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Measure and Integral1

By W. W. ROGOSINSKI.

1. It is now nearly half a century since H. Lebesgue, whose
obituary the reader may have seen in Nature not so long ago, created
his theory of the integral which since then has superseded in modern
analysis the classical conception due to B. Riemann. I t is, I think,
regrettable that knowledge of the Lebesgue integral seems to be still
largely confined to the research worker. There is nothing unduly
abstract or unnatural in this theory, nor anything in the proofs which
would be too difficult for a good honours student to grasp. If the
aim of university education be the teaching of general ideas and
methods rather than that of technicalities, then the modern notion of
the integral should not be omitted from the mathematical syllabus.
It is the purpose of this purely expository note to sketch the build up
of both the Riemann and the Lebesgue integral on the common
geometrical basis of " measure " and thus to make evident to the
uninitiated reader the striking advantages of the new integral.

2. We shall confine ourselves to the integral of a function
y = f(x) of one variable; the generalisation to more variables will
appear obvious. Suppose first that f(x) is continuous and non-
negative in the interval (a, 6), i.e. for a 5g x ^ 6. Then, with the
classical definition of the definite integral,

1 This is a slightly revised version of a lecture given to the Edinburgh Mathematical
Society on May 5th, 1945.
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https://doi.org/10.1017/S095018430000272X Published online by Cambridge University Press

https://doi.org/10.1017/S095018430000272X


W. W. ROGOSINSKI

(2.1) ["f(x)dz =

where A is the " area " of the region above the z-axis y = 0, below
the curve y = f(x), and between the lines x = a and x = b. In fact,
this is the fundamental application of the integral calculus. Also
(Figure 1) the corresponding area A (t) between x = a and x = tt

where a <, t 5S b, is a differentiate function of t, and its derivative
satisfies

(2.2) A'(t)=f(t).

From this it follows that

(2.3) A(t).= <b(t)-<t>(a),

where O (x) is any primitive function (indefinite integral) of /(*), i.e.
a function such that
(2.4) fc'Oe) =/(*).

In this way the problem of finding the area A is reduced to that of
"integrating" f(x). Integration being the operation inverse to
differentiation, the Calculus thus becomes available. All this, of
course, is familiar.

3. In the relation (2.1) it is assumed that we know what an area
is. Now we have, of course, a more or less clear intuition of area.
But this is not good enough. Mathematics being a part of Logic, or
perhaps vice versa, its language requires exact definitions. An
intuitive preconception can lead to a mathematical notion, but is
not equivalent to it. Once the mathematical definition has been
decided upon, intuition should serve only as a guide. The problem of
area is as old as mathematics itself. The ingenious methods of
" exhaustion," that is approximation to an area through polygons,
used by Archimedes and the later Greek geometers, are well known.
We shall see that the same ideas lead to the modern definition.

Now the integral of a continuous function may be defined
analytically as the limit of its Riemann sums (see (6.3)), and
one could then use (2.1) to define the above area A. Clearly, this
would be highly artificial. It is rather the other way round that
Riemann's method becomes intelligible, i.e. as a method of exhaustion
for A. Again, one might try to use (2.3) for the definition of A. But
then it is not at all obvious, though true, that every continuous
function f (x) possesses a primitive function <5 (x), as in (2.4).
Finally, if we wish to throw off the restriction as to continuous
functions, when the ordinate set becomes less simple, it is even more
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evident that we should first obtain an efficient definition of a general
area and apply this, in turn, to define the definite integral by means
of (2.1).

4. Any definition of area should agree with the intuitive pre-
conception in its fundamentals. Let E be any plane set of points.
Its " area " A — A (E) should satisfy the following postulates:

(i) A is non-negative.
(ii) / / Ex is contained in E, in symbols, if Ex c. E, then

A (EJ ^ A (E).
(iii) A is additive. That is, the area of a finite sum of non-over-

lapping sets Ek is equal to the sum of the areas A (Ek).
(iv) For polygons the area has its " elementary " value.
(v) Congruent sets have equal area.

Any such definition of area will lead, by (2.1), to a corresponding
definition of the definite integral of a non-negative function / (a;) over
(a, b). Here the set E, the ordinate set of /, consists of the points
a<Lx^b,Of^.y?S,f(x) in the x, y-plane. Similarly, any definition
of "volume" will lead to a definition of a definite integral of a
function z =f(x, y), and so on.

If / is not non-negative, the integral is defined by

(4.1) Cf(x)dx=\bf+(x)dx- ?\f_(x)\dx,
J a J a J a

where f+(x) = f(x) when /(x) ^ 0, and / + (x) — 0 otherwise, and where
f-{x) has a similar meaning. It is assumed that both integrals (areas)
in (4.1) are finite. In other words, our definition of integral implies
absolute integrability, that is the integrability of \f(x)\. The same
applies to integrals of more than one variable.

5. Riemann's classical definition of the integral by approxima-
tion sums (1854) is really equivalent to the definition of the area of an
ordinate set by exhaustion. The corresponding general theory of the
area, however, was developed only considerably later by G. Peano
(1887) and C. Jordan (1892).

We shall use the word content for the Peano-Jordan area,
indicating the content of the set E by c (E). We restrict ourselves
to plane sets, but it will be obvious how to proceed in other
dimensions. For linear sets the content will be the " length," in
space the " volume," and so on in higher dimensions.

We call a set xx ̂  x ;£ x2, yx 2i= y ̂  Vi an interval / . Naturally
we put
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(5.1) c (I) = (x2 - xx) (y2 - yx)

as its content. We permit a;2 — xi a n ( i Vi = Vi> when c (/) = 0.
So a single point will have the content nought. Next, let
P — Ix + / 2 + . . . . + /„ be a finite sum of " separate " intervals, i.e.
intervals which have at most frontier points in common.. In accord-
ance with postulates 4, (iii) and (iv) we define

(5.2) c{P) =

It is easy to prove that this definition is independent of how we write
P as sum of intervals. These " primary" sets P form the material
by means of which the general content is to be defined. (See
Figure 2.)

Now let E be any bounded set, that is any set contained in some
interval. We attach to it two finite numbers.

(i). We wish to approach E as closely as possible by primary sets
from outside. So we define as the outer content of E

(5.3) c(E)=l.b.c(P) (ECP),

the lower bound (l.b.) to be taken with respect to all primary sets P
containing E.

(ii). Similarly, approaching E from inside, we define as its inner
content

(5.4) g (E) = u.b. c (P) (PCE),

where the upper bound (u.b.) is to be taken with respect to all sets P
contained in E. Clearly

(5.5) O^c(E)^ c(E).

The definition of the Peano-Jordan content is now: The bounded
set E has a content c (E) if, and only if,

(5.6) c(E)=c(E) [=c(E)].

This definition satisfies all the postulates in 4. The proofs are quite
simple, as one would expect considering the genuine simplicity of the
procedure.

Not every bounded set has a content. Consider, for instance,
the set E of all " rational " points in a given interval / , that is the set
of all points (x, y) in / for which both x and y are rational. Now R
is " everywhere dense " in / . It is, therefore, obvious that / itself is
the " smallest" primary set'containing R, while there is no primary
set with positive content contained in R. Hence c (R) = 0 and
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D

2-. A ftrvite primary set.

TrV;
A

Xt )(i,i

4:
3 : Rie.ma.TUV division. An 'open.' square S as primary ^t.

6: division.

* The inner closed squares of which the first four are drawn in Figure 4 approach S
from inside. The open square S is the sum of this sequence of closed squares. The
dotted lines indicate a representation of S as a sum of contiguous intervals.
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6. Let E be the ordinate set corresponding to the non-negative
and bounded function /(re) defined in {a, b). (See Figure 3.) The two
numbers

(6.1) Q(E) = \"f(x)dx, c{E)=\"f{x)dx
Ja J a

are known respectively as the lower and upper Riemann integrals of
f(x) (first introduced by G. Darboux, 1875). f(x) is integrable, in
Riemann's sense, if, and only if, E has a content, in which case

(6.2)

Riemann's original definition is

(6.3) \bf(x) dx = lim 2 (xt - x^)
Ja 1

where the "limit" indicates that n-> oo and that the "maximum
length" of the intervals (a;4-_i, a;,) of the " division" of (a, b) should
tend to nought, & being an arbitrary point in (*,•_!, a;,-). Now

(6.4) s = S (x( - xt-d mt^i (x{ - xt_x) /(£•) ^ S (x( - x^) Mt = S,
I I i

where m; and M^ denote the lower and upper bounds of the values of
f (x) in \Zi_i, Xi), respectively. Given the division, the sum s is
apparently the content of the largest primary set built " over the
division " and contained in E, while S is* the content of the smallest
such primary set containing E. It follows that the integrals (6.1) are
equal to the upper bound of the s of all possible divisions of [a, b) and
to the lower bound of all S, respectively. Since ^ is arbitrary, the
existence of the limit (6.3) implies that these two integrals coincide,
and vice versa. Hence the two definitions (6.2) and (6.3) are
equivalent.

The definition (6.2) is surely the more natural one. But it should
be kept in mind that, in order to obtain the familiar properties of the
integral, the Riemann sums are indispensable as analytical tools.

To give an example of a bounded function that is not Riemann
integrable, take

(1 (rational . - ^ ,
(6.5) x(z) = -L when a; i s ] . .. , 0 ̂  a; ̂  1.v ' A v ' [0 {irrational

Evidently, every s is 0 and every & is 1, so that

https://doi.org/10.1017/S095018430000272X Published online by Cambridge University Press

https://doi.org/10.1017/S095018430000272X


MEASURE AND INTEGRAL 7

(6.6) [x(x)dx = O; \\(x)dz=l.
.10 Jo

x(x) is the " characteristic " function of the (linear) set R of rational
points in (0, 1). The inner length (inner linear content) of R is 0, the
outer length is 1.

7. The above definition of area and integral appears very
natural and satisfactory. The restriction to bounded sets and
functions is easily removed in the familiar way by introducing
"improper" (Cauchy-) integrals. There are, however, considerable
deficiencies inherent which appear whenever limiting processes are
encountered.

Let Ex C Ez C . . . . Ek C . . . . be an increasing sequence of
uniformly bounded sets and let E be its limit. One would wish that
E should have a content when the Ek have. This need not be the case.
The set R in 5 provides a simple example. I t is well known that R is
enumerable, i.e. that the points P of R can be arranged as a sequence
Pn. If we now take as Ek the set of the first k points Pn, then
c (Ek) = 0, while the limit R has no content. Similarly, the limit of
a decreasing sequence of sets Ex D E2 D .. .. Ek 'D .. .., that is the
set of points belonging to all Ek, need have no content when the Ek

have.
As for the integral, let f (x) = limfk(x) where the fk (x) are

integrable over (a, b). I t is of the highest importance in analysis to
have practicable and far reaching tests for the legitimacy of the
operation

(7.1) lim \.fk (x) dx = f* lim fk (x) dx = \" f (x) dx,

that is of the interchange of the symbols I and lim. In particular,

the limit / (x) should be integrable. This need not be so, even when
f(x) is bounded. Consider the rational points in (0, 1) arranged as a
sequence xn. If fk (x) = 1 when x = xn for n 5S k, and fk (x) = 0 other-

wise, then evidently I fk(x) dx = 0. But lim fk(x) = x(x)' where

X (x) is the non-integrable function (6.5). This example cannot be
put aside as too artificial. For x (x) may be generated by limiting
processes from continuous functions. In fact,

(7.2) x (*) = l i m { l i m (c o s n! w x)
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8 W. W. ROGOSINSKI

It is familiar that (7.1) is valid when thefk (z) converge uniformly. This
is the only practicable test for the Riemann integral and it involves
a condition far too stringent for many applications. There is a more
general test due to Arzela (1885): (7.1) is valid whenever the fk{x)
are uniformly bounded provided that/(a;) be integrable. The latter
condition is awkward since there is no simple criterion for the
integrability of the limit.

The important relation (2.2), i.e.

(7.3)

is correct wherever / is continuous. But it is difficult to say more at
this stage. The converse of (7.3), that is

(7.4) \tf'{x)dx = / ( < ) - / ( a )

need not be true even if/' {x) exists throughout and is bounded. It is
valid when / ' (x) is also integrable; again the same awkward condition
as above.

8. The deficiencies inherent in Peano-Jordan's content and
Riemann's integral were soon recognised. The first decisive steps to
overcome them were taken by E. Borel (1898), but it was his pupil
H. Lebesgue (1902) who developed these ideas and gave the complete
theory of the new measure and integral. It should be mentioned
that, at about the same time and independent of Lebesgue, W. H.
Young and G. Vitali arrived at similar theories (1904). But it is
the Lebesgue form of these results which has proved to be the most
satisfactory.

It is to-day fairly easy to say where the trouble in the definition
of the area arises. It is the postulate 4, (iii) of additivity which, by
its restriction to finite sums of sets, kept the range of primary sets,
fundamental for the definition, too narrow and thus prevented the
smooth application to infinite sums and other limiting sets. We
replace, therefore, this postulate by a more potent one which in itself
refers to infinite sums:

(iii*): A is fully additive; i.e. the area of a finite or infinite sum of
non-overlapping sets Ek is equal to the sum of the areas A (Ek).

On first thought it might appear curious that, by merely asking
more in the one postulate (iii), we should obtain better results. But
it is easy to see why this is 6o. The new postulate forces our hands
to choose a much wider range of " primary " sets, and so we may
hope to approach a given set E more closely by these sets.
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The Lebesgue area of a set E, to be defined now, is usually called
the measure m (E). For linear sets the measure will be the " length,"
in space the " volume," and so on.

We start, of course, by putting m (I) =c (I), as in (5.1). Next,
we take as " primary " sets (c/. Figure 4) any finite or infinite sum

(8.1) P=I1 + I i + . . . . + I k + ....

of an at most enumerable sequence of separate intervals /*, and we
define, to satisfy postulates (iii*) and 4, (iv),

(8.2) m (P) = m (7j) + m (/2) + . . . . +m(Ik) +

The sum on the right hand side may diverge when m (P) = oo . The
representation (8.1) of P is, of course, not unique. But it is not
difficult to prove that the definition (8.2) is independent of the choice
of the representation. It should be noted that any enumerable set,
for instance the set R in 5, is a primary set of measure 0, the Ik being
points in this case.

Now let E be any set, not necessarily bounded. The definition
of the outer measure m (E) is, in analogy to (5.3),

(8.3) m(E) = l.b.m(P) (E C P).

m(E) may be infinite. Since the range of primary sets is wider
than in the Peano-Jordan case, we have m (E) 5S c (E), if E is
bounded. The definition of the inner measure m (E) is slightly
different from (5.4). First let E be bounded and E C I, say. Then
we put (Figure 5)

(8.4) m(E) = m(I)-m(I - E);

that is, instead of approaching E from inside we approach the
" complement" I — E from outside and take the appropriate differ-
ence.1 If E is not bounded, let En be the set of points of E
inside the interval | x | ^ n, | y | 5S n. We then define m{E) =\\vam(En).

m {E) may be infinite. It follows easily from (8.4) that c (E) ^ m (E)
if E is bounded, and that then

(8.5) O^c(E)<>m(E)^,

Finally, a set E is measurable and has a measure m (E), if

(8.6) m(E) = m(E) [ = m (E) ].

1 A closer approach is effected in this way. (8.4) holds also for the content.
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m (E) can be infinite; but it may, of course, be finite for an un.
bounded set. It follows from (8.5) that m (E) = c (E) whenever the
content exists. The converse is not true as the example of the above
set E shows. Hence the measure is more effective than the content.
There are, however, sets, though rather " artificial " ones, that are not
measurable.

9. The definition of the Lebesgue integral is now obvious. Let
E be the ordinate set of a non-negative (not necessarily bounded)
function / (x) defined in (a, b). We have

(9.1) m(E) = J / (« ) dx' ™ (E) = JV(*) dx>
the lower and the upper Lebesgue integrals. The function f(x) is
integrable if these two integrals are finite and coincide, and then

(9.2) m(E)=\ f(x) dx.

Since m (E) = c (E) whenever the content exists, Riemann integrability
implies Lebesgue integrability, and the two integrals have then the
same value. The converse is not true. ' It is easy to see that the set
E, corresponding to the function x(x) *n (6.5), has the Lebesgue
measure 0, so that the Lebesgue integral of x (x) is 0- But x (x) is

not Riemann integrable.
Iif(x) is not non-negative, its integral is defined by (4.1).
10. The Lebesgue measure is perfect as regards all the usual

operations with sets. In particular, E is measurable and

(10.1) m(E) = limm(Ek),

whenever E is the limit of an increasing or decreasing sequence of
measurable sets Ek of finite measure. This follows easily from the
definition of the measure. As a consequence/(cc) is integrable and

(10.2) f/(a;)cte = lim [*/*(*),

whenever f(x) is the limit of an increasing or decreasing sequence of
non-negative integrable functions fj. (x), provided that the limit on the
right hand side is finite. From this is easily derived the following
test of Lebesgue: The formula (10.2) is valid, for the Lebesgue
integral, if the fk(x) are integrable and "dominated" convergent, i.e.
convergent and \fk (x) | <S O (x) where <1> (x) is integrable. This
contains Arzela's test in 7, but without the awkward condition that
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the limit f(x) should be integrable. Lebesgue's test is one of the
most important tools in analysis.

As for (7.3), it holds where / is continuous. But we can say now
that it holds " almost everywhere " in (a, b), that is everywhere except
perhaps for a set of points x of linear measure zero. Its converse
(7.4) holds whenever/' (x) exists and is bounded in (a, b). But, even
for the Lebesgue integral, (7.4) need not be true if we know only the
existence and integrability of / ' (x). This fact has given rise to
further important generalisations of the integral (Denjoy, Perron).

As we have pointed out in 4, Lebesgue integrability of / {x)
implies that of \f(x)\. The function y = x'1 sin (x'1) is neither
Riemann nor Lebesgue integrable over (0, 1) though its Cauchy
integral exists. It is clear how to cover such integrals in both the
Riemann and the Lebesgue theory.

11. All the familiar properties and rules for the Riemann integral,
for instance the mean value theorems and the rules of substitution
and integration by parts, remain valid for the Lebesgue integral. To
derive these, certain approximation sums, similar to the Riemann
sums, are required.1 (See Figure 6.)

Let yk < y/c+i- I t can be shown that for an integrable f(x) the
set Xk of all points x in (a, b) for which yk ^f(x)< yk+1 must have
a linear measure [ik, whatever the choice of yk and yk+i- Functions
with this property are called measurable. The class of measurable
functions in (a, b) has the important property that all the fundamental
operations on measurable functions lead again to measurable functions.
In particular, the limit / (x) of a sequence of measurable functions is
itself measurable.

Now let /(x) be measurable, and let yk<Vk+i f° r — x < k < °°
be any "division " of the y-axis such that y_k-> — <x>, yk-> GO as
k -> oo . Then f (x) is integrable and

f* 00
(11) f(x)dx = lim Z

Ja - ° °

provided the " limit" on the right hand side exists and is finite.2

Here the limit indicates that Max (yk+1 — yk) tends to nought, r)k being
an arbitrary value with yk-^7)k< yk+i- This is the analogue of

1 Compare B. C. Titchmarsh, The Theory of Functions, 2nd Ed. (Oxford, 1939),
Chapter X.

" The limit always exists but need not be finite, if f(x) is measurable and non-
negative.

https://doi.org/10.1017/S095018430000272X Published online by Cambridge University Press

https://doi.org/10.1017/S095018430000272X
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Riemann's formula (6.3). The Lebesgue sums use a "horizontal "
division of the ^/-values, while the Riemann sums have a " vertical "
division of the #-axis.

The following characterisation of the Riemann integrable
functions will throw a final light on our subject: A function f(x) is
integrable in the Riemann sense if, and only if, it is measurable and
bounded in (a, b), and if the set of its points of discontinuity has the
linear Lebesgue measure zero.

KING'S COLLEGE,

NEWCASTLE-ON-TYNE.

Finite protective geometry.

By A. G. WALKER.

1. The following description of the projective geometry of a
finite number of points in 2-space is almost certainly known to those
acquainted with projective geometry or with modern algebra. The
object of this brief account is to show how certain finite systems can
be presented in a form easily understood by students, and how they
provide simple but instructive examples of fundamental ideas and
" constructions." The fact that these examples belong to a geometry
which is essentially non-Euclidean has great teaching value to those
students who are apt to confuse projective geometry with the
" method of projection " in Euclidean geometry. The underlying
algebra is described briefly in § 4, but an understanding of this is not
essential to the geometry. This algebraic work may, however, be of
interest to those to whom Galois fields are fairly new.

2. The axioms generally adopted for projective geometry of
2-space are nine in number, being the three axioms of incidence
(there is one and only one line passing through two points, and two
lines have a point in common), the three axioms of extension (there
is at least one line and at least three points on every line, and not all
points lie on the same line), the axiom of perspective triangles
(Desargues' theorem), the projective axiom (Pappus' theorem), and
the diagonal axiom (the three diagonal points of a quadrangle are not
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