
ISOTOPY OF 2-DIMENSIONAL CONES 

ARTHUR H. COPELAND, Jr. 

1. Introduction. Knowing the isotopy of cones is a crucial first step in 
knowing the isotopy of finitely triangulable spaces, for the cones are exactly 
the stars of vertices. Furthermore, they are the simplest examples of con-
tractible spaces, and the non-triviality of the contractible spaces is one of the 
distinguishing characteristics of isotopy theory as contrasted with homotopy 
theory. 

The present paper is concerned with the cones over 1-dimensional finitely 
triangulable spaces. It is clear that homeomorphic spaces have homeomorphic 
cones, hence cones of the same isotopy type. The surprising result of §2 is 
that there are very few exceptions to the converse statement. The exceptional 
isotopy classes of cones all contain cones over spaces that are themselves cones. 
Section 3 deals with one of the principal tools of isotopy theory, the deleted 
product factor. I t contains descriptions of the homology groups of the deleted 
product space of a 2-dimensional cone and of the homomorphisms induced by 
embeddings. The latter is presented in the following manner. After some 
simplifying steps, the embedding is factored into elementary embeddings. An 
embedding may be regarded as an addition to the domain space of that part 
of the range space not in the image. In the elementary embeddings, the added 
part is a cell. The kernels and cokernels of the homomorphisms induced by 
these embeddings are free abelian, and the ranks of these groups are computed. 
Thus the kernels and cokernels of the homomorphisms induced by the original 
embeddings are free abelian, and their ranks may be estimated. 

2. Classification of cones. If P is a topological space and p is a point not 
in P , then the cone over P (with apex p) is the join P = P*p of P with p. 
Both P and p are regarded as being contained in P; P is called the base and 
p the apex. A map f:P —> Q induces a map f :P —» 0- This map f agrees with 
/ on P , has f(p) = q (the apex of 0)» and carries each segment pi*p linearly 
onto f(pi) * q for pi Ç P. 

If X is a finite discrete space with n > 2 elements and if x0 $ X, then 
X * x0 is a linear star of order n. If I = [0, 1] is the unit interval on the real 
line, then any homeomorph of (X * xo) X I is called a book with n leaves. 
The subset (X * Xo — X) X (0, 1) is called the interior of the book, Xo X / is 
the spine, and each component of the complement of the spine is called a leaf. 
An arc may be called a book with zero leaves. 
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2.1. LEMMA. If A is a book with m leaves, if B is a book with n leaves, and if 
A C B, the m < n. If m > 2, then the spine of A is contained in the spine of B. 

Proof. It suffices to prove this when A is the interior of a book with m 
leaves. If n < 2, then B is a 2-cell or an arc, and it is clear that m < n. Now 
suppose that m > 2, whence n > 2. Since each point x of the spine A$ of A 
has arbitrarily small neighbourhoods horneomorphie to A, x cannot lie in a 
leaf of B. Thus A0 lies in the spine B0 of B. If x is an interior point of A0, then 
x has a neighbourhood £/ in B such that £ o ^ [ / = ^ 4 o ^ £ ^ and such that 
both Ao r\ U and V = A C\ U are connected. Then ^40 f\ U separates V into 
exactly m components: there are at least m, one for each leaf, and there are no 
more than m, for the intersection of F with each leaf A t of A must be connected. 
To prove this latter, it suffices to show that any two points y, z £ V C\ A t lie 
in a connected subset of V C\ At. Since V is connected, there is an arc in V 
from y to z. If this arc does not lie entirely in Vr\Au then it must meet 
Ao r\ V. Moving along the arc from y to z, let y' be the first point in A0 Pi V 
and JS' the last such point. Since F is a neighbourhood of Ao P\ F in the 2-cell 
Ao^J At1 there is an embedding 

h:(A0n V) X / - > (A0VAi)r\ V 

with fc(f, 0) = t for each / Ç ^ 0 H F. Then 

C = MG4oH F) X (0,1]] 

is a connected subset of A t P\ F and it meets the subarcs from y to y' and from 
zf to JS. The union of C with these two subarcs, less the points y' and z', is the 
desired subset. Suppose two components Vi and F2 of V — Ao lie in the same 
leaf Bj of B. It follows from the Brouwer Invariance of Domain (4, p. 95) that 
V\\J F2 W (Z7P\^4o) is open in the 2-cell BjKJBo, and hence cannot be 
separated by a subset A0 of the boundary of the cell. This contradiction shows 
that each of the m components of F — A0 lies in a distinct one of the n leaves 
of B, whence m < n. 

The foregoing argument was suggested to the author by L. L. Larmore. 
A polyhedron P of dimension < 1 is a finite union of vertices and 1-cells 

( = closed arcs) running between them. The order of a vertex v is the number 
of 1-cells meeting it (a 1-cell that both originates and terminates in v being 
counted twice). In a given cellular decomposition of P , the vertices of order 2 
may usually be eliminated: if v is the junction of the 1-cells a and r, then 
t r U r i s taken as a single 1-cell in a new decomposition. The only exceptions 
occur when P has isolated simple closed curves; the last vertex in a simple 
closed curve cannot be eliminated. Any two decompositions of P having the 
minimal number of vertices of order 2 are isomorphic, and such decompositions 
will be called canonical. Let P' C P be the set of vertices of order greater than 
two, and let P" be P' united with all 1-cells both of whose ends lie in Pf. In 
forming P " , a canonical decomposition is used. 
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2.2. LEMMA. Any embedding f:P, p —» Q, q is isotopic to an embedding g 
with g[P] C Q. 

Proof. We shall suppose that P has a canonical decomposition and that Q is 
triangulated. If a is a 1-cell of P, then a 1-simplex £ of Q is called essential for 
a if g ^ / M contains a neighbourhood of q in (3. Recall that a and g are the 
cones over the 1-dimensional cells a and P respectively. Suppose a runs between 
two distinct vertices v and v!, both of which have orders > 2 in P. If j3 is essential 
for a: and if w is one of the end points of P, then one of the components of 
/_1[w] P\ a contains p. This component A = A (w) is an arc, and p is one of 
its end points. If a = a(w) is the other end point of -4, then a £ a, for clearly 
a ^ a U v U v' while v and v' must be mapped into spines. Let w' be the other 
end point of P and set A' = A (wf), a' = a(w'). Let T be the triangular region 
in (3 whose vertices are f(a), f(af), and q. Then / - 1 | T ] lies in the 2-cell D C « 
bounded by A, Af, and the segment of a between a and a'. Furthermore, f~x\T\ 
is a neighbourhood of (̂ 4 U ^ l ' ) — {a, a'} in Z>. Thus there is an isotopy ht 

on P that carries D o n t o / - 1 [7"] and leaves the complement of D fixed. Then 
fht is an isotopy of / that agrees with/outside of D and that carries D onto T. 
This process is repeated* for each essential simplex P of each edge a running 
between two vertices of order greater than 2. The composite of these modifi­
cations is an embedding/i such that the following assertion is true: 

. v ( If Pi, ... , ft are the essential simplexes for a, then f[a] C ft. . . ft 
' \ and/ i [a ] P\ Pi is a straight-line segment for each i — 1, . . . , k. 

For each edge a of P that begins and terminates in a single vertex of order 
> 2 , there is a modification similar to that described above. The result of these 
modifications is an embedding / 2 isotopic to / and satisfying (2.3) for each a 
in P". If a is an edge of P having one vertex v of order 2 and the other, v', of 
order 1, then v must be mapped into some spine w in Q. There is a leaf 5 
radiating from w such that 5 ^ / 2 [ ( a — v) * p] contains /2[v] in its closure. 
Divide P into two 1-simplexes P' and P" by inserting a new vertex w' of order 
2 in the middle of p. Assume that w G P' and enlarge the set of simplexes 
called essential by including pf, but not P". There is an isotopy of / 2 that pulls 
the image of a into §' in such a way that a is carried onto a segment running 
from some point in w to some point in w'. Repeat this process for each such 
edge a and call the resulting embedding fz. The remainder P0 of P consists of 
isolated vertices, arcs, and simple closed curves. The next isotopy produces an 
embedding f\ that agrees with/3 outside of Po and that carries Po into the cone 
over the union of the inessential 1-simplexes, the 1-simplexes essential for 
edges that form isolated arcs and closed curves, and the isolated vertices of Q; 
this isotopy is easily constructed. The final isotopy is a radial expansion of 
fi[P] away from q, and yields the desired embedding g. 

2.4. THEOREM. The 1-dimensional finitely triangulable spaces P and Q have 
the same isotopy type if and only if the pairs P, p and Q, q have the same isotopy 
type. 
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Proof. lif:P —» Q has an isotopy inverse g, then g is an isotopy inverse to f. 
Conversely, suppose / : P , p —> Q, q is any embedding having an isotopy 

inverse g. Lemma 2.2 shows t h a t / and g are isotopic to embeddings/ ' and gf 

w i t h / [ P ] C Q and gf[Q] C P . L e t / " : P -» (? and g":<2 -> P be the embeddings 
obtained by restricting/' and g'. It follows from Lemma 2.1 that each vertex 
of order m > 2 is mapped by / ' (or by g') into the spine over a vertex of order 
n > m. Also, isotopies of g'/' and fgf to the respective identity maps must 
carry such a vertex into its own spine. Thus / " and g" preserve the orders of 
the vertices of order > 2 . If r: (P — {p}) —-> P is the radial projection from pf 

and if ht is an isotopy from g'f to the identity on P , then kt(x) = rht(x) (x G P) 
defines a homotopy from g"/" to the identity on P . Similarly,/"g" is homotopic 
to the identity on Q. The final remark in (1) now shows that P and Q have 
the same isotopy type. 

2.5. LEMMA. Any isotopy ht of the identity ho on P must leave the apex p fixed, 
provided one of the following holds: 

(a) P has at least three vertices of orders ^ 1 , 2 ; 
(b) P is the union of two disjoint closed subsets A and B each having at least 

two points; 
(c) P contains two vertices of order 3 and the closed star (in a canonical 

decomposition) of each contains a vertex of order 1; 
(d) P contains a simple closed curve and (i) a second simple closed curve 

disjoint from the first, or (ii) a second simple closed curve meeting the first in 
exactly one point, or (iii) a vertex of order ^ 1 , 2 not on the first curve. 

Proof, (a) If a, b, c Ç P are vertices of orders 5^1,2, then the triod 
{a, b, c] * p must be carried into itself by ht\ hence ht(p) = p for all t. 

(b) Suppose to the contrary that ht moves p, and that ht(p) enters 
A * p — {p} first. Select t and bi, b2 G B such that ht(p) G A * p — {p} and 
ht(bi) G B * p — \p) (i = 1, 2). Then the arcs ht[bi * p] run from B * p to 
4̂ * £, and thus must both contain p. This violates the requirement that ht 

be one-to-one. 
(c) Similar to (b). 
(d) The cone over a simple closed curve is a disk containing p as an interior 

point. An isotopy that moves p must carry other interior points onto p. 
Furthermore, p is constrained to move along spines over vertices of orders 
7^1, 2. The three cases are now easily established. 

Let Sli be the class of all polyhedra of dimension 0 or 1 satisfying at least 
one of the conditions (a)-(d) of Lemma 2.5, and let §1 be the set of equivalence 
classes of cones over members of 2ti, where two cones are called equivalent 
when their bases are homeomorphic. Let 55» (n = 0, 2, 3 , 4 , . . .) be the isotopy 
class of cones containing a book with n leaves, and let 93 be the set of these 
classes. 
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2.6. CLASSIFICATION THEOREM. The set of isotopy classes of cones of dimension 
< 2 is exactly 21 U 93, and 21 Pi 93 is empty. 

Proof. The cones in SI have points that are fixed under all isotopies of the 
identity, and those in 93 do not. Thus 2Ï P\ 93 is empty. 

If P is a polyhedron of dimension < 1 , let r be the number of its vertices of 
order zero, 5 the number of vertices of order at least three, t the 1-dimensional 
Betti number, and u the number of components. Thus to each polyhedron 
there is assigned a quadruple (r, s, t, u). For the present analysis, it suffices 
to let r, sj t, u range over the values 0, 1, 2 and many. The quadruples 
(r, s, t, u) = (0, 0, 0, 1), (0, 0, 1, 1), (0, 1, 0, 1), (0, 1, 1, 1), (1, 0, 0, 1), (1, 0, 
0, 2), (1, 1, 0, 2), and (2, 0, 0, 2) are associated with polyhedra whose cones 
have the isotopy types of books. The quadruples (0, 2, t, 1) with / > 2 may 
be associated with elements of both 21 and 93, and one distinguishes the two 
cases as follows. Suppose P is connected and has two vertices v and w of order 
> 2 , and assume that P has its canonical decomposition. If each arc starting 
at v ends in w and if each arc from w ends either in v or at a vertex of order 1, 
then the cone over P is isotopic to a book. Otherwise P is in 211. A straight­
forward verification shows that the rest are either inconsistent (e.g., (2, 0, 0, 1) 
describes no space) or are associated with elements of 21. Since every polyhedron 
P has a quadruple (r, s, t, u) associated with it, and since all cases have been 
investigated, we see that every cone is either iso topic to a book, or lies in a 
member of 21. 

Let P , Q 6 2li, and assume t h a t / : P —> 0 is an isotopy equivalence. If g is 
an isotopy inverse to / , then the isotopies from gf and fg to the appropriate 
identity maps must leave the apexes fixed. Thus both / and g must respect 
apexes. It follows from Lemma 2.4 that P and Q have the same isotopy type, 
and hence are homeomorphic. This shows that the classes in 21 are isotopy 
classes of cones. 

3. Deleted products. This section is devoted to describing the integral 
homology groups of the deleted products RP of cones over 1-dimensional 
finitely triangulable spaces P and the homomorphisms Rf*:H*(RP) —» H* (RQ) 
induced by embeddings/:P —•» Q. 

The reader will recall that if X is any space, then RX is the difference space 
XXX — DX, where DX is the diagonal subspace of the topological product 
X X X . Hf:X -> Y is an embedding into the space F, then Rf:RX -> RY is 
defined by restricting the product m a p / X / : X X X — > F X Y. I f / a n d g are 
iso topic, then Rf and Rg are iso topic, hence homotopic. 

The homology groups are easily found. If P is a single point, then P is an 
arc, and RP has the homotopy type of a discrete 2-point space. If P is a simple 
closed curve, then P is a disk and RP has the homotopy type of the 1-sphere. 
If P is neither a point nor a simple closed curve, then RP is connected, while 
Hk(RP) (k > 0) is a direct summand in 3k_i(RP) and has a complementary 
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direct summand isomorphic to the direct sum Hk_i(P) + i?fc_i(P) (2). The 
tildes denote reduced homology groups. The homology of RP, hence that of 
P P , may be computed from (5 or 3). Note that these homology groups are 
free abelian, and that Hk(RP) is trivial for k > 3. 

We now describe the homomorphism Rf*:Hk(RP) —> Hk(RQ) induced by 
an embedding/ of the cone P into the cone 0- First note that in case / fails to 
send the apex p of P into the apex q of Q, then (apart from trivial cases) f(p) 
must lie in a spine in 0- The composite of / with an isotopy that shrinks P 
towards p will then pull the image /[P] into the book B associated with this 
spine. Any point of the spine may act as an apex of P , whence/ can be factored 
into two embeddings, each of which respects apexes. 

Thus it suffices to consider embeddings / : P —» 0 having f(p) = q. Let us 
summarize the analysis of the homomorphism Rf* first, leaving the proofs 
until later. Lemma 2.2 shows that we may assume tha t / [P ] C Q- The follow­
ing result shows that only the restriction of / to P and Q plays a role in the 
computation of Rf*. 

3.1. THEOREM. If / : P —» Q is an embedding with f(p) = q and f[P] C (?, 
and if g:P —> Q is the restriction off, then the induced homomorphism s 

Pg* and Rf* : H* (PP) -> H* (RQ) 
are equal. 

The 1-dimensional spaces P and Q may be so triangulated that g is simplicial, 
whence P may be regarded as a subcomplex of Q, and g may be regarded as 
the inclusion map. But then Q can be constructed out of P by appending 
vertices and 1-simplexes. In other words, g may be factored as follows: 

Po = P -> P i -> P 2 - > . . . - > Pn = Q, 
£l g2 gn 

where Pt is obtained from Pt-i by (a) adding an isolated vertex, or (b) adding 
a simplex that meets P^_i in just one of its end point vertices, or (c) adding a 
simplex both of whose end point vertices lie in Pf-i. 

The four propositions (3.2)-(3.5) below describe the induced homomor-
phisms, except in the routine cases in which one of the spaces is a point or a 
simple closed curve. In these results, Kk and Ck are the ranks of the kernel 
and the cokernel of Rg*:Hk(RP) —> Hk(RQ)} respectively (they are free 
abelian), and n is the deleted product number of P relative to the two end 
points of the added simplex (Case (c)). C. W. Patty (5) defines the deleted 
product number as follows. Let G be a set of simple closed curves in P and 
let vy w be the two end points of the added simplex. Let n(G) be the number 
of elements of G that separate v from w. Then the deleted product number of 
P relative to vy w is 

n = min{n(G):G is a basis for the 1-cycles of P } . 

Note that RP and RQ are connected, whence Pg* is an isomorphism in dimen­
sion zero. Also, the homology of these spaces vanishes above dimension 3. 
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(3.2) IfQ = PUS and S is an isolated point, then K\ = 0, G — 2ft — 2, 
K2 = 0, G = 2/3i, Kz = G = 0, w/zew ft is the k-dimensional Betti number 
of P. 

(3.3) Suppose that Q = P U A, where A is a 1-simplex and P C\ A = {v\ 
is exactly one of the two end points of A. Suppose that v is a vertex of order minP, 
and that Pi is the component of P containing v. Consider four cases: 

(1) P i is a point, 
(2) P i is an arc and v is an end point of P i , 
(3) P i is an arc and v is an interior point, 
(4) P i is neither a point nor an arc. 

Then, 
Casel: Ki = 0, G = 2, K2 = 0, G = 0, i£3 = G = 0. 
Case 2: Ki = 0, G = 0, X2 = 0, G = 0, i£3 = G = 0. 
Case 3: Ki = 1 , G = 0, i£2 = 0, G = 1, # 3 = G = 0. 
Case 4: Ki = 0, G = 0, i£2 = 0, G = 2m - 4, i£3 = C3 = 0. 

(3.4) Suppose that Q = P U A, where A is a 1-simplex and P C\ A = {v,w) 
is the set of both end points of A. Let /3f

k be the k-dimensional Betti number of 
P' — P — (Star v \J Star w). Assume that v, w both lie in the same component 
Pi of P. 

If P i is an arc, then 

Kx = 1 , G = 0, K2 = 0, G = 2j8'0 - 3, Kz = 0, G = 20'i. 

If P i is W0£ aw arc and if n is the deleted product number of P relative to v, w, then 
K± = 0, G = 0, K2 = 2rc, G = 20'0 - 2, i£3 = 0, G = 2/3'i - 2n. 

(3.5) Suppose that Q = P KJ A, where A is a 1-simplex and P C\ A = {v,w} 
is the set of both end points of A. Let ft be the number of components in P and let 
/S'* be the k-dimensional Betti number of P' = P — (Star v \J Star w). A ssume 
that v and w lie in distinct components P\ and P2 of P . 

Then, 

Ki = 2ft - 2 + a, G = 0, K2 = 20'i, G = 2ft0 - 2ft - a, Kz = G = 0, 

ze/̂ ere a is giz;ew as follows: 
a = — 4 w/̂ ew P i awaJ P 2 are 00//* points; 
a = — 1 w&ew owe 0/ Pi , P 2 is a point, the other is an arc, and P\\J A \J P2 

is not an arc; 
a = — 2 when one of Pi, P2 is a point, the other is an arc, and Pi \J A U P 2 

is an arc; 
a = — 2 when one of Pi, P 2 is a point and the other is neither a point nor an arc; 
a = 0 when Pi, P2, and Pi U A KJ P2 are all arcs; 
a = 1 when Pi and P2 are arcs but Pi U A VJ P2is not an arc; 
a = 0 when one of Pi, P2 is an arc and the other is neither an arc nor a point; 
a = — 1 when neither Pi nor P 2 is an arc or a point. 
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W.-T. Wu has proved (6) that if P is a triangulated space, then the cell 
complex 

JP = {a X r:cr, r are closed simplexes of P , a C\ r is empty} 
is a deformation retract of RP. In what follows, we fix triangulations on P 
and Q, so that the functor R (from the category of embeddings, into itself) 
may be abandoned in favour of the more workable functor J (from the category 
of simplicial embeddings of triangulated spaces into the category of 
embeddings). 

If P , Q are triangulated spaces, then there are homomorphisms a, ft, 8, ay @', 
and 6' such that the rows in the diagram 

ô a p 
. . . -> Hk+1(JP) -> Hk(JP) -> Hk(P) + Hk(P) -» Hk(JF) -* . . . 

(3.6) j j g * jJg* J,g* + g* j Jg* 

. . . -» f W J Q ) -> iï*(/Q) -> ff*(Q) + #*(<2) -> ff t(JQ) -> • • • 
ô' a' 13' 

are exact (2). If P is 1-dimensional, but not a point or a simple closed curve, 
then ft is trivial and the top sequence splits; a similar statement holds for Q. 
If g\P —* Q is an embedding, then it is easily verified that the diagram com­
mutes. 

If K and L are subspaces of a space My define K A L to be 
(K XL)\J (L X X) with the relative topology from M X M. 

Proof of (3.1). It suffices to prove the corresponding result for the functor J , 
and this is done by showing that Jf is homotopic to Jg . The cell complex 
J P has subcomplexes 

P i = {o- X (r * p)'-v, T simplexes of P , a P\ r is empty}, 
P 2 = { (cr * p) X r:cr, r simplexes of P , o- P\ r is empty}, 

and J P = P i U P2. A similar decomposition J Q = Qi^J Q2 is defined. In 
these constructions, 0 * /> is defined to be £ when 0 is the empty simplex of P . 
Note that J / and J g both map P* into Qt (i = 1, 2). But P i is a quotient 
space obtained from JP X I; the quotient map sends (x, x', 1) into (x, £) 
when (x, x') Ç J P C P X P , and is defined in the obvious, one-to-one fashion 
on JP X [0, 1). Let £:JP X / -> J(? X I be a map covering (Jf |Pi) :Pi -» &, 
and write 

£(*, *', /) = (frfo x', 0, &(*> s', o) e JQXI 

when (x, x') € J P and * Ç I. Then the homotopy 77: JP XIXI-+JQXI 
defined by 

rj(x, x', t, s) = (£i(x, x', te), £2(x, x', /) + (1 — s)t) 

for (x, x') £ J P and 5, / Ç 7, induces a homotopy between (Jf|Pi) and (Jg|Pi). 
A similar homotopy is defined between (J/|P2) snd (Jg|P2). Since these homo-
topies agree on P i H P2 , they define the desired homotopy from Jf to Jg . 
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Note that our usual restriction, that P and Q be 1-dimensional, was not 
needed in this proof. 

Proof of (3.2). From the definition of the functor / , it follows that 
JQ = JPUS A P . Thus in the diagram (3.6) the image of Jg* in Hk(JQ) 
is a direct summand with cokernel of rank 2/3A. The result follows. 

Proof of (3.3). Let P0 = P - P i and Qx = Px \J A. Then 

JP = JPi U JPo U P i A Po and JÇ = JÇX U J P 0 U Ci A P0 , 

and the summands in each case are mutually disjoint closed subsets. Since 
P i A Po is a deformation retract of Qi A Po, the kernels and cokernels of 
Jg* are isomorphic to those induced by the restriction g\:P\—* Qi of g. If P i 
is a point, then JP\ is empty while JQi is a set of exactly two points. If Pi is 
an arc and v is an end point of Pi , then g\ is an isotopy equivalence. If P i is 
an arc and v is an interior point, then J P i has the homotopy type of a 2-point 
space, while JQi has the homotopy type of the circle S1. If P i is neither a 
point nor an arc, then Patty's results (5) apply: Jgi* is an isomorphism except 
in dimension 1 where it is a monomorphism with cokernel of rank 2m — 2. 
In all four cases, g* is an isomorphism in all dimensions, and the result follows 
from a brief contemplation of diagram (3.6). 

Proof of (3.4). It follows easily from the definition of JQ that 

JQ = JP\JA AP' and JP Pi A A P ' = B A P' 

when B = {v, w}. In the diagram 

d Jg* 
. . . -> H^iJQ, JP) > Hk(JP) > Hk(JQ) -> . . . 

Hk+1(A A P', B A PO -> #*(P') + #*(P') 
X 

the top horizontal row is the exact sequence of the pair (JQ, JP), i* is the iso­
morphism induced by the excision i:(A A P', B A P')-> (JQ, JP), X is 
induced by the homomorphism that sends the cycle z X A + A X z' into 
(zf z

f), and n is induced by 

(z, zf) —> z X (z> — ze>) + (w — */) X z' 

(z} z
f are y^-cycles on P'). The diagram is clearly commutative, and X is an 

isomorphism. If k > 1, then Hk(P
f) = 0, whence Jg*:Hk(JP) —> Hk(JQ) is 

monic for & = 2. If s is a simple closed curve that separates z; from w in P , 
then z X (p — w) and (w — z>) X s are not bounded in JP. Thus the image 
of d:H2(JQ, JP) —> H\(JP) has rank 2n and the kernel of this homomorphism 
has rank 2/?i' — 2n. If P i is an arc, then JP has one more component than JQ, 
whence the homomorphism Jg*:H0(JP) —> HQ(JQ) is an epimorphism with 
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kernel of rank 1. It follows from this that the cokernel of Jg*\H\(JP) —> Hi(JQ) 
has rank 20o' — 1. If P i is not an arc, then Jg*\Hk(JP) —> Hk(JQ) is an 
isomorphism for k = 0, and has cokernel of rank 2/V when k = 1. Since P 
and Q are neither points nor simple closed curves, ($ and ft in (3.6) are trivial 
for k > 0. In dimension zero, Jg* is an isomorphism between infinite cyclic 
groups. For k > 1, £T»(P) = Hk(Q) = 0, whence Jg*:Hk+1(JF)-> Hk+l(JQ) 
has its kernel and cokernel isomorphic to those of Jg*:Hk(JP) —>Hk(JQ). 
This yields i£3 = 0 and C3 = 2/3\ - 2». Note that » = 0 when P i is an arc. 
The simplex A completes a cycle in Q, whence g*:Hi(P) -+ Hi(Q) is a mono-
morphism with cokernel of rank 1. This yields i£2 = 2n while C2 = 2/3'0 — 3 
if P i is an arc and C2 = 2/3'0 — 2 otherwise. Since g* is an isomorphism in 
dimension 0, K\ — 1 if Pi is an arc, K\ — 0 otherwise, and Ci = 2/3ro in either 
case. 

The proof of (3.5) is similar to that of (3.4) and so will be omitted. 

4. Isotopy equivalences. If / : X —» F is an isotopy equivalence, then 
Rf*:Hk(RX) —> Hk(RY) is an isomorphism for all k. When X and Fa re finitely 
triangulable 1-dimensional spaces, the converse also holds (3). The following 
example shows that the converse may fail when X = P and Y = Q are cones 
over 1-dimensional spaces. 

Let P be a contractible finitely triangulable space containing two vertices, 
v and w, of order 1. Note that P' = P — (Star v U Star w) is again con­
tractible. Let Q = P KJ Ay wrhere A is an arc with P C\ A = {v, w} being 
the two end points of A. In the terminology of (3.4), we have n = f}\ = 0, 
and if P is not an arc, then the inclusion map g\P —•> (J induces isomorphisms 
Jg*:Hk(KP) —» Hk(RQ) for all &. If P has, for example, more than two vertices 
of order greater than 2, then P is not a book, and g:P —» 0 is not an isotopy 
equivalence. 
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