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This paper proposes a Bayesian approach to estimating a factor-augmented GDP per
capita equation. We exploit the panel dimension of our data and distinguish between
individual-specific and time-specific factors. On the basis of 21 technology, infrastructure,
and institutional indicators from 82 countries over a 19-year period (1990 to 2008), we
construct summary indicators of each of these three components in the cross-sectional
dimension and an overall indicator of all 21 indicators in the time-series dimension and
estimate their effects on growth and international differences in GDP per capita. For most
countries, more than 50% of GDP per capita is explained by the four common factors we
have introduced. Infrastructure is the greatest contributor to total factor productivity,
followed by technology and institutions.
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1. INTRODUCTION

Why growth rates differ, what explains differences in productivity, and what are
the conditions for economic development are fundamental questions that continue
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to preoccupy economists. As noted by Easterly and Levine (2001), starting with
Solow (1957), a growing body of research has suggested that after accounting
for physical and human capital accumulation, “something else” accounts for the
majority of cross-country differences in the level and the growth rate of gross
domestic product (GDP) per capita. The term “total factor productivity (TFP)” is
used to refer to that “something else.” Whereas TFP was viewed by Abramowitz
(1956) as a “measure of our ignorance,” various explanations have been proposed:
technology, externalities, the sector composition of production, scale economies,
capacity utilization, institutions, and adoption of information and communication
technologies, to name only a few. Empirical evidence on the relative importance
of each of these influences is far from unanimous.

As emphasized by Moral-Benito (2012), the main area of effort after a decade
in the empirical growth literature has been to select appropriate variables to in-
clude in linear growth regressions. Including all potential explanatory variables at
once leads to the curse of dimensionality. Using Bayesian model averaging (BMA)
techniques, some authors have selected variables proposed as growth determinants
among a total of more than 140 variables [see also Fernandez et al. (2001) and
Durlauf et al. (2005)]. If K is the number of potential explanatory variables, there
are 2K possible models and BMA, using Markov Chain Monte Carlo (MCMC)
model composition, selects the “best” model. But one major disadvantage with
BMA is that some important variables, such as R&D or education, may be elimi-
nated in favor of other variables such as life expectancy, culture, or religion. BMA,
which can be described as a generalized stepwise method, may leave the reader
doubtful about the interpretation of the resulting model in the absence of the usual
explanatory variables.

We propose to use factor-augmented regressions (FAR) to avoid these prob-
lems. Besides the traditional inputs (labor and capital), some other variables such
as technology, infrastructure, and institutions are often advanced to explain the
evolution and the country gaps in productivity. How exactly those explanatory
variables affect the TFP residual requires some structural multiequation model-
ing. This is not the purpose of this paper. Our intention here is to try to ascertain
the importance of these “explanations” of the residual on the basis of a certain
number of indicators that supposedly capture those broad explanations. To take the
example of innovation, instead of including separately measures such as R&D, the
number of new products, the number of patent applications or grants, the number
of trademark applications, and the number of publications, we shall try to create
some kind of index of innovation on the basis of which we could compare the
performance and the contribution to productivity in different countries.

To construct these indices we use panel data on 21 indicators for 82 countries and
19 periods to identify common factors that pertain to technology, infrastructure,
and institutions. We generalize in the panel dimension the approach of common
factors, which has been proposed a long time ago [see Bartholomew et al. (2009)]
and has received new attention in recent years in the literature on common features
[Anderson et al. (2006)]. We then apply these common factors to the explanation
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of international differences in productivity. The idea behind factor analysis is to
summarize various indicators into a limited number of common factors that explain
most of the correlations between the individual indicators in order to reduce the
dimension of the analysis.

Compared with the previous studies, we innovate in two respects. On one hand,
we allow two kinds of common factors, those in the cross-sectional dimension
and those in the time-series dimension. This is like replacing the cross-sectional-
specific and the time-series-specific errors in the two-way error components model
with common factors in the two respective dimensions. On the other hand, instead
of first estimating the common factors and afterward inserting them into a FAR on
productivity, we propose a more robust Bayesian approach based on uninformed
priors and MCMC simulation, where all equations are estimated simultaneously.

The paper is organized as follows. In Section 2 we present the background on
FAR. In Section 3 we propose two ways to estimate, based on panel data, a factor-
augmented productivity model with multiple indicators: the frequentist approach
and the Bayesian approach. After presenting the data in Section 4, we analyze
in Section 5 the results, the individual and time factor scores, and the estimated
factor-augmented productivity equations. Last, we conclude on the effects of these
indicators on total factor productivity using FAR on panel data (Section 6).

2. THE BACKGROUND ON FACTOR-AUGMENTED REGRESSIONS

In the literature on FAR, the usual specification for a time series is⎧⎨⎩
yt = Xtβ + ζ ′ft + ut ,

ztm =
pT∑
j=1

γ mjftj + etm , m = 1, . . . , M , t = 1, . . . , T ,
(1)

where yt is the dependent variable at time t , Xt is a (1 × KX) vector of the
primary inputs at time t , and zt = (zt1, zt2, . . . ztM)′ is an (M × 1) vector of
predictors at time t . M may be large. The unobserved regressors ftj : ft =
(ft1, ft2, . . . ftpT

)′ are the common factors and the γ mj are the factor loadings. etm

is an idiosyncratic error term [see Stock and Watson (2002), Bai and Ng (2002,
2006, 2008), Hecq et al. (2006), Ludvigson and Ng (2009), Gonçalves and Perron
(2012), and Gospodinov and Ng (2013), to mention only a few].

We can write
zt

(M×1)

= �
(M×pT )

ft
(pT ×1)

+ et
(M×1)

. (2)

zt is the vector of predictors (or control variables), � contains the factor loadings,
and ft is the vector of factor scores. None of the {γ mj }, {ftj }, and {etm} are
observed, but they can be estimated from the observed data set {ztm}. In particular,
with factor analysis, we can obtain estimated factors f̃t = E[ft |zt ] and run a
standard regression of yt on Xt and on f̃t to estimate β and ζ . Bai and Ng
(2006) have shown that the standard errors of the second-step parameter estimates
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(β ′, ζ ′)′ must account for the estimation error from the first step. Fortunately, no
such adjustment is necessary if

√
T /M → 0.

In a panel data context, we may be interested in the estimation of a static linear
panel model, defined as

yit = Xitβ + Zitω + uit , i = 1, . . . , N , t = 1, . . . , T , (3)

where yit is the dependent variable for cross section i at time t , Xit is a (1 × KX)

vector of the main inputs, and Zit is a (1 × KZ) vector of predictors, where KZ

is large and some Zit may be time-invariant or individual-invariant. uit is the sum
of individual (αi)-and time (ξ t )-specific effects and a remainder term (εit ). The
specific effects may be either fixed or random. In the latter case, the disturbance
uit is a two-way error component:

uit = αi + ξ t + εit with αi ∼ N
(
0, σ 2

α

)
, ξ t ∼ N

(
0, σ 2

ξ

)
, εit ∼ N

(
0, σ 2

ε

)
. (4)

One way to estimate this model is to use FE (or LSDV with individual and
time dummies) or RE specifications. But taking into account a large number of
predictors (i.e, the Zit explanatory variables) leads to the curse of dimensionality
if we try to include them all simultaneously. Controlling for fixed effects, by
estimating them directly, is not without difficulty and is known as the “incidental
parameter problem," which manifests itself in biases and inconsistency, at least
under fixed T [see Chamberlain (1980), and Nickell (1981), among others]. In
other words, LSDV estimations of αi are not consistent for short panels.

More radically, in the cross-dependence and common factors literature [see
Pesaran (2006), Bai and Ng (2008), Eberhardt and Bond (2009), and Eberhardt
and Teal (2011)], the usual specification avoids gathering information on a large
number of predictors Zit and reduces the model to{

yit = Xitβ + uit ,

uit = Ai,0 + λ′
ift + εit .

(5)

In this literature, TFP (here uit ) is viewed as a combination of a country-specific
level Ai,0 and a set of common factors ft with country-specific factor loadings λi .
So, TFP is unobserved and, generally, specifications of uit omit the term Ai,0(=
A0 + αi), which expresses random differences in TFP levels across countries.
The preceding model with a factor error structure encompasses the two-way fixed
effect model. If uit = λ′

ift + εit and if we suppose that there are two common
factors (r = 2), with f ′

t = (1, ξ t ), then λ′
i = (αi, 1) for all i and t . So the

individual effects αi and the time effects ξ t enter the model additively instead of
interactively [see Holtz-Eakin et al. (1988)].

The literature on common factors for panel data is now huge [see Anderson et al.
(2006), Moench et al. (2009), Gonçalves and Perron (2012), Komunjer and Ng
(2010) and Kneip et al. (2012)] but many applications are variations of equation (5).
A few authors have used FAR on panel data with time-invariant common factors
[Lanjouw and Schankerman (2004); Fagerberg and Shrolec (2008)]. Nobody, to
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our knowledge, has estimated a FAR on panel data with multiple-indicator factor
models.

3. THE FACTOR-AUGMENTED REGRESSION MODEL: FREQUENTIST VS.
BAYESIAN APPROACHES

Let us suppose that, in the FAR, Zit is a (1 × KZ) vector of inputs where KZ is
large. We need to rewrite equation (1):⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

yit = Xitβ + ζ ′ft + uit , uit = αi + ξ t + εit ,⎛⎜⎜⎜⎝
Z1,it

Z2,it

...

ZKZ,it

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
λ

′(1)
i

λ
′(2)
i

. . .

λ
′(KZ)
i

⎞⎟⎟⎟⎠(
eKZ

⊗ ft

) +

⎛⎜⎜⎜⎝
e1,it

e2,it

...

eKZ,it

⎞⎟⎟⎟⎠ , (6)

where eKZ
is a (KZ × 1) vector of ones. The ideal would be to estimate the

preceding system of equations simultaneously with the matrix of factor loadings
λ

(k)
i and the slope parameters β and ζ . The main problem is that to estimate an

(r × 1) vector of common factors ft we would need a (T × NKZ) matrix Z,
whereas generally we have only a (T × N) matrix Z. There is thus a serious
identification problem.

But if we still want to use the two dimensions of the panel data indicators, we can
introduce additively both p

N
individual common factors qi = (qi1 , . . . , qipN

)′ and
pT time common factors ft = (ft1 , . . . , ftpT

)′. These individual common factors
may be interpreted as capabilities. In our case, the FAR specification becomes⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

yit = Xitβ + δ′
(1×pN )

qi
(pN ×1)

+ μ
′

(1×pT )

ft
(pT ×1)

+ αi + ξ t + εit

= Xitβ + vit ,

Zi
(LN×1)

= 

(LN×pN )

qi
(pN×1)

+ ei
(LN×1)

,

Zt
(LT ×1)

= �
(LT ×pT )

ft
(pT ×1)

+ et
(LT ×1)

,

(7)

where Zi = (Zi,1, . . . , Zi,LN
)′, Zt = (Zt,1, . . . , Zt,LT

)′. Zi,l are the individ-
ual means (= ∑T

t=1 Zit,l/T ) with LN ≤ KZ and Zt,m are the time means
(= ∑N

i=1 Zit,m/N) with LT ≤ KZ. 
 (resp. �) is a matrix of constants called the
individual factor loading matrix (resp. the time factor loading matrix) such that


qi =

⎛⎜⎝ λ11 · · · λ1pN

. . .

λLN 1 · · · λLNpN

⎞⎟⎠
⎛⎜⎝ qi1

...

qipN

⎞⎟⎠ and �ft =

⎛⎜⎝ γ 11 · · · γ 1pT

. . .

γ LT 1 · · · γ LT pT

⎞⎟⎠
⎛⎜⎝ ft1

...

ftpT

⎞⎟⎠ .

(8)
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The ei (resp. the et ) are assumed to be mutually uncorrelated and multivariate nor-
mally distributed. This specification can be viewed as a general factor-augmented
two-way error component model.

This specification allows for the possibility that TFP is in part common to
all countries (μ

′
ft + ξ t ), (i.e., representing the global dissemination of scientific

knowledge) and in part country-specific (δ′qi +αi). So it leads to a more interesting
economic interpretation than the standard common factor model of equation (5):
yit = Xitβ + λ′

ift + εit .

3.1. The Frequentist Approach

We can use a multistep estimation method with factor analysis for the first
two steps, which give the estimated factor scores for individual means q̃ij

(= E[qij |Zi,l]) (resp. for time means f̃t (= E[ft |Zt,m])). In these two steps,
generated regressors (q̃i1 , . . . , q̃ipN

) and (f̃t1 , . . . , f̃tpT
) can be obtained as the

fitted values from regressions of multiple indicators (Zi,l) (resp. (Zt,m)) related to
the individual latent common factors (qi1 , . . . , qipN

) [resp. the time latent common
factors (ft1 , . . . , ftpT

)]. Regression scores will appear as expected values of the
factors, given the indicators [see Bartholomew et al. (2009)]. The third step uses
the ML estimator of the two-way error component model.

Multistep estimation may lead to biased and inefficient estimators in the third
step. We have not derived the asymptotic properties of this multistep approach and
hence we do not know if the condition (

√
T /N → 0) has two equivalents for Zi,l

and Zt,m. If we transpose the Bai and Ng (2006) condition for not having to adjust
the standard errors at the third step, we obtain the conditions (

√
N/LN → 0) and

(
√

T /LT → 0), which are unlikely to hold for short panels.

3.2. The Bayesian Approach

One way to avoid these problems in the frequentist multistep method is to esti-
mate jointly, in one step, the system (7). This can be done using the Bayesian
approach [see Press and Shigemasu (1997)]. The ei (resp. the et ) are assumed
to be mutually uncorrelated and multivariate normally distributed as MN(0, �)

[resp. as MN(0,�)]. � and � are not assumed to be diagonal. In other words,
the probability laws �(.) for yit , Zi , and Zt are⎧⎨⎩

�
(
yit |Xit , β, δ, μ, σ 2

ε

) = N
(
Xitβ, σ 2

y

)
,

�
(
Zi |
, qi,�

) = MN (
qi,�) ,

�
(
Zt |�, ft ,�

) = MN(�ft ,�),

(9)

with σ 2
y = δ′δ + μ′μ + σ 2

α + σ 2
ξ + σ 2

ε , or equivalently⎛⎝ yit

Zi

Zt

⎞⎠ ∼ MN

⎡⎣⎛⎝Xitβ


qi

�ft

⎞⎠ ,

⎛⎝σ 2
y δ′
′ μ′�′


δ � 0
�μ 0 �

⎞⎠⎤⎦ . (10)
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Following Lindley and Smith (1972) [see Bresson and Hsiao (2011), Bresson et al.
(2011)], we express model (7) in three stages of hierarchy.

1. The first stage of the hierarchy postulates a joint density function of the data
(yit , Zi, Zt ) conditional on (Xit , qi , ft , π, 
, �) such that

p
(
yit , Zi, Zt |Xit , qi, ft , π, 
, �

)
∝ p (yit |Xit , qi, ft , π)

.p
(
Zi |qi, 


)
p
(
Zt |ft , �

)
, (11)

where π = (β ′, δ′, μ′)′.
2. The second stage of the hierarchy postulates prior distributions of

(π, 
, �, σ 2
α, σ

2
ξ , σ

2
ε, �, �):

p (π |Xit ) ∼ MN (π, �π) , (12)

p
(

|Zi

) ∼ MN
(

, �


)
, (13)

p
(
�|Zt

) ∼ MN
(
�, ��

)
, (14)

p
(
�−1

) ∼ WLN

(
(ρ�R�)−1 , ρ�

)
, (15)

p
(
�−1

) ∼ WLT

(
(ρ�R�)−1 , ρ�

)
, (16)

p
(
σ 2

α

) ∼ IG
( τα

2
,
ηα

2

)
, (17)

p
(
σ 2

ξ

) ∼ IG
( τ ξ

2
,
ηξ

2

)
, (18)

p
(
σ 2

ε

) ∼ IG
( τ ε

2
,
ηε

2

)
. (19)

3. The third stage of the hierarchy postulates prior distributions of (π,
, �):

π ∼ MN
(
π, �π

)
, 
 ∼ MN

(

,�


)
, and � ∼ MN

(
�,��

)
. (20)

We have assumed that �−1 follows a Wishart distribution (a multivariate gen-
eralization of the gamma distribution) with scale matrix (ρ�R�) and degrees of
freedom ρ� . We have also assumed that σ 2

α , σ 2
ξ , and σ 2

ε are independent and follow
inverse gamma distributions. The scale hyperparameter (

ηα

2 ,
ηξ

2 , or ηε

2 ) controls the
precision of the priors. Small values of (

ηα

2 ,
ηξ

2 , or ηε

2 ) correspond to precise priors
and the view that σ 2

α , σ 2
ξ , or σ 2

ε is probably constant over individuals, implying
nearly homoskedastic disturbances. Large values of (

ηα

2 ,
ηξ

2 , or ηε

2 ) convey the
view that disturbances may be quite variable or heteroskedastic. Generally, to
implement the Gibbs sampler, we fix the values of the shape ( τα

2 ,
τ ξ

2 , or τ ε

2 ) and
scale (

ηα

2 ,
ηξ

2 , or ηε

2 ) hyperparameters.
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Let Z(i)′ = (Z1, . . . , ZN), Z(t)′ = (Z1, . . . , ZT ), Q(i)′ = (q1, . . . , qN), and
F (t)′ = (f1, . . . , fT ). Combining the priors (12)–(20) with the data (yit , Zi, Zt ),
we can obtain the posteriors of θ = (π,
,�,�,�, σ 2

α, σ 2
ξ , σ

2
ε):

p
(
θ |yit , Zi, Zt

)
∝

N∏
i=1

T∏
t=1

(
2πσ 2

y

)− 1
2

{
exp

[
− 1

2σ 2
y

(yit −Xitβ)′ (yit − Xitβ)

]}

×|�|− N
2 exp

[
−1

2
tr�−1

(
Z(i) − Q(i)
′)′ (Z(i) − Q(i)
′)]

×|�|− T
2 exp

[
−1

2
tr�−1

(
Z(t) − F (t)�′)′ (aZ(t) − F (t)�′)]

×|�π |− 1
2 exp

[
−1

2
(π − π)′ �−1

π (π − π)

]
×|�
|−

1
2 exp

[
−1

2

(

 − 


)′
�−1




(

 − 


)]
×|��|− 1

2 exp

[
−1

2

(
� − �

)′
�−1

�

(
� − �

)]
× (

σ−2
α

) τα
2 +1

(ηα

2

) τα
2

exp
[
−σ−2

α

ηα

2

]
× (

σ−2
ξ

) τξ
2 +1

(ηξ

2

) τξ
2

exp
[
−σ−2

ξ

ηξ

2

]
× (

σ−2
ε

) τε
2 +1

(ηε

2

) τε
2

exp
[
−σ−2

ε

ηε

2

]
×|�|− 1

2 (ρ�−LN−1) exp

[
−1

2
tr
[
(ρ�R�)�−1

]]
×|�|− 1

2 (ρ�−LT −1) exp

[
−1

2
tr
[
(ρ�R�)�−1

]]
. (21)

Unfortunately, there is no closed form for the posteriors. The posterior distri-
butions of θ = (π,
,�,�,�, σ 2

α, σ 2
ξ , σ

2
ε), given the observed data, are very

complicated and are not amenable to analytical calculation or to direct Monte
Carlo sampling. Hence MCMC is used to approximate the desired posterior dis-
tributions and we use the statistical package OpenBUGS [the open source variant
of WinBUGS; see Spiegelhalter et al. (2000)].

In principle, all prior distributions are specified to be as uninformative as possi-
ble. A multivariate normal distribution, N(0K, 102IK), is chosen for the (K × 1)

vector of hyperparameters π . To increase the speed of convergence, we use the
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one-way FE estimates for hyperparameters of the intercept, capital, and labor vari-
ables. An inverse-gamma prior (0.1, 0.1, 0.1) is chosen for the variance parameters
σ 2

α, σ 2
ξ , and σ 2

ε . Selecting a prior for the covariance matrices �
 and �� turned
out to be a more interesting and challenging problem. The conjugate prior, inverse
Wishart with scale matrix R� (resp. R�) and degrees of freedom ρ� (resp. ρ�),
is commonly used in practice. The degrees of freedom must satisfy ρ� ≥ LN

(resp. ρ� ≥ LT ) to yield a proper prior distribution. The prior scale matrices
R� and R� are set to 10−2ILN

and 10−2ILT
. π is a (K × 1) zero vector and

�π = 102IK . 
 and � are initialized as estimated factor loadings coming from
the factor analysis. �
 = 10−1ILN

and �� = 10−1ILT
. Results from convergence

diagnostics indicated that it was sufficient to burn in the first 5, 000 samples and
take the subsequent 10, 000 samples.

4. THE DATA SET

The data for the indicators that we use to infer the common factors in the cross-
sectional and time series dimensions are taken from the World Development
Indicators compiled by the World Bank from officially recognized international
sources1 and the CANA data set [Castellacci and Natera (2011)]. For the produc-
tivity equation, we use the GDP (in 1997 constant US$ ), the capital stock2 (in
1997 constant US$ and base year PPPs), the labor force, and the population from
82 countries over a 19-year period (from 1990 to 2008).

In our search for useful indicators we are driven by two criteria: first, we
expect the common factors to pertain to innovation, infrastructure, and institutions
indicators, and second, we retain variables that are available for a great number of
countries and for which there are not too many missing observations3 over time.
In the end we choose 21 indicators from 82 countries over a 19-year period (from
1990 to 2008).

The five technological indicators are R&D expenditures (in 1997 US$ ), U.S.
patents granted per country of origin, royalties and license fees (in 1997 US$ ),
scientific publications, and trademark applications.

The seven infrastructure indicators are telecommunication revenue (in 1997
US$), Internet users, secure Internet servers, mobile and fixed-line subscribers,
electricity consumption (in kwh), paved roads as a percentage of the whole roads
length of the country, and registered carrier departures worldwide.

The nine institutional indicators are index of democracy and autocracy, from +20
(democratic) to 0 (autocratic), electoral self-determination, from 0 (no freedom)
to 3 (high freedom), political rights, from 1 (low freedom) to 7 (total freedom),
civil liberties, from 1 (low freedom) to 7 (total freedom), women’s rights, from
0 (low women rights) to 9 (high women rights), physical integrity human rights,
from 0 (no government respect) to 8 (full government respect), freedom of the
press, degree of print, broadcast, and Internet freedom, from 0 (no freedom) to
100 (high freedom), freedom of speech, from 0 (government censorship) to 2 (no
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government censorship) and freedom of association, from 0 (total restriction) to 2
(no restrictions).4,5

5. THE RESULTS

5.1. The Benchmark

We first give results of one-way fixed effects (FE) regressions for productivity
equations. We regress the log of the output per capita on three variables (log of
capital per capita, log of labor per capita, and a trend) (see Table 1). The FE model
leads to constant returns of scale with elasticities of capital and labor of 0.41 and
0.45. The exogenous technical progress, proxied by a time trend, is estimated to be
2.3%. The constant-returns-to-scale assumption cannot be rejected at a 10% level.
The estimated coefficient of capital is close to those found by Easterly and Levine
(2001). The absence of a correlation between the three inputs and the individual
effects is rejected by the Hausman test, and hence also the validity of the random
effects model. The variance of these individual effects represents more than 98%
of the total residual variance. When we explicity assume constant returns to scale
[column (2)], the capital elasticity of output is estimated to be 0.408, leading to
similar results as without imposing constant returns to scale. One may be surprised
to get such a high estimated elasticity of capital (more than 0.4), but this result is
quite usual and reminiscent of many problems in estimating production functions
on macro data, especially for developing countries. As emphasized by Eberhardt
and Teal (2011), a majority of empirical studies produce capital coefficients far in
excess of 0.3.

Adding the 21 indicators Zit [column (3)] strongly reduces the elasticity of
capital from 0.4 to 0.2, which is compensated for by impacts of electricity con-
sumption (0.16), telecom revenue (0.10), and to a lesser extent carrier departures
(0.03), patents (0.014), and R&D (0.012). But, as expected, many indicators do
not have significant effects or surprising signs. We hit the curse of dimensionality
mentioned earlier. We now turn to FAR estimates that reduce the dimension of the
explanatory variables of TFP.

5.2. The Individual and Time Factor Scores

All variables are log-transformed. For the 82 countries over the period 1990–
2009, LN = 21 individual means (zi,l) of indicators are constructed. For the
construction of the time means (zt,m), we only keep the 14 indicators with the
largest time variabilities.

As usual in factor analysis, the variables are standardized. We use the mean and
standard deviation of (zi,l) for l = 1, . . . , LN and of (zt,m) for m = 1, . . . , LT .
This implies that a change of a composite variable over individuals (resp. over
time) will reflect changes in each country’s position relative to the other countries
(resp. changes in the importance of the underlying indicators over time relative to
other indicators).
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TABLE 1. Fixed effects productivity equations

One-way FE One-way FE One-way FE with Zit One-way RE with Zit

log(GDP/pop) Coef. S.E. T -stat Coef. S.E. T -stat Coef. S.E. T -stat Coef. S.E. T -stat

log(capital/pop) 0.4105 0.0178 23.1241 0.1940 0.0195 9.9556
log(labor/pop) 0.4567 0.0848 5.3861 0.2942 0.0673 4.3729
Trend 0.0230 0.0008 29.5332 0.0223 0.0007 34.0014 0.0148 0.0015 9.5924 0.0125 0.0015 8.0913
log(capital/labor) 0.4088 0.0177 23.0559 0.2108 0.0197 10.6779
log(R&D) 0.0123 0.0031 3.9188 0.0114 0.0032 3.5714
log(patents) 0.0147 0.0047 3.1514 0.0174 0.0048 3.6477
log(royalties) 0.0033 0.0019 1.7543 0.0035 0.0019 1.8176
log(publications) −0.0294 0.0038 −7.7994 −0.0291 0.0038 −7.5627
log(trademark

appl.)
−0.0099 0.0036 −2.7300 −0.0040 0.0036 −1.1051

log(telecom
rev.)

0.1051 0.0071 14.8482 0.1052 0.0072 14.5779

log(internet
users.)

−0.0071 0.0021 −3.4266 −0.0081 0.0021 −3.8617

log(internet
servers)

−0.0015 0.0009 −1.6363 −0.0012 0.0009 −1.3023

log(phones) 0.0120 0.0076 1.5896 0.0101 0.0077 1.3094
log(electricity) 0.1601 0.0180 8.9048 0.1363 0.0181 7.5464
log(carriers) 0.0321 0.0058 5.5749 0.0348 0.0059 5.9526
Paved roads −0.0010 0.0003 −3.0585 −0.0010 0.0003 −2.9796
Democracy −0.0009 0.0015 −0.6290 −0.0016 0.0015 −1.0634
Elect. self

determ.
0.0015 0.0064 0.2384 −0.0023 0.0065 −0.3458
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TABLE 1. Continued

One-way FE One-way FE One-way FE with Zit One-way RE with Zit

log(GDP/pop) Coef. S.E. T -stat Coef. S.E. T -stat Coef. S.E. T -stat Coef. S.E. T -stat

Political rights −0.0087 0.0049 −1.7767 −0.0063 0.0050 −1.2695
Civil liberties 0.0040 0.0055 0.7208 0.0048 0.0056 0.8491
Women rights −0.0054 0.0024 −2.2858 −0.0065 0.0024 −2.7293
Physical rights −0.0073 0.0022 −3.3796 −0.0068 0.0022 −3.0922
Freedom press 0.0013 0.0004 3.2040 0.0014 0.0004 3.4504
Freedom

speech
−0.0033 0.0057 −0.5732 −0.0039 0.0059 −0.6721

Freedom
assoc.

−0.0111 0.0064 −1.7298 −0.0084 0.0065 −1.2806

var (indiv) 0.7657 0.7619 0.7793 0.7310
var (epsilon) 0.0132 0.0132 0.0075 0.0078
Hausman test

(p-value)
329.7900 0.0000 325.5800 0.0000 497.5300 0.0000 372.7400 0.0000

c.r.s. (p-value) 2.6300 0.1051 11.8300 0.0006
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As we have three groups of indicators (technology, infrastructures, and institu-
tions), we specify our FAR model as⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

yit = Xitβ + δ′
technoqi,techno + δ′

infraqi,infra + δ′
institqi,instit

+μ′ft + αi + ξ t + εit ,

Zi,techno = 
technoqi,techno + ei,techno,

Zi,infra = 
infraqi,infra + ei,infra,

Zi,instit = 
institqi,instit + ei,instit,

Zt = �ft + et .

We could have merged all 21 indicators. But we preferred to split them into three

clusters for two main reasons: first, it seems natural to suppose that indicators
belonging to a specific cluster (for instance, the technology cluster) represent a
coherent set and are not necessary correlated with other indicators belonging to
another cluster (for instance, institutions).6 Second, we have tried to estimate the
factor scores of the whole 21 indicators. We found only three common factors
for the individual means, which seems consistent with our expectations, but the
ranking of the countries on the basis of the scores led to a few unrealistic results.

The factor analysis is used to analyze the correlation matrix of the 21 indica-
tors. The factor loadings are computed using the squared multiple correlations as
estimates of the communality (the variance shared with other variables). Because
all indicators are normalized, the sum of all eigenvalues of the correlation matrix
is the total number of variables. The number of principal components that we
should retain depends on how much information (i.e., unaccounted variance) we
are willing to sacrifice, which, of course, is a question of judgment.

The Kaiser criterion, the scree plot, and the parallel analysis [see Allen and
Hubbard (1986)] suggest retaining only one factor each for the technological
indicators, the infrastructure indicators, and the institutional indicators (see the
Supplementary Materials). The factor explains 76.94% (resp. 63.49%, 81.72%) of
the total variance for the five technological indicators (resp. the seven infrastructure
indicators and nine institutional indicators). All the variables have, in general, high
positive weights: from 0.80 for publications to 0.95 for R&D among the techno-
logical capabilities, from 0.51 for electricity revenue to 0.95 for Internet servers
among the infrastructure capabilities, and from 0.77 for the political rights to 0.97
for the physical rights among the institutional capabilities (see the Supplementary
Materials).7 As all factor loadings are of the same sign and roughly of the same
order of magnitude, the principal components for our three clusters of variables
do indeed capture common factors.

The Bayesian approach gives similar results.8 The posterior mean, the standard
error, and the Monte Carlo standard error of the mean [MC error; see Roberts
(1995)] of the factor loadings for the individual means of indicators are close to
the results of factor analysis (see the Supplementary Materials). One way to assess
the accuracy of the posterior estimates is by calculating the Monte Carlo error (MC
error) for each parameter. This is an estimate of the difference between the mean
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of the sampled values (which we are using as our estimate of the posterior mean
for each parameter) and the true posterior mean. As a rule of thumb, the simulation
should be run until the Monte Carlo error for each parameter of interest is less
than about 10% of the sample standard error [see Brooks and Gelman (1998)].

The Kaiser criterion, the scree plot, and the analysis also suggest retaining
only one time common factor, which explains 90% of the total variance of the
time averages of the 14 individual indicators (see the Supplementary Materials).
One could argue that this factor measures common shocks or time trends. All 14
variables have positive weights higher than 88%, indicating again the common
factor interpretation of the first principal component. The Bayesian approach again
gives similar results.

Figures 1–3 rank countries according to the estimated factors scores using the
frequentist and Bayesian approaches. One can note a few differences between the
two methods, but by and large the two approaches display the same distribution.
We shall concentrate on the results from the Bayesian approach for reasons laid
out in the next section. The interesting result concerns the relative positions of the
countries for the technological, infrastructure, and institutional capabilities. In each
figure, we have also drawn the ±0.5σ and ±σ confidence intervals (short dash-dot
and dashed lines). These confidence intervals include respectively 38% and 68% of
the distribution around the mean. The ±σ confidence interval allows us to define 4
groups of country: [−2;−σ ]: low capabilities, ] − σ ; 0]: medium low capabilities
]0;+σ ]: medium high capabilities and ]+σ ; 2]: high capabilities. Remember that
the three factor scores have a standard normal distribution. The individual factor
scores for our 82 countries will hence be distributed according to this standard
normal distribution. Regarding the technological common factor, we notice the
usual suspects at the upper end of the distribution (with high capabilities): the G-7
countries, but also some countries such as Spain, Belgium, Switzerland, Sweden,
and Australia and two of the BRICS countries, China and Brazil. Most of the
other EU countries, the remaining three BRICS countries, and the countries of
the G-20 group belong to the medium-high group. It is somewhat astonishing that
Israel and Finland do not belong to the high group. To a large extent the ranking
of the countries in the four categories remains the same for the infrastructure and
institutions common factors, with a few notable exceptions: the BRICS countries
fall into the medium-low category regarding infrastructure and India even into the
lowest category. Many of the latest new member states in the EU belong to the
medium-high category, possibly thanks to structural adjustment funds from the
EU. It is on the institutional front that there is the highest concentration of countries
in the two tails of the distribution. China and Russia now belong to the low group,
South Africa and India to the medium-low, and Brazil to the medium-high. Again,
the most developed countries belong to the high end of the distribution, whereas
many of the African countries are at the lower end of the distribution.

We have also estimated time scores using the frequentist and Bayesian ap-
proaches, showing a linear time trend over the period 1990–2008 (see the
Supplementary Materials).
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FIGURE 1. Individual factor scores on technological capabilities.

5.3. The Factor-Augmented Productivity Equation

These estimated factor scores, both for the individual means and for the time
means, are used in the productivity equation as generated regressors. Table 2 gives
the ML estimation of the general factor-augmented two-way error component
model and the Bayesian posterior means, standard errors, and MC errors of this
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FIGURE 2. Individual factor scores on infrastructure capabilities.

productivity equation. We have assumed that the GDP per capita (in logs) depends
on two inputs, the capital stock per capita (in logs) and the labor force per capita
(in logs), augmented with the four estimated factor scores: three in the individ-
ual dimension (technology, infrastructure, and institutions) and one in the time
dimension.
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FIGURE 3. Individual factor scores on institutional capabilities.

If the estimated elasticity of production relative to capital (0.417) seems
plausible, the elasticity of production relative to labor appears underestimated
(0.256). Technological capabilities have a positive effect on productivity (0.23).
But infrastructure seems to have the strongest impact (0.43) and, more surpris-
ingly, institutions have a positive effect on productivity (0.20) quite similar to
that of technological capabilities. Finally, the common trends (0.13) cannot be
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TABLE 2. Factor-augmented productivity equations

Two-way FAR Bayesian FAR

log(GDP/pop) Coef. S.E. T -stat Post. mean S.E. MC error

log(capital/pop) 0.4172 0.0167 24.9607 0.2879 0.0522 0.0052
log(labor/pop) 0.2568 0.0790 3.2512 0.5575 0.1292 0.0115
q1i(technological) 0.2304 0.0678 3.3990 0.2553 0.0755 0.0072
q2i(infrastructures) 0.4379 0.0828 5.2856 0.6050 0.0670 0.0061
q3i(institutions) 0.2007 0.0569 3.5275 0.1989 0.0539 0.0050
ft 0.1300 0.0097 13.4454 0.1407 0.0266 0.0023
Intercept 2.5684 0.2609 9.8460 2.5890 0.2191 0.0127
var(indiv) 0.1388 0.1407 0.0317 0.0021
var(time) 0.0015 0.0141 0.0054 0.0001
var(epsilon) 0.0120 0.0127 0.0006 0.0000
log-L (Yit ) 990.9299 1213.9150

associated with the time trend in the standard one-way FE Cobb–Douglas func-
tion (estimated at 0.023). This ML estimation of the general FAR two-way error
component model leads to strong decreasing returns to scale: the 95% confidence
interval is [0.524; 0.823], which seems unrealistic. Moreover, the mean relative
error between observed and estimated output per capita is large: −8.58%.

These unrealistic results may come from biased and inconsistent estimates using
the two-step frequentist approach. The posterior means obtained with the Bayesian
method give more realistic results. The estimated elasticities for capital and labor
are respectively (0.287) and (0.557), leading to quasi-constant returns to scale:
[0.741; 0.949]. Factor scores on technology, infrastructure, and institutions all
have a positive effect on productivity: the strongest is associated with infrastructure
(0.605), followed by technology (0.255) and institutions (0.198). These estimated
coefficients may be interpreted as semi-elasticities, i.e., percentage changes in
GDP per capita due to a one-unit change (i.e., 1σ ) in the capabilities. Finally, a
one-standard-deviation change in the time common factor increases TFP by 0.14%.
With the Bayesian approach, the variance of the individual effect σ 2

α is similar to
that of the FAR regression (0.14), but the variance of the time-specific effect is
higher: 0.01 against 0.001. There is no significant difference in residual variance
between the two approaches. The log-likelihood of the productivity equation
shows the superiority of the Bayesian approach (1, 213.91) over the multistep ML
estimation (990.92). This better fit is confirmed by the very low mean relative
errors between observed and estimated output per capita: 0.61%.

Figure 4 shows the percentage contribution of TFP to output per capita. The
part of output not due to the use of labor and capital is typically larger for the
more developed countries. For only 10 countries of our sample is the contribution
of TFP to output per capita lower than 50%. For the top third of our countries, this
contribution is nearer to 60%, and this set comprises mostly the OECD countries.
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FIGURE 4. Share contributed by total factor productivity (individual means).

Figure 5 shows that the evolution of this share seems to be increasing over time.
The contribution of TFP to output per capita has been increasing by about two
percentage points over the past 15 years.
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FIGURE 5. Share contributed by total factor productivity (time means).

We can compare our results with two earlier studies that used a somewhat dif-
ferent approach. Based on a sample of 115 countries and 25 indicators, Fagerberg
and Srholec (2008) perform a factor analysis using two subsets of 3-year averages
of these 25 indicators (1992–1994 and 2002–2004) and obtain four measures of
capabilities. They do not assume separability between the four clusters of indica-
tors, but they notice that some indicators are highly correlated with some factors
and little with the others. The two factors that come out as significant in their GDP
per capita regression are “innovation system” and “governance.” The other two,
“political system” and “openness,” are insignificant. Their “innovation system” is
essentially our factor “technology,” part of our factor “infrastructure,” and some
variables regarding education that we have not included. Our factor “institutions”
is closest to their factor “political system.” Their “governance” and “openness”
factors are not really captured by our indicators.

A positive correlation between the global innovation index (which regroups
seven clusters of variables: institutions, human capital and research, infrastruc-
ture, market sophistication, business sophistication, knowledge and technology
outputs, and creative outputs) is also reported in the Global Innovation Index
2014 constructed by Cornell University, INSEAD, WIPO (2014). The Global
Innovation Index contains more variables, but is not based on a factor analysis
(although robustness experiments have been made using a factor analysis). In
summary, our result of positive correlations between our three factors and GDP
per capita is confirmed in other studies. The leading role of infrastructure over
technology and institutions is something that does not come out so clearly from
these other studies.
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6. CONCLUSION

To evaluate the importance of technology, infrastructure, and institutions in ex-
plaining differences in total factor productivity among 82 countries between 1990
and 2008, we have estimated a factor-augmented GDP equation with 21 tech-
nology, infrastructure, and institutional indicators and unobserved country- and
time-specific individual effects. The data are taken from the World Development
Indicators database of the World Bank and the CANA data set. First, we have done
a factor analysis, in which we have allowed for two kinds of common factors, those
based on individual (country) means and those based on yearly means. Second,
we have inserted the individual and time common factors into a factor-augmented
productivity equation using the frequentist approach. Third, we have proposed
a more robust Bayesian approach based on noninformative priors and a MCMC
simulation, where all equations are estimated simultaneously. The Bayesian esti-
mator leads to a better fit and somewhat more reasonable input elasticities. The
explanation of TFP is, however, quite similar between the two approaches.

A sizeable portion, for most countries more than 50%, of total factor produc-
tivity is explained by the four common factors we have introduced. We show in
addition that the TFP residual is driven by three clusters of variables: technology,
infrastructure, and institutions. We have not tested the direction of causality, but
we think that it is more likely to run from these factors, which take time to build up,
than the other way around. Because there are many ways of measuring these influ-
ences, we have taken a series of measures related to them and estimated common
factors for each. These common factors are then included in an extended Cobb–
Douglas production function to explain TFP. Our results show that infrastructure
is the greatest contributor to TFP, followed by technology and finally institutions.
Infrastructure is at least twice as important as technology, whereas often it is
assumed that TFP captures just technological change. Finally, our analysis reveals
the weaknesses of certain countries regarding some of the determinants to TFP.

Our results might of course differ if we introduced another set or a larger set of
indicators than the 21 that we have used, for which data were readily available.
Some of our original data are obtained by interpolation. Increasing the quality of
the construction of the data is another area of future research. For many countries,
unfortunately, too many raw data were missing. Extending the analysis to more
countries would be another worthy research endeavor.

NOTES

1. See http://data.worldbank.org/data-catalog/world-development-indicators.
2. The capital stock is computed from the gross capital formation data by the permanent inventory

formula:

Kit = (1 − δ) Kit−1 + Iit , Ii1 = (
δ + gy

)
Ki0,

gy =
(

�Y

Y

)
90−92

, δ = 5%.
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3. Missing values were linearly interpolated instead of using missing imputation methods.
4. The data for all 21 indicators, except secure Internet servers and trademark applications, come

from the CANA data set.
5. Missing values were replaced by interpolation for each country. The numbers of interpolated

observations are 7 for GDP, labor and population, R&D, patents, royalties, and telecom revenue, 11 for
GDP growth, 26 for gross fixed capital formation, 12 for GDP deflator, 159 for trademark applications,
and 994 for Internet servers. Negative values for some of the variables have been replaced by the
lowest positive values in the sample: R&D (100,000, 7 cases), royalties (1,000, 37 cases), patents
(1,328 cases), publications (0.5, 35 cases), trademark applications (10, 30 cases), Internet users (10,
220 cases), and Internet servers (1,000, 466 cases).

6. We would like to thank Jacques Mairesse for this suggestion.
7. Additional tables and figures are available as Supplemental Materials.
8. For the Bayesian approach to be comparable to the frequentist approach, we forced the number

of common factors for each cluster of indicators to be equal to one, as we found with the frequentist
approach.
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