 8.

An interpretation is now a function from Σ to the set {F, F ∗, T ∗, T}. The semantics
of formulas with respect to an interpretation I is defined identically as in Definition 8.
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φ ∨ φ ≡ φ
φ1 ∨ (φ2 ∨ φ3) ≡ (φ1 ∨ φ2) ∨ φ3

not (φ1 ∨ φ2) ≡ not (φ1) ∧ not (φ2)
not (φ1 ∧ φ2) ≡ not (φ1) ∨ not (φ2)

φ1 ∨ (φ2 ∧ φ3) ≡ (φ1 ∨ φ2) ∧ (φ1 ∨ φ3)

φ× φ ≡ φ
φ1 × (φ2 × φ3) ≡ (φ1 × φ2)× φ3

φ1 × φ2 × φ1 ≡ φ1 × φ2

φ1 × (φ2 ∨ φ3) ≡ (φ1 × φ2) ∨ (φ1 × φ3)
φ1 × (φ2 ∧ φ3) ≡ (φ1 × φ2) ∧ (φ1 × φ3)

Fig. 1. Equivalences in the 4-valued logic.

The notions of interpretation, consistent interpretation, and model are defined as in
Definition 9. Moreover, we extend the three-valued � relation of Definition 12, as follows:

Definition 16
The (four-valued) ordering ≺ is defined as follows: F ≺ F ∗, F ≺ T ∗, F ≺ T , and T ∗ ≺ T .
Given two truth values v1, v2, we write v1 � v2 if either v1 ≺ v2 or v1 = v2. Given inter-
pretations I1, I2 of a program P , we write I1 ≺ I2 (respectively, I1 � I2) if for all literals
L in P , I1(L) ≺ I2(L) (respectively, I1(L) � I2(L)).
The following special kind of interpretations plays an important role in our logical char-
acterization.

Definition 17
An interpretation I of LPOD P is called solid if for all literals L in P , it is I(L) �= T ∗.

We can now state the logical characterization of the answer sets of an LPOD.

Theorem 1
Let P be an LPOD. Then, M is a three-valued answer set of P iff M is a consistent
�-minimal model of P and M is solid.

In conclusion, given an LPOD we can purely logically characterize its most preferred
models by first taking its consistent �-minimal models that are solid and then keeping
the �-minimal ones (see Definitions 13 and 14).

An extended study of the properties of the proposed four-valued logic is outside the
scope of the present paper. Figure 1 lists some useful equivalences; the first column is for
classical connectives, while the second column contains equivalences involving the “×”
operator. We note the interaction of × with ∨ because this will be the central theme of
the next section. It is easy to see that:

(φ1 ∨ φ2)× φ3 �≡ (φ1 × φ3) ∨ (φ2 × φ3).
We note that this equivalence does not hold, a fact which will be referenced in the next
section.

7 Answer sets of disjunctive LPODs

We now extend the ideas of the previous sections to programs that also allow standard
disjunctions in the heads of rules. The case of disjunctive LPODs (DLPODs), was initially
considered by Kärger et al . (2008) and reexamined by Cabalar (2011).

The main idea of using disjunctions in the heads of LPOD rules is described (Kärger
et al . 2008) as follows: “we use ordered disjunction to express preferences and disjunction
to express indifferences”.
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Example 8 (taken from the paper by Kärger et al. (2008))
The program:

pub× (cinema ∨ tv).

expresses the fact that our top choice is going to the pub; if this is not possible, then our
secondary preference can be satisfied by either going to the cinema or watching tv.

Kärger et al . (2008) consider rules whose heads are arbitrary combinations of atoms and
the operators × and ∨. A set of transformations is then used in order to bring the heads
of rules into “Ordered Disjunctive Normal Form (ODNF)”. More specifically, each head is
transformed into a formula of the form C1∨· · ·∨Cn where each Ci is an ordered disjunction
of literals. The resulting normalized rules are then used to obtain the preferred answer
sets of the original program.

Example 9
The program of Example 8 is transformed to:

(pub× cinema) ∨ (pub × tv).

This program is then used to get the preferred answer sets of the original one.

However, as observed by Cabalar (2011), one of the transformations used by Kärger et al .
(2008) to obtain the ODNF, cannot be logically justified: the formula (φ1 ∨ φ2) × φ3 is
not logically equivalent to the formula (φ1 × φ3) ∨ (φ2 × φ3) in terms of the logic of
Here-and-There. As discussed at the end of Section 6, these two formulas are also not
equivalent under our four-valued logic.
As an alternative approach to the semantics of DLPODs, Cabalar (2011) proposes

to use the logical characterization on rules with heads that are arbitrary combinations
of disjunctions and ordered disjunctions. We could extend this approach to get a logical
characterization of the most preferred models of arbitrary DLPODs: given such a program
P , we could at first consider all the �-minimal models of P that are solid, and then select
the �-minimal among them. Such an approach is certainly general. However, we believe
that not every such program carries computational intuition. A good example of this is
given in Cabalar (2011, Example 2), where a program with both disjunction and ordered
disjunction is given, and whose computational meaning is far from clear.
In the following, we define a class of programs which, as we claim, have a clear compu-

tational interpretation and at the same time retain all properties that we have identified
for LPODs. Intuitively, we allow the head of a program rule to be a formula C1×· · ·×Cn
where each Ci is an ordinary disjunction of literals. Notice that the program in Exam-
ple 8 belongs to this class, while the program in Example 9, does not. We believe that
the programs of this class have a clear preferential interpretation. Intuitively, the rule
heads of the programs we consider, denote a hierarchy of preferences imposed by the ×
operator; in each level of this hierarchy, we may have literals that have equal preference
(this is expressed by standard disjunction).

It is important to stress that if we allowed arbitrary combinations of disjunctions and
ordered disjunctions, the preferential intuition would be lost. To see this, consider for
example the formula (a × b) ∨ (c × d). This gives us the information that (a × b)

is at the same level of preference as (c × d), and that a is more preferred than b and
c is more preferred than d; however, for example, it gives us no information of whether
a is more preferred than c. On the other hand, a formula of the fragment we consider,
such as (a ∨ b) × (c ∨ d) gives us a total order of a, b, c, and d.
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Definition 18
A (propositional) DLPOD is a set of rules of the form:

C1 × · · · × Cn ← A1, . . . , Am,not B1, . . . ,not Bk,

where the Aj and Bl are ground literals and each Ci is a disjunction of ground literals.

As it turns out, the answer sets of such programs can be defined in an almost identical
way as those of LPODs.

Definition 19
Let P be a DLPOD. The ×-reduct of a rule R of P of the form:

C1 × · · · × Cn ← A1, . . . , Am,not B1, . . . ,not Bk,

with respect to an interpretation I, is denoted by RI
× and is defined as follows:

• If I(Bi) = T for some i, 1 ≤ i ≤ k, then RI
× is the empty set.

• If I(Bi) �= T for all i, 1 ≤ i ≤ k, then RI
× is the set that contains the rules:

C1 ← F ∗, A1, . . . , Am

· · ·
Cr−1 ← F ∗, A1, . . . , Am

Cr ← A1, . . . , Am

,

where r is the least index such that I(C1) = · · · = I(Cr−1) = F ∗ and either r = n
or I(Cr) �= F ∗.

The ×-reduct of P with respect to I is denoted by P I
× and is the union of the reducts

RI
× for all R in P .

Definition 20
Let P be a DLPOD and M a (three-valued) interpretation of P . Then, M is an answer
set of P if M is consistent and M is a minimal model of the disjunctive program PM

× .

As it turns out, all the results we have obtained in the previous section, hold for
DLPODs. The proofs of these results are (surprisingly) almost identical (modulo some
minor notational differences) to the proofs of the corresponding results for LPODs. For
reasons of completeness, the corresponding proofs are given in the supplementary mate-
rial corresponding to this paper at the TPLP archives. The extended results are stated
below.

Lemma 7
Let P be a consistent disjunctive extended logic program. Then, the answer sets of P
according to Definition 20, coincide with the standard answer sets of P .

Lemma 8
Let P be a DLPOD and let M be an answer set of P . Then, M is a model of P .

Lemma 9
Let M be a model of a DLPOD P . Then, M is a model of PM

× .

Lemma 10
Every answer set M of a DLPOD P , is a �-minimal model of P .
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Theorem 2
Let P be a DLPOD. Then, M is an answer set of P iff M is a consistent �-minimal
model of P and M is solid.

The similarity of the definitions and of the theoretical results of DLPODs to those of
standard LPODs, makes us believe that this is indeed an interesting class of programs
that deserves further attention.

8 Related and future work

The work on LPODs is closely related to “Qualitative Choice Logic” (QCL) (Brewka
et al . 2004). QCL is an extension of propositional logic with the preferential connective
“×”, which has the same intuitive meaning as in LPODs: A × B is read “if possible
A, but if A is impossible then at least B”. Essentially, QCL is the propositional logic
underlying LPODs. It is worth noting that the semantics of QCL is based on the “degree
of satisfaction” of formulas, which is connected to the idea of the degree of satisfaction
of the rules of LPODs (Definition 5). Moreover, as remarked by one of the reviewers
of the present paper, the DLPODs introduced in Section 7 are closely connected to the
“basic choice formulas” of QCL (Brewka et al . 2004, Section 3.1, Definition 8). It would
be interesting to investigate whether our four-valued logic can be used to provide an
alternative semantics for QCL.
The work reported in this paper is closely connected to the work of Cabalar (2011),

who first considered the problem of expressing logically the semantics of LPODs. The
key difference between the two works is that ours provides a characterization of both
phases of the production of the most preferred models of an LPOD, while Cabalar’s
work concentrates on the first one.

It is important to stress here that both our work as well as the work of Cabalar (2011),
are influenced by the work of Pearce (1996) who first gave a logical characterization of the
answer sets of extended logic programs, using Equilibrium Logic. This is a non-monotonic
logic which is defined on top of the monotonic logic of Here-and-There (Heyting 1930),
using a model preference approach. The technique we have proposed in this paper, when
applied to a consistent extended logic program P , produces the standard answer sets
of P ; this is a direct consequence of Theorem 1 and Lemma 1. Therefore, for extended
logic programs, the Equilibrium Logic gives the same outcome as our approach which
is based on a four-valued logic and �-minimal models that are solid. We believe that a
further investigation of the connections of our approach with that of Equilibrium Logic
is a worthwhile topic.
Our work is the first to provide a purely model-theoretic characterization of the se-

mantics of LPODs. To our knowledge, the four-valued logic we have utilized does not ap-
pear to be a well-known variant/extension of Here-and-There. However, some seemingly
related logics have been used in the literature of answer set extensions. The original def-
inition of Equilibrium Logic included a second constructive negation, which corresponds
to Nelson’s strong negation (Nelson 1949). This gave rise to a five-valued extension of
Here-and-There, called N5. Also, a logic called X5, that is closely connected to N5, was
recently proposed by Aguado et al . (2019) in order to capture the semantics of arbitrary
combinations of explicit negation with nested expressions. Both N5 and X5 appear to
be connected to our four-valued logic due to the different notions of false and true that
they employ in order to capture aspects that arise in answer set semantics. However, the
ordering of the truth values and the semantics of the logical connectives are different,
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and the exact correspondence (if any) between these logics and the present one, is not
straightforward to establish. This is certainly an interesting topic for further investiga-
tion.
Another promising topic for future work is the characterization of the notion of strong

equivalence (Lifschitz et al . 2001) for LPODs and DLPODs. When two logic programs
are strongly equivalent, we can replace one for the other inside a bigger program without
worrying that the semantics of the bigger program will be affected. Characterizations of
strong equivalence for LPODs have already been obtained by Faber et al . (2008). It would
be interesting to investigate if the logical characterization of the semantics of LPODs and
DLPODs developed in the present paper, can offer advantages compared with their work.
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