
JFP 14 (5): 547–587, September 2004. c© 2004 Cambridge University Press

DOI: 10.1017/S095679680300488X Printed in the United Kingdom

547

Two-level types and parameterized modules

TIM SHEARD and EMIR PASALIC

OGI School of Science & Engineering, Oregon Health & Science University, 20000 N.W. Walker Road,

Beaverton, OR 97006-8921, USA

(e-mail: {sheard,pasalic}@cse.ogi.edu)

Abstract

In this paper, we describe two techniques for the efficient, modularized implementation of

a large class of algorithms. We illustrate these techniques using several examples, including

efficient generic unification algorithms that use reference cells to encode substitutions, and

highly modular language implementations. We chose these examples to illustrate the following

important techniques that we believe many functional programmers would find useful. First,

defining recursive data types by splitting them into two levels: a structure defining level, and

a recursive knot-tying level. Second, the use of rank-2 polymorphism inside Haskell’s record

types to implement a kind of type-parameterized modules. Finally, we explore techniques that

allow us to combine already existing recursive Haskell data-types with the highly modular

style of programming proposed here.

Capsule Review

Extensibility is a pressing issue for modern day software engineering. This paper rises to

the challenge by giving two design patterns that functional programmers not only ought

to consider, but really should have in their toolboxes. The pattern for two-level types is

delightfully simple, and although parameterized modules are a little tougher to grasp, the

extra effort spent understanding them is well worth it.

1 Introduction

Program modularization and generic programming are two practices developed to

make the tasks of constructing and maintaining large programs easier. Program

modularization breaks programs into smaller, potentially reusable fragments, each

of which isolates a single key program aspect. This creates a separation of concerns

which allows the programmer to separately create and change each program aspect.

Generic programming is the construction of a single algorithm that works over

multiple data structures. This allows the programmer to write an algorithm once

and to reuse it on many different data structures.

This paper demonstrates two different techniques to implement these practices.

These techniques are: two-level types, and type-parameterized modules. Two-level

types define recursive data types by splitting them into two levels: a structure defining

level, and a recursive knot-tying level. They can be used to both break programs into

modular pieces, and to support generic programming. A type-parameterized module

is a collection of (possibly polymorphic) algorithms or functions parameterized by
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a set of types. This allows a single module to be reused, simply by instantiating

it at different types. Type-parameterized modules support program modularity in a

dimension orthogonal to two-level types.

Both these techniques should be in the bag-of-tricks of any serious functional

programmer. We illustrate these techniques using Haskell and its extensions. Two-

level types support generic programming in standard Haskell without using any

extensions. Type-parameterized modules require the commonly available extensions

of rank-2 polymorphism, and multi-parameter type classes. In this paper we use

the standard extensions to Haskell available in the most popular Haskell dialects of

Hugs and GHC.

1.1 Contributions

This paper is an extension a functional pearl (Sheard, 2001) that appeared in the

proceedings of ICFP’01. It goes beyond that paper in several dimensions. First, it is

more explicit about what constitutes a two-level type, and illustrates this technique

using several simple examples that were missing from the original paper. Second, it

adds another large example, namely the construction of language implementations

from modular language fragments. Third, it demonstrates how two-level types can

coexist harmoniously with their one-level counterparts, so this technique can be

retrofitted into existing programs.

The heart of this paper consists of illustrating the techniques of type-parameterized

modules, and two-level types with two large examples. These examples are both

rather detailed, but that is by intention. We wanted to outline in great detail how

our techniques could be used. After readers have finished the paper, we want them

to feel confident that they can apply these techniques to their own domains. We

wanted to leave no detail to the readers’ imagination.

The first example is the modularization of a whole class of algorithms that

compare two instances of the same data structure. This class contains algorithms

for unification, matching, and equality among others. The second example is the

construction of highly modular language implementations.

Roadmap. Section 2 describes the technique of two level types. Section 3 develops

the first large example: a generic unification algorithm. Along the way, relevant

techniques we advocate are given full exposition. Section 4 presents the second

large example: modular syntax. A simple programming language implementation

(interpreter, parser and pretty-printer) is developed and presented in a highly

modular style. Section 5 addresses the practical issue of combining two-level type

programming techniques with existing programs that were not written with these

techniques in mind. Section 6 distills and discusses relevant issues presented in

the paper. Finally, we conclude in section 7, and give a historical note on the

development of the techniques presented in the paper in section 8.

2 Two-level types

Several advantages accrue from splitting a recursive data type into two levels. To

split a data type into two levels, a single recursive data type is replaced by two
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related data types. For example:

data Tree = Tip

| Leaf Int

| Fork Tree Tree

data T x = Tip

| Leaf Int

| Fork x x

data Tree = Wrap (T Tree)

unwrap :: Tree -> T Tree

unwrap (Wrap x) = x

The ordinary recursive data type Tree on the left is replaced with the two data

types T and Tree on the right. The non-recursive data type T is called the structure

operator, since it captures the structure of the original Tree data type. It does this

by abstracting the recursive sub-trees into the type parameter x. The new data type

Tree and its single constructor function Wrap build Trees from T structures whose

parameterized “slots” are filled with Trees. Thus Wrap :: T Tree -> Tree.

The advantages of this approach are that it aids both modularization and generic

programming by separating the structure of the data (the T type) from the data

type itself. This makes it possible to create and manipulate Tree-like things whose

recursive “slots” are filled with things other than Trees. For example, (Fork True

False) :: T Bool is a Tree-like structure with boolean “slots”. This makes it

possible to write generic operators like map :: (a -> b) -> S a -> S b where

S can stand for any structure operator. We will elaborate on these in the large

examples that follow.

A convention that we often follow is to define lowercase functions with the types

of the original constructor functions (from the left side definition).

tip :: Tree

tip = Wrap Tip

leaf :: Int -> Tree

leaf x = Wrap(Leaf x)

fork :: Tree -> Tree -> Tree

fork x y = Wrap(Fork x y)

This allows us to construct elements of the two-level type without explicitly using

the recursive knot-tying constructor Wrap.

3 Unification

Unification of x and y is usually defined as finding a substitution σ such that

σ x = σ y. The terms x and y may contain variables, and a substitution is a partial

function from variables to terms (often represented as a list of pairs).

Efficient implementations of unification often rely on mutable state. We show how

to modularize unification (and its cousins matching and equality) using Haskell. Our
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modularization is performed along two dimensions, abstracting over the monad in

which the mutable state resides (using parameterized modules), and the structure of

the terms being compared (using two-level types).

The work reported in this section has been influenced strongly by two papers.

Basic Polymorphic Type Checking by Luca Cardelli (Cardelli, 1987), and Using

Parameterized Signatures to Express Modular Structure by Mark Jones (Jones, 1996).

Luca Cardelli’s paper describes how to implement Hindley–Milner type inference

for an ML-like language. The algorithm uses destructive update to achieve an

efficient implementation of unification over terms representing types. This kind

of unification algorithm is extremely versatile and useful. The first author of this

paper has based literally dozens of other implementations on it, unifying datatypes

representing many different kinds of terms.

Mark Jones’ papers describes how to implement a module system by using para-

meterized signatures. The idea is to define functor-like operators, as defined by ML’s

module system (Harper & Lillibridge, 1994), that use parameterization over types

rather than sharing constraints to express sharing (Harper & Pierce, 2000). The recent

addition of rank-2 polymorphism to the Hugs Haskell interpreter, and the GHC

compiler, allows the encoding of modules as first class objects. Our experience with

this encoding provides strong evidence that type-parameterized modules really work.

An efficient implementation of unification relies on representing variables as

pointers to terms. A substitution in this case is represented by the global state of the

pointers. If a variable points to null, it is said to be unbound. If the pointer is not

null, then the variable is bound to the term it points to. This can be implemented in

Haskell by using the state monad (ST) (Launchbury & Peyton-Jones, 1994). In what

follows, we assume the reader has a rudimentary knowledge of Haskell, unification

and the ST monad. These, and some additional features of Haskell, perhaps unknown

to some readers, can be found in Figure 2.

Brief note on variable naming conventions. Since we use type-variables named s

for structure operators, our choice of names for type variables in the following

paragraphs may seem slightly unconventional. We use variable name a and so on

for state threads, and variable name x for result types of monadic computations.

In figure 1 we give a basic transcription of Cardelli’s unification algorithm into

Haskell. The goal of this section is to abstract details from this implementation, and

to modularize it into several orthogonal components. Grasping the details of this

concrete instance of the algorithm, will make it easier to understand the abstract

version we will produce. We enumerate the important parts of figure 1.

• In the ST monad, every function that accesses a mutable variable (to either

read, write, or create a new one) has a range of type (ST a x). We say that

such functions have a monadic type. Each computation that access a mutable

variable takes place in some thread. It is instructive to think of the type variable

a in the type signatures of the state mutating functions as representing this

thread. Thus functions whose signature contains several parameters with the

same type variable a, must manipulate these objects in the same thread.
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type Ptr a = STRef a (Maybe (TypeExp a))

data TypeExp a

= MutVar (Ptr a)

| GenVar Int

| OperType String [ TypeExp a ]

prune :: TypeExp a -> ST a (TypeExp a)

prune t =

case t of

MutVar r ->

do { m <- readSTRef r

; case m of

Nothing -> return t

Just t2 ->

do { t’ <- prune t2

; writeSTRef r (Just t’)

; return t’}}

other -> return t

occursInType

:: Ptr a -> TypeExp a -> ST a Bool

occursInType r t =

do { t’ <- prune t

; case t’ of

MutVar r2 -> return(r==r2)

GenVar n -> return False

OperType nm ts ->

do { bs <- mapM

(occursInType r) ts

; return(or bs)

}

}

unifyType :: TypeExp a -> TypeExp a -> ST a ()

unifyType t1 t2 =

do { t1’ <- prune t1

; t2’ <- prune t2

; case (t1’,t2’) of

(MutVar r1, MutVar r2) ->

if r1==r2

then return ()

else writeSTRef r1 (Just t2’)

(MutVar r1, _) ->

do { b <- occursInType r1 t2’

; if b then error "occurs in"

else writeSTRef r1 (Just t2’) }

(_,MutVar _) -> unifyType t2’ t1’

(GenVar n,GenVar m) ->

if n==m

then return()

else error "different genvars"

(OperType n1 ts1,OperType n2 ts2) ->

if n1==n2

then unifyArgs ts1 ts2

else error "different constructors"

(_,_) -> error "different types"

}

where unifyArgs (x:xs) (y:ys) =

do { unifyType x y; unifyArgs xs ys }

unifyArgs [] [] = return ()

unifyArgs _ _ = error "different lengths"

instantiate

:: [TypeExp a] -> TypeExp a -> TypeExp a

instantiate ts x =

case x of

MutVar _ -> x

OperType nm xs -> OperType

nm

(map (instantiate ts) xs)

GenVar n -> ts !! n

Fig. 1. Basic unification modeled after the algorithm described in Luca Cardelli’s Basic

Polymorphic Type Checking. The algorithm is transcribed from Modula-2 into Haskell.

• A TypeExp is either a variable (MutVar), a generic type (GenVar, which is

used for template variables; see the last bullet of this enumeration), or a

type constructor applied to a list of types (OperType). For example Int is

represented by (OperType "Int" []) and Maybe x by (OperType "Maybe"

[ x ]).

• A pointer to a (TypeExp a) is a reference cell in the ST monad that holds an

object of type Maybe(TypeExp a). Nothing represents the null pointer, and

Just x represents a pointer to x.

• Objects of type (TypeExp a) often contain long chains of MutVar’s pointing

to other MutVar’s. The function prune follows such a chain, side-effecting each

of the pointers in the chain to point to the element at the bottom of the chain.

The value returned by prune is this last element. This is sometimes called path

compression, and is illustrated below.

input �� MutVar(Just )
1 before (prune input)

MutVar(Just )
��

�����2

MutVar(Just )
��

�����3

OperType "T" [ X, Y] ������������
4
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-- Monads in general

mapM :: Monad a => (b -> a c) -> [b] -> a [c]

mapM_ :: Monad a => (b -> a c) -> [b] -> a ()

-- References in the ST monad

readSTRef :: STRef a b -> ST a b

writeSTRef :: STRef a b -> b -> ST a ()

newSTRef :: a -> ST b (STRef b a)

-- Haskell’s Record Syntax

-- definition

data R = R { one :: Int, two :: Bool }

-- field selection

one(R {one = 5, two = False}) --> 5

-- partial construction

R { one = 5 } --> R {one =5, two = undefined}

-- field updating

x { one = 4 } --> R{one = 4, two = two x}

Fig. 2. Types of Haskell library functions dealing with monads in general, references and the

ST monad, and uses of Haskell record syntax.

MutVar(Just )
1 after (prune input)

MutVar(Just )
2

MutVar(Just )
3

output �� OperType "T" [ X, Y]
�� ����

��
��
��
�

������������
4

• The function occursInType determines if a pointer appears somewhere inside

another TypeExp. Note that pointers may be changed by the call to prune.

This is why occursInType has a monadic type, indicating that it might mutate

state.

• The function unifyType first calls prune on its two arguments to eliminate

any chains of MutVar’s. The resulting objects (t1’ and t2’) may still be

MutVar’s, but if they are, then they are guaranteed to be null pointers (i.e.

be references to Nothing). A simultaneous case analysis of the two resulting

objects succeeds if both have the same top-level constructor, or if at least one

is a variable.

If they are both the same variable, then there is nothing to do. If two variables

are matched, but are different variables, make the first variable point to the

second. This is how chains of variables are created. If one is a variable, and

the other is not, check if the variable occurs in the other. If it does, this is an

error. If not, then make the variable point at the other object.

If they both have the same top-level constructor then recursively analyze the

substructures. This is the purpose of the local function unifyArgs.
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• The function instantiate behaves like a substitution function, replacing every

(GenVar n) with the n’th element of the substitution list ts. The function

instantiate is the generic interface to templates. A template is a GT object

containing no MutVars. Templates are used when one wants to unify one GT

term with many other GT terms. Once a MutVar becomes bound, it is difficult to

unbind it without jeopardizing the correctness of the unification algorithm. If

it is necessary to unify a single term many times, then a template structure must

be used. A template structure contains template variables (GenVar) in place

of MutVar variables. Each time the template is to be used, it is instantiated

by making a copy of the template, replacing each template-variable with a

fresh type variable. The instantiate function provides this capability. The

technique of using Int to represent template variables, and a list of TypeExp

as their instantiations derives from the paper Typing Haskell in Haskell (Jones,

1999).

Unification using the state of updatable reference cells to encode substitutions is

hard to get right. On reason is the algorithmic details of chasing and overwriting

pointers. Pointer chasing is necessary to ensure the invariant that a pointer, and

the thing it points to, are in some sense semantically equivalent. Every function

that manipulates TypeExps must maintain this invariant. One way to accomplish

this is to use a “copying” algorithm that removes these excess pointers as other

computations are performed. Overwriting a minimal number of pointers ensures that

the time behavior of the algorithm remains tractable, but adds to the complexity

of programming. Because overwriting is a stateful operation, everything must be in

some appropriate monad.

As the datatype representing terms becomes more complex, the control struc-

ture of the algorithm becomes more sophisticated. Terms with complex sub-

structure require sophisticated control to make recursive calls on sub terms properly,

and to combine the results of the recursive calls to build a suitable overall

result.

It would be nice to separate the pointer issues from the control issues, get each one

done right, and then combine them. The pointer chasing could be abstracted over

different monads, and reused with multiple data structures representing different

kinds of terms. The control structure could be reused when defining additional

algorithms over terms other than unification. After all, matching (where only one of

the terms can have variables), and equality testing have control structure remarkably

similar to unification.

In the rest of this section we explain how this algorithm can be modularized in

Haskell using two-level types and type-parameterized modules. We use two-level

types to isolate the code dealing with structure of the term being unified into one

module, and type-parameterized modules to isolate the code dealing with pointer

chasing into another module. Stateful operations in a declarative language, such

as Haskell, are often implemented using monads, and type-parameterized modules

allow us to abstract over the particular monad being used.
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3.1 Modular data

Separating the pointer algorithms from the algorithms that deal with the structure of

terms, requires splitting the datatype TypeExp into several datatypes. This separates

the structure of terms and the use of variables into two different datatypes. All kinds

of terms which support unification will have variables, but their structure will vary

according to what the terms are meant to represent. We separate terms into two levels.

The first level incorporates the two kinds of variables encoded in the constructors

MutVar and GenVar. The second level incorporates the role played by the constructor

OperType. It abstracts the structure of all the other constructor functions of terms.

The recursive structure of terms will be split between the two levels.

We will make this more clear by applying our technique to the same kinds of terms

we used in figure 1. We split the definition of TypeExp into the two components S

(for the Structure of terms) and GT (for Generic Term).

-- Structure operator, hence "S"

data S x = OperType String [x]

-- Generic Terms, hence "GT"

-- "s" abstracts over structure, "r" over references

data GT s r

= S (s (GT s r))

| MutVar (r (Maybe (GT s r)))

| GenVar Int

type TypeExp a = GT S (STRef a)

We call S the structure operator because it captures the structure of the terms we

are manipulating. Note how it is parameterized by x which appears in places where

recursive calls to TypeExp were placed in the original definition. This is the first

half of capturing the recursive structure of terms. The structure of TypeExp is quite

simple, so S only has one constructor (OperType), but we shall soon see examples

where the structure of terms is much richer.

The GT datatype incorporates the role of variables in terms: template variables

(GenVar), and normal variables (MutVar). It abstracts over the rest of the structure

of terms using the higher order parameter s. It is in the type of the S constructor

function that GT captures the second half of the recursive structure of TypeExp. Note

how a recursive call (GT s r) is passed to the parameterized structure operator s.

It is important to note that the parameter s to GT is a type constructor (of

kind * -> *), not a type. The parameter r is also a type constructor (of kind

* -> *). It abstracts over the type constructor constructing mutable references.

The type constructor GT is recursively defined: both the MutVar and S constructor

functions use the recursive calls to (GT s r), forwarding the recursion through the

type constructors s and r.

The new version of TypeExp is an instantiation of GT, choosing for its two

parameters the structure operator S, and the STRef type constructor for references

from the ST monad.
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Values of type TypeExp are constructed in two levels. An outer level consisting

of one of the constructors of GT: S, MutVar, or GenVar; and in the case of the

constructor function S an inner level consisting of the constructor function of the

type constructor S: (OperType) (in general the type constructor S may have many

constructor functions). We illustrate this in the following table:

New, two-level examples Old, one-level examples

GenVar 4 GenVar 4

S (OperType "Bool" []) OperType "Bool" []

S (OperType "Maybe"

[ S (OperType "Int" [])])

OperType "Maybe"

[OperType "Int" []]

This pattern of prefixing every constructor of S with S to construct a TypeExp is

captured by employing a convention that defines a new function for every constructor

of S. These functions have the same name as the constructor, except their initial

upper case letter is made lower case.

operType s ts = S(OperType s ts)

The benefit of employing this convention is that the programmer need not always

use the type constructor S every time a term is constructed.

3.2 Modular abstract operations

How are functions over objects of type (GT s r) written if s and r are unknown?

One way to do this is to assume that s and r are instances of some special classes

that enumerate their general operations. For s we have found the following class

useful.

class Sclass s where

mapS :: (x -> y) -> s x -> s y

accS :: (x -> y -> y) -> s x -> y -> y

seqS :: Monad m => s(m x) -> m(s x)

matchS :: s x -> s x -> Maybe[(x,x)]

One way to understand these functions is to imagine objects of type (s x) as

“boxes” labeled S, with compartments of type x.

• The operation mapS applies a function of type (x -> y) to each compartment,

producing a box labeled s with compartments of type y.

S

3 5

mapS(+1)
−−−−−→ S

4 6
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• The operation accS accumulates a “sum” by repeatedly applying a binary

“addition” function to each of the compartments and the previous “subtotal”.

S

3 5

λs.accS (+) s 0
−−−−−−−→ 3 + 5 + 0

• The operation seqS produces a single m-effecting computation that produces

an object of type s x from a box labeled s where the compartments are each

filled by smaller m-effecting computations, each of which produces an object

of type x. It does this by ordering all the sub-computations into one large

computation.

S

do { print "x"
; return 0 }

do { print "y"
; return 1 }

seqS
−−→

do { print "x"
; print "y"

; return




S

0 1


 }

• Finally, matchS compares the top level constructors of two s boxes. If the con-

structors match (then both boxes contain the same kind of “compartments”)

it returns Just applied to a list of pairs, pairing corresponding compartments

from each box. If the constructors do not match then it returns Nothing.

S

a b

S

c d




matchS−−−−→ Just [(a,c),(b,d)]

When s is the S datatype from our TypeExp example, we can use the following

instance.

instance Sclass S where

mapS f (OperType s xs) = OperType s (map f xs)

accS acc (OperType s xs) ans = foldr acc ans xs

seqS (OperType s xs) = do {xs’ <- order xs; return(OperType s xs’)}

where order [] = return []

order (x:xs) = do { x’ <- x

; xs’ <- order xs

; return (x’:xs’) }

matchS (OperType s xs) (OperType t ys) =

if s==t && (length xs)==(length ys)

then Just(zip xs ys)

else Nothing
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3.3 Using the abstract operations

It is now possible to write the instantiate function without knowing the structure

of s at all.

instantiate :: Sclass s => [GT s r] -> GT s r -> GT s r

instantiate ts x =

case x of S y -> S(mapS (instantiate ts) y)

MutVar _ -> x

GenVar n -> ts !! n

In the first clause of the case expression, the variable y has type (S (TypeExp

a)). The mapS function applies recursive calls of instantiate to each of the

compartments, obtaining another object of type (S (TypeExp a)) that is wrapped

by S into the final answer with type (TypeExp a). It is possible to write many

functions over (GT s r) without actually knowing the exact structure of its s

substructure. The type of instantiate, (Sclass s => [GT s r] -> GT s r ->

GT s r), makes precise the requirement that not any structure operator will do.

Only those s that are a member of the class Sclass.

To write the functions occursInType and unifyType additional structure must

be known about the type constructor r. This can be captured using two additional

classes, that abstract over the operations on references.

class EqR r where

sameVarR :: r x -> r x -> Bool

class Monad m => Rclass r m where

writeVarR :: r x -> x -> m()

readVarR :: r x -> m x

newVarR :: x -> m(r x)

The class EqR captures that references must be comparable for equality. The class

Rclass aggregates the operations that create, read, and write references into a single

class with a common multi parameter constraint. Rclass is multi parameter class,

because it relates two type constructors, r the reference type constructor, and m the

monad in which it operates.

The function prune over GT s r objects can be defined in exactly the same

manner as it was over TypeExp objects. The definition found in Figure 1 is identical

to the new definition, so we omit it here. This is possible because prune returns a

default action on all non-MutVar objects, so the changes in the structure of terms is

not noticed. Of course it has a different type:

prune :: (Rclass r m) => GT s r -> m

(GT s r)

With these classes in place the function occursInType can be written in a generic

manner.

occursInType :: (Rclass r m, Sclass s, EqR r) =>

r (Maybe (GT s r)) -> GT s r -> m Bool
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occursInType r t =

do { t’ <- prune t

; case t’ of

MutVar r2 -> return(sameVarR r r2)

GenVar n -> return False

S x -> do { bs <- seqS(mapS (occursInType r) x)

; return(accS (||) bs False) } }

To determine if reference r occurs in term t prune away any leading chain of

MutVar’s. If the result of the prune is MutVar r2 then r occurs in t only if r

and r2 are the same reference. If the result is an S structure, x, then use the

generic operators. First apply occursInType to all the compartments in x. The

operation mapS performs this task. This produces an S structure filled with monadic

computations, each of which returns a Bool. Applying the seqS operation to the S

structure produces a larger computation returning an S structure filled with booleans.

This structure is bound to bs. All the Bools inside bs’s compartments can then be

logically or-ed together (using accS) to produce the final result.

The function unifyType can be made general in a similar manner. Replace

each call to reference equality with one to sameVarR, readSTRef with readVarR,

writeSTRef with writeVarR, and newSTRef with newVarR. Finally, replace the case

clause that compares two OperType constructors with some generic code written in

terms of the operations of the Sclass class. The important difference are summarized

here:

unifyType :: (Rclass r m, Sclass s, EqR r) =>

(GT s r, GT s r) -> m ()

unifyType (t1,t2) =

do { t1’ <- prune t1

; t2’ <- prune t2

; case (t1’,t2’) of

. . .

(S x, S y) ->

case matchS x y of

Nothing -> error "different constructors"

Just pairs -> mapM_ unifyType pairs

. . .

}

If we are unifying two S structures, determine if their top level constructors are the

same using matchS. If they don’t match (Nothing is returned) then unification fails.

If they do match, then pairs is a list of corresponding sub components. Recursively,

unify each pair and succeed only if all are successful. The function mapM :: Monad

m => (b -> m c) -> [b] -> m () is part of the standard monad library and

performs exactly the task necessary.
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3.4 Why type-parameterized modules?

The solution above makes heavy use of classes. So heavy, in fact, that there are

serious questions about its scalability. The type of unifyType is cluttered with three

class constraints: (Rclass r m, Sclass s, EqR r) => (GT s r, GT s r) -> m

(). And, this type doesn’t explicitly mention the implicit constraint Monad m that

is implied by Rclass r m. When a function’s type is prefixed by too many class

constraints it becomes hard for the programmer to grasp the full meaning of the

type.

Having many class constraints also has implications for program maintainability.

As a means of documentation, it is standard practice for Haskell programmers

to annotate functions with their types, even though their types could be inferred.

Such annotations become hard to maintain if the number of class constraints gets

large.

We have built richer implementations than the one described here. These imple-

mentations introduce recoverable errors, add a return type for unifyType other than

(), and add a notion of generalization (a way of creating templates from terms with

unbound variables). Each of these extensions adds an additional class or two. The

types of our functions become so constrained with these additional classes that they

become unreadable. The types also become so general that type inference often fails

to assign a unique type to each function, requiring explicit typing annotations.

What is needed is one big “class-like” thing that abstracts over all the types s, r

and m, and all their operations at once. Something like:

aBetterKindOfClass RSclass r m s where

sameVarR :: r x -> r x -> Bool

writeVarR :: r x -> x -> m()

readVarR :: r x -> m x

newVarR :: x -> m(r x)

seqS :: s(m x) -> m(s x)

mapS :: (x -> y) -> s x -> s y

accS :: (x -> y -> y) -> s x -> y -> y

matchS :: s x -> s x -> Maybe[(x,x)]

Unfortunately, in Haskell such a class is impossible to define. The desire for type

inference requires that every method in every class mention all of the abstracted

variables; in this example, all of r, m, and s, which is just not the case. The recent

suggestion (Jones, 2000) of using functional dependencies to partially alleviate this

restriction is still not strong enough for the example above.

For example, a functional dependency r -> s or m -> s would allow us to infer

a correct type for the method newVar above (which does not mention s in its type).

Unfortunately, however, in the example above, there is no such dependency: the

structure functor s is uniquely determined by neither the monad type m, nor the

reference type r.

Alternatively, doing without class constraint inference, and requiring explicit

type annotations at every overloaded function, could also alleviate this problem.
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But class constraint inference is so useful in other contexts, that this is hardly a

credible solution. What is needed is something along the lines suggested by Mark

Jones in his paper Using Parameterized Signatures to Express Modular Structure

(Jones, 1996).

Fortunately, we need not wait for a new version of Haskell with such a module

system built in. We can build this functionality ourselves using an existing extension

to Haskell: rank-2 polymorphism.

Without rank-2 polymorphism, universal quantification must be completely “out-

side” all other types. For example in the type of (++) :: forall a . [a] ->

[a] -> [a], the forall quantifies the whole type. With rank-2 polymorphism we

can place the quantifier “inside” other type constructors. For example: runST ::

forall a . (forall b. ST b a) -> a. Here the outermost quantifier (forall

a), quantifies the whole expression, but the (forall b) quantifies only the back

end of the arrow type. Rank-2 polymorphism admits functions, like runST, that

require (and make use of) polymorphic parameters. Of course the type of such

functions must be explicitly declared by the programmer (Odersky & Läufer, 1996),

as they cannot be inferred. These type declarations are necessary since type inference

of rank-2 polymorphic types is in general undecidable.

This extension also applies to constructor functions inside of data declarations.

They can be given polymorphic components. Using this technique we can express

the structure we require.

data RSclass s r m = RSclass

{ sameVarRS :: forall x. r x -> r x -> Bool

, writeVarRS :: forall x. r x -> x -> m()

, readVarRS :: forall x. r x -> m x

, newVarRS :: forall x. x -> m(r x)

, seqRS :: forall x. s(m x) -> m(s x)

, mapRS :: forall x y. (x -> y) -> s x -> s y

, accRS :: forall x y. (x -> y -> y) -> s x -> y -> y

, matchRS :: forall x. s x -> s x -> Maybe[(x,x)]

, errorRS :: forall x . String -> m x

}

The RSclass datatype definition plays the role of a type-parameterized signature.

It specifies an aggregation of (possibly polymorphic) functions parameterized by a

set of types. An object of type RSclass plays the role of a module. Every such

object will specialize the type-parameters to some concrete types. A function from

RSclass to some other type-parameterized signature plays the role of an ML-style

functor.

In RSclass we have added an errorRS field to the operations we have previously

discussed. In figure 1 the use of Haskell’s error function makes aborting the program

the only possible response to errors. The errorRS field allows the possibility that

generic operations, such as unifyType can handle errors in some more graceful

manner. Under this scheme, an instance declaration corresponds to a value of type

RSclass, instantiated at real types for s, r, and m.
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rs :: RSclass S (STRef a) (ST a)

rs = RSclass

{ sameVarRS = (==) :: STRef a b -> STRef a b -> Bool

, writeVarRS = writeSTRef

, readVarRS = readSTRef

, newVarRS = newSTRef

, seqRS = seqS

, mapRS = mapS

, accRS = accS

, matchRS = matchS

, errorRS = error

}

Here the “STRef” functions are the library functions whose types were given in

figure 2, and seqS, mapS, accS, and matchS are defined exactly as they were in the

Sclass instance for S in Section 3.2. We have instantiated errorRS as error but

other “instances” could use a different error function.

The collection of functions we wish to generate in a generic manner can also be

aggregated into a data structure.

data GTstruct s r m =

B { unifyGT :: GT s r -> GT s r -> m ()

, occursGT :: Ptr s r -> GT s r -> m Bool

, instanGT :: [GT s r] -> GT s r -> m(GT s r)

, pruneGT :: GT s r -> m(GT s r)

}

Here the record fields of the GTstruct are populated with generic versions of

the functions UnifyType, OccursInType, instantiate, and prune. The aggregate

GTstruct structure can be generated by a function with type Monad m => RSclass

s r m -> GTstruct s r m. This function can be written once, and applied to

different RSclass objects to generate unification structures for many different term

types. It can also be instantiated on different monads. We call such a function

makeUnify, and a skeleton for it is given below:

makeUnify :: Monad m => RSclass s r m -> GTstruct s r m

makeUnify lib =

B { freshGT = freshVar

. . .

}

where freshVar = do { r <- newVarRS lib Nothing

; return (MutVar r) }

. . .

Note the explicit parameter lib of type RSclass to makeUnify, and the explicit

application of the field selector newVarRS to lib. Using the class system, rather than

encoding our own type-parameterized modules, allows this parameterization and

selection to be implicit, but allows only a single instance at each type, and admits all
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the disadvantages enumerated in Section 3.4. In Appendix A we have included the

complete code for makeUnify. In the appendix we have also enriched the GTstruct

to include operations for matching, equality, and several other generic operations as

well.

3.5 A richer monad

In this section we illustrate how a different monad can be used to instantiate the

RSclass structure. A obvious choice might be to use the IO monad, since it too

supports references. Instead, we show how to extend the monad in a different

direction.

Many programs must recover from failed unification. We can accommodate this in

several ways. One way, that we do not illustrate here, is to design generic unification

algorithms with type: term -> term -> M ans, where ans is some type other than

(). Thus unification can return an interesting result, that indicates what happened.

Types like Bool , [ Failure ], or Maybe ErrorMessage spring to mind. We have

done this, and it requires adding an answer type to the type-parameters of RSclass

and adding several new operations to the class, as well as making slight modifications

to makeUnify.

A more interesting way to accommodate this is to design a richer monad that

models failure, and to instantiate makeUnify with an instance that uses this richer

monad instead of the ST a monad.

data Error = E String

newtype EM a x = EM (ST a (Either Error x))

instance Monad (EM a) where

return x = EM(return(Right x))

(>>=) (EM z) g =

EM(do { c <- z

; case c of

Left e -> return(Left e)

Right x -> let EM w = g x in w

})

runEM :: (forall b. EM b a) -> Either Error a

runEM x = let EM z = x in runST z

The (EM a) monad is a simple extension to the (ST a) monad. The possibility of

failure is accommodated by returning Either an error (Left e) or a normal answer

(Right x). The bind (>>=) operator of the monad propagates failure in its first

argument without evaluating its second argument. We lift the runST operation to

the EM monad with the function runEM. We add two new operations to the (EM a)

monad, raise, and handle. The operation raise introduces an error, and handle

catches an error, and then begins a new computation.
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raise :: String -> EM a x

raise s = EM(return(Left (E s)))

handle :: (EM a x) -> (EM a x) -> (EM a x)

handle (EM x) (EM y) =

EM (do { x’ <- x

; case x’ of

Left _ -> y

Right x -> return(Right x)})

3.5.1 Using the richer monad

The RSclass aggregates nine separate operations. We can define a partially defined

RSclass object, where only the five reference and monad operations have been filled

in. The laziness of Haskell makes this possible. Later in the program source we can

construct many other instances of RSclass objects, that fill in the holes with the

missing operations.

readVar r = EM(do { a <- readSTRef r; return(Right a) })

writeVar r x = EM(do { a <- writeSTRef r x; return(Right ()) })

newVar x = EM(do { r <- newSTRef x; return(Right r) })

emPartial :: RSclass s (STRef a) (EM a)

emPartial = RSclass

{ sameVarRS = (==)::STRef a b -> STRef a b -> Bool

, writeVarRS = writeVar

, readVarRS = readVar

, newVarRS = newVar

, errorRS = raise

}

Note that emPartial is still polymorphic in its s parameter. We can use the

field updating syntax of Haskell to make more complete copies of emPartial at

many different instantiations of s. We do this in the definition of commandClass in

section 3.6 below.

3.6 A richer term-structure

In this section we illustrate instantiating our general framework on a type for

representing terms. We consider a type of terms representing commands in a

simple imperative language. We build the S structure operators for this type,

instantiate our general framework with the (EM a) monad of the previous section

and illustrate the use of the framework to build a simple transformation system over

commands.
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data C x

= If Exp x x -- if e then s2 else s1

| While Exp x -- while e do s

| Begin x x -- { s1 ; s2 }

| Skip -- {}

| Assign Var Exp -- x := e

-- the lowercase constructor convention

ifc e x y = S(If e x y)

while e x = S(While e x)

begin x y = S(Begin x y)

skip = S Skip

assign v e = S(Assign v e)

type Command a = GT C (STRef a)

In Appendix B we give the definitions of the S structure operators seqC, mapC, accC,

and matchC. These are easy to define, and in fact, could be generated automatically

given the right tools (Hinze, 2000b; Hinze, 2000a). To build an RSclass instance

using the (EM a) monad reference operators, we simply use the record update syntax

on the partially defined RSclass value emPartial defined in the previous section.

commandClass :: RSclass C (STRef a) (EM a)

commandClass = emPartial { seqRS = seqC, mapRS = mapC

, accRS = accC, matchRS = matchC }

Our transformation system will implement simple rewrites over terms. For ex-

ample, rewrites like (if True then x else y) −→ x. To build the machinery

needed, generic versions of matching, instantiation, and the creation of fresh variables

will be needed. At this point we can conjure up working examples of these and

several other generic operators, simply by using the generic makeUnify function

from Appendix A.

B{ matchGT = match, instanGT = instan

, freshGT = fresh, tofixGT = toFix

, fromfixGT = fromFix } = makeUnify commandClass

Two things to note here. First, when using a record pattern on the left-hand-side

of a binding, it is the variables to the right of the equals (=) that are being defined. In

this example, those variables being bound are match, instan, fresh, etc. Secondly,

several of the field names in this example are derived from the definition in Appendix

A, rather than the one in the running text.

A transformation system is defined by rewrite rules, and an engine that applies

those rules. A simple system for the command language can be built succinctly using
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our framework. First, define the structure of rules:

data Rule a = R Int (Command a) (Command a)

A rule is an Int and a pair of (Command a) objects. The Int represents the number

of template variables in the rule, and the pair of (Command a) objects represent the

left- and right-hand sides of the rewrite rule it encodes. We use this representation

to simplify the implementation. The (Command a) objects have template variables

where the rule may match any sub-command. We give some example rules below.

(w,x,y,z) =(GenVar 0,GenVar 1,GenVar 2,GenVar 3)

r1,r2,r3,r4 :: Rule a

r1 = R 3 (begin w (begin x y)) (begin (begin w x) y)

r2 = R 2 (ifc True w x) w

r3 = R 2 (ifc False w x) x

r4 = R 1 (while False x) skip

To apply a rule we instantiate the template variables with real variables, apply the

matching procedure to the left-hand side of the rule and the term being transformed.

If the match succeeds, then the instantiated right-hand side contains the result of

the match.

rewrite (R n lhs rhs) x =

handle (do { freshvs <- sequence(take n (repeat fresh))

; lhs’ <- instan freshvs lhs

; match lhs’ x

; instan freshvs rhs })

(return x)

If the matching fails, then the whole (do ... ) fails. The failure is captured by

handle, and the original term is returned unchanged.

3.7 Escaping the monad

Monads (M) with mutable references have the unfortunate problem that there is no

simple way to transform a computation of type (M x) into a value of type x. This

restriction is imposed because it ensures that no reference escapes its scope.

It first appears, that because generic types (GT s r) have references inside them,

that once inside the monad there is no hope of ever escaping the monad to produce

“pure” values. If the monad is built on top of the IO monad this will always be the

case, but if the monad is built on top of the ST monad (like the EM monad) this need

not be so. Computations with type (ST a x) that are completely polymorphic in

the thread type variable a can be converted into values of type x using the function

runST.

Fortunately many terms are completely polymorphic in the state thread variable a.

All top-level program constants with type (GT C (STRef a)), and larger constants
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derived from them, are always polymorphic in the state thread, a. Witness the type

of r1 :: Rule a.

An important role of the GenVar constructor, and the instanGT generic function

is to allow the construction of templates. Templates, because they contain no MutVar

constructors, are always completely polymorphic. Templates can be used to create

non-polymorphic instances (with MutVar constructors) by the use of the pattern

illustrated in the function rewrite in Section 3.6: create a list of fresh type variables

and instantiate the template using the function instan.

Polymorphic terms can also be constructed algorithmically, by a parser for

example, if the algorithms never use the MutVar constructor. A term completely

polymorphic in its thread variable can be extracted from the monad using runST in

the ST monad or its equivalent (such as runEM) in other monads. In order to do this

we need a form of terms that does not mention the thread variable.

If we know a generic term has no MutVar or GenVar constructors we can turn

it into a type with similar structure. The Fix type constructor, like the GT type

constructor, takes a type constructor as argument, but has a single constructor

function, Fix. It plays the same role as the S constructor function.

newtype Fix s = Fix (s (Fix s))

Conversion between the two types can be made generic as well. In Appendix A,

generic functions have been added to the GTstruct aggregate structure.

tofixGT :: GT s r -> m(Fix s)

fromfixGT :: Fix s -> GT s r

We can now illustrate a complete program.

try1 :: (forall a . GT C (STRef a)) -> Either Error (Fix C)

try1 x = runEM(do { x1 <- rewrite r1 x; toFix x1})

transform :: Fix C -> IO()

transform x =

let x’ = fromFix x

in case try1 x’ of

Left (E s) -> print ("Fail: " ++s)

Right y -> print(show x++" =\n"++show y++"\n")

4 Modular syntax

In this section we elaborate on our second large example: modular abstract syntax.

We demonstrate how the two-level syntax approach can be used to define languages

incrementally, from a number of modular syntactic building blocks. The essence of

this approach is to break up a larger monolithic language into a number of smaller

syntactic features, and then “mix and match” the features to build multiple “full”

languages.

Haskell’s class mechanism allows us to modularize interesting algorithms over

“full” languages into pieces, one for each syntactic building block. This supports a
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data Parser a = Parser (State -> Consumed (Reply a))

data Consumed a = Consumed a --input is consumed

| Empty !a --no input is consumed

data Reply a = Ok !a !State ParseError --parsing succeeded with

@a@

| Error ParseError --parsing failed

data State = State { stateInput :: !Source

, statePos :: !SourcePos }

type Source = String

natural :: Parser Integer

(<|>) :: Parser a -> Parser a -> Parser a

symbol :: [Char] -> Parser [Char]

identifier :: Parser [Char]

try :: Parser a -> Parser a

many :: Parser a -> Parser [a]

stringLiteral :: Parser String

Fig. 3. Parsec parsing combinators used in the modular syntax example.

useful separation of concerns, along the lines usually only found in object-oriented

approaches to program decomposition.

In this example we present three such algorithms, each with its own Haskell

class definition. Each syntactic building block defines an instance of each class. The

algorithms we use to illustrate this approach are parsing, evaluation, and pretty

printing. Many other algorithms are also possible.

The class Par a classifies those types a which can be parsed. We will use Daan

Leijen’s Parsec library (Leijen & Meijer, 2001) of parsing combinators for Haskell

throughout our parsing examples; the approach generalizes to any monadic parsing

combinator library. A short description of the important Parsec parsing combinators

used in this paper can be found in figure 3.

The Par class has two methods pp and ppS. This is necessary to correctly handle

left recursion in the top-down parsing method implemented by Parsec. The method

ppS parses simple phrases, such as variables, constants, parenthesized compound

phrases, etc. The method pp parses compound language phrases. It is our hope that

the reader has some experience with top-down parsers and can appreciate why this

is necessary.

class Par x where

pp :: Parser x

ppS :: Parser x

The class Eval e v m, which uses Haskell’s multi-parameter type classes, classifies

triples of types. The type e represents the type of syntax, the type v represents the

type of values into which this syntax will be evaluated, and the type constructor

m represents the monad in which the evaluation will be computed. The standard

Haskell class Show is used to represent those types that can be pretty-printed. We
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show the relevant class definitions:

class Monad m => Eval e v m where

eval :: e -> m v

class Show a where

show :: a -> String

The syntactic part of each building block represents the abstract syntax of that

block’s language features by using a structure operator S e. Where S is a type

constructor abstracted over “slots” where components of the “full” language might

appear. For each building block we need a mechanism to inject an element of

type S e into the “full” language of type e. We capture this with the following

class constraint between the blocks structure operator (s), and the type of the full

language (e).

class Block s e where

inject :: s e -> e

We shall examine three representative syntactic building blocks, define an instance

of the above classes for each block, and show how these building blocks can be

combined together.

4.1 Arithmetic building block

Suppose we wanted to define a simple language of arithmetic expressions. With

the approach we outline in this section, it is important to note that we are not

defining merely a language of arithmetic expressions, but rather a set of arithmetic

sub expressions of some larger language of expressions. This larger language is not

specified at the time of the design of the arithmetic syntactic building block, but is

abstracted over by a type parameter.

The first step in implementing the arithmetic building block is to define a structure

operator. This falls right into our strategy of using two-level types. This structure

Arith takes as an argument the type of (possibly larger) expressions and generates

arithmetic sub expressions from them.

data Arith e = Add e e | Sub e e

| Times e e | Int Int

Parsing. Now, suppose we wish to implement a parser for arithmetic expressions.

The grammar we might wish to parse could be represented by the following BNF

rule:

e ::= · · · | e + e | e − e | e ∗ e | n | · · ·
Note, however, that this rule is incomplete: we do not have all the productions

of the set of terms e, since we do not know in advance all the syntactic building

blocks with which the arithmetic expressions will be combined. We would expect,

that given a way to parse the whole structure of terms e, we should be able to

https://doi.org/10.1017/S095679680300488X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680300488X


Two-level types and parameterized modules 569

parse the arithmetic expressions (Arith e) built out of them1. We capture these

constraints by the following class and instance definition:

instance (Block Arith e,Par e) => Par (Arith e) where ...

Now, we can define the appropriate instance of Par for arithmetic expressions. The

instance declaration, given below, states that if sub expressions e are parsable and

injectable, then, there is a way of constructing a parser for arithmetic expressions

from the parser of e.

instance (Block Arith e,Par e) => Par(Arith e) where

ppS = do { n <- natural; return(Int(fromInteger n)) }

pp = do { e1 <- try ppS

; (plus e1 <|> minus e1 <|> mult e1)

} <|> ppS

where plus e1 = do {symbol "+"; e2 <- pp; return(Add e1 e2)}

minus e1 = do {symbol "-"; e2 <- pp; return(Sub e1 e2)}

mult e1 = do {symbol "*"; e2 <- pp; return(Times e1 e2)}

Note how ppS parses only simple arithmetic forms, i.e. literal integers. Parsing

a compound arithmetic expressions starts with a simple expression followed by an

arithmetic operator and then an arbitrary expression. This parsing strategy breaks

the ambiguous, left recursive grammar above into a non-left recursive grammar with

two precedence levels (simple terms at one level, and compound terms at the other).

Note if this compound strategy fails we revert (<|> ppS) to a simple expression.

Again we have ignored more complex precedence issues here for clarity of exposition.

Evaluation. The method (eval :: Eval e v m => e -> m v) is only applicable

to (Arith e) if we can meaningfully combine vs using some semantic equivalents

for the arithmetic operations: plus, times, etc. We can capture this constraint by

requiring v to be a member of the standard Haskell class Num.

instance (Eval e v m,Num v) => Eval (Arith e) v m where

When defining functionality for Arith sub expressions, we must assume that the

same functionality exists for the larger expressions. Thus, when combining syntactic

building blocks, the addition of each block may force us to assume the existence

of additional operations on the “full” type. Haskell’s class system is ideal for

this purpose. Note how the instance of Eval for (Arith e) forces us to assume

(Num v) as an additional constraint. The class system automatically accumulates

and propagates class constraints as syntactic building blocks are combined: thus,

completeness of the user’s implementation for any combination of syntactic building

blocks is statically assured.

1 One could object that the parsing example is somewhat contrived, since it does not address the issues
of precedence, and some other common parsing features. The examples presented here are deliberately
rather simple so as to demonstrate the idea. More realistic modular parsers are left as an exercise for
the reader.

https://doi.org/10.1017/S095679680300488X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680300488X


570 T. Sheard and E. Pasalic

instance (Eval e v m,Num v) => Eval (Arith e) v m where

eval (Int n) = return (fromInt n)

eval (Add x y) = binop (+) x y

eval (Sub x y) = binop (-) x y

eval (Mul x y) = binop (*) x y

binop (#) x y = do { x’ <- eval x

; y’ <- eval y

; return (x’ # y’) }

Pretty-printing. Finally, the instance of Show is the easiest to define:

instance Show e => Show (Arith e) where

show (Int n) = show n

show (Plus e1 e2) = (show e1) ++ "+" ++ (show e2)

. . . . . .

4.2 Printing building block

Next, we define the building block used to add the functionality for printing

expressions. The expression (write "message" e) prints the message to some

standard output, followed by printing the value of the expression e.

e ::= · · · | write msg e | · · ·

data Print x = Write String x

Parsing. The parsing functionality, implemented by providing instances of Par, is

quite straightforward.

instance (Par e) => Par (Print e) where

pp = do { symbol "write"

; l <- stringLiteral

; e <- pp

; return (Write l e) }

Note that there are no simple parsers for print building blocks, so we give no

definition for ppS.

Evaluation. More interesting is the definition of evaluation. As suggested by the

definition of the class Eval, the evaluation function maps a piece of syntax into a

monadic computation (in some monad m) of some value (in the value domain v).

A write expression can be evaluated only if the monad has the ability to print.

Thus, a new class (Prints m v) is defined. As in several of our previous examples,

the class Prints forces us to assume additional constraints on the type representing

values (v), and the monad (m) in which evaluation proceeds. The method write
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supports the printing of a textual representation of values (v) as a computation in

the monad (m).

class (Monad m,Show v) => Prints m v where

write :: String -> v -> m ()

Thus, the evaluator, now collects the explicit (Prints m v) constraint (as well as

the implicit (Show v) and (Monad m) constraints) when it incorporates the printing

building block. This is shown in the instance definition:

instance (Prints m v,Eval e v m) => Eval (Print e) v m where

eval (Write message x) =

do { x’ <- eval x; write message x’; return x’}

Pretty-printing. The pretty-printer is defined by simply instantiating the Show class,

as in the previous building block:

instance Show e => Show (Print e) where

show (Write s x) =

"write " ++ (showString s "") ++ " = " ++ (show x)

4.3 Abstraction and application building block

The next building block we define is used for adding the functionality associated

with lambda abstraction and application:

e ::= · · · | λx.e | e e | x | · · ·

The structure of the term is represented by the type constructor Lambda:

data Lambda x = Lam String x | App x x | LVar String

An interesting design choice is in which building block do variables reside? Variables

play important roles in many language features. Here we assume variables live in

the Lambda block, but other choices are possible, in particular variables could reside

in their own block. In that case the Lambda building block could be used only if the

variable block were present.

Parsing. The parser building block is given by the code below.

instance (Block Lambda e, Par e) => Par (Lambda e) where

ppS = do { s <- identifier; return(LVar s) }

pp = do { symbol "\\" -- parse "\ x -> x + 3"

; s <- identifier

; symbol "->"

; x <- pp

; return(Lam s x)

} <|>

do { es <- many2 ppS -- parse "f x (y x)"

; return(app es)

}
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where app :: Block Lambda e => [e] -> Lambda e

app [x,y] = App x y

app (x:y:z) = app ((inject (App x y)):z)

many2 e = do { x <- e; y <- e; zs <- many e; return(x :y :zs) }

We assume that variable names in this language are simply identifiers as defined by

the Parsec library.

Evaluation. Evaluation of the lambda building block requires additional constraints

between the monad and value types.

• The class, HasEnv m v, defines methods for monadic computations with

environments in which the values of variables can be looked up.

class Monad m => HasEnv m v where

inNewEnv :: String -> v -> m v -> m v

getFromEnv :: String -> m v

• Also, the set of values into which we evaluate the lambda expressions must

be able to make closures, i.e. to represent function values in the environment

in which they were defined. The class HasClosure m v defines the following

operations: mkClosure, which constructs a closure value by remembering its

current environment; and applyClosure, takes a closure and an argument

and forces the evaluation of the closure with the argument.

class HasEnv m v => HasClosure m v where

mkClosure :: String -> m v -> m v

applyClosure :: v -> v -> m v

With these constraints in hand, we can give the definition of eval

instance (HasClosure m v,Eval t v m) => Eval (Lambda t) v m where

eval (Lam s x) = mkClosure s (eval x)

eval (App e1 e2) = do { v1 <- eval e1

; v2 <- eval e2

; applyClosure v1 v2 }

eval (LVar x) = getFromEnv x

Pretty-printing. Finally, we define an instance of Show to enable pretty-printing of

this building block:

instance (Show e) => Show (Lambda e) where

show (Lam v e) = "\\" ++ v ++ "->"++(show e)

show (LVar s) = s

show (App x y) = show x ++ " " ++ show y
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4.4 Combining the building blocks

Each building block uses a structure operator to encode the structure of that

blocks abstract syntax. These structure operators are exactly the form that we used

in decomposing types into two levels. Here we need to combine several of these

structure operators all at once! This is accomplished by tying the recursive knot

over multiple structures. For example, the datatype Term given below, combines

arithmetic expressions, printing, and lambda expressions. All are tied together to

make an abstract syntax for a “full” language.

data Term

= Arith (Arith Term)

| Print (Print Term)

| Lambda (Lambda Term)

Note that the single constructor function (Wrap in the Tree example) has been

replaced by three constructor functions Arith, Print, and Lambda. By convention

we name the constructors using the same name as the building block.

We now provide instances for the Block class.

instance Block Arith Term where

inject x = Arith x

instance Block Lambda Term where

inject x = Lambda x

instance Block Print Term where

inject x = Print x

Now, for each operation (parsing, evaluation, and printing), we must tie together

the individual operations for each building block. This is done by providing instances

of Par Term, Eval Term Value M, and Show Term.

Parsing is the most complicated of the three, since parsing a “full” expression

in the Term language relies on parsing one of the many forms parsable from the

constituent language blocks. Because we have used the Parsec parsing combinators,

the order in which we make these choices matters:

instance Par Term where

-- order of parsers surrounding <|> actually matters

ppS = (parens pp) <|> (fmap Arith ppS) <|> (fmap Lambda ppS)

pp = (fmap Arith pp) <|> (fmap Lambda pp) <|>

(fmap Print pp) <|> ppS -- ppS comes last

The Show instance is quite straightforward. The “miracle” of Haskell classes,

chooses the correct Show instance for each type of building block.

instance Show Term where

show (Arith x) = show x

show (Print x) = show x

show (Lambda x) = show x
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One might hope that the evaluation operation is as simple. It is almost so.

Unfortunately, evaluation places constraints between the monad and value types.

Thus we need a constrained instance.

instance (Monad m,Num v,HasEnv m v,HasClosure m v,Prints m v)

=> Eval Term v m where

eval (Arith x) = eval x

eval (Lambda x) = eval x

eval (Print x) = eval x

Thus the hard work that remains is defining the appropriate evaluation instances

for concrete types m and v. So, we declare the type of values, Value, and the

type of monads (M v a). In our concrete example, the monad in which we

interpret Terms is be (M Value): it combines the effects of environment passing and

output.

data Value = I Integer | Fun (Value -> M Value Value)

type Maps x = [(String,x)]

data M value x = M (Maps value -> (x,String))

Instances of Prints, HasEnv, HasClosure, and Num for the value type Value

and the monad type (M Value) must be provided to construct evaluators for the

combined term. The relevant definitions are given below:

instance Prints Term Value where

write message v = M h

where h env = (v,message++(show v))

instance HasEnv (M Value) Value where

inNewEnv name v (M f) = M(\env -> f ((name,v):env))

getFromEnv name = M h

where h env = (get name env,[])

instance HasClosure M Value where

mkClosure var comp = M(\env ->

((Fun(\v ->

(M (\_ -> unM comp ((var,v):env))))), ""))

applyClosure (Fun f) v = f v

instance Eq Value where

(I x) == (I y) = x == y

_ == _ = error "no equality for functions"

instance Show Value where

show (I a) = show a

show (Fun _) = "<fun>"
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Classes First-class modules

class Par x where

pp :: Parser x

ppS :: Parser x

data ParBlock =

ParBlock { pp :: Parser x

, ppS :: Parser x }

class Monad m => Eval e v m

eval :: e -> m v

data Monad m => EvalBlock e v m =

Eval { eval :: e -> m v }

class Show a where

show :: a -> String

data ShowBlock a =

Show { show :: a -> String}

class Block s e where

inject :: s e -> e

data Block s e =

Block { inject :: s e -> e }

instance (Eval e v m, Num v)

=> Eval (Arith e) v m

. . .

. . .

. . .

mkEval :: Num v =>

(EvalBlock e v m) ->

(EvalBlock (Arith e) v m)

Fig. 4. Classes vs. first-class modules for building blocks.

instance Num Value where

(I x) + (I y) = I (x+y)

_ + _ = error""

To demonstrate the parser and evaluator in action, we give a sample Hugs session:

Lang1> unM (eval (tp "(\\x -> \\y -> x+y) 1 2") :: M Value Value ) []

(3,"") :: (Value,String)

Finally, a note on the use of the class system in this example. In the unification

example, we have advocated using type-parameterized modules to remove the need

to use many classes. In the modular language construction example presented above,

however, we have relied heavily on the use of classes. The important distinction is

that, while the class mechanism merely gets in the way of a clean and modular

algorithm specification for unification, here the class mechanism is actually useful

in keeping track of the dependencies between language fragments. Thus, the type

of a language-building block assembly can tell the programmer at a glance, which

semantics features of the language implemented are necessary to execute assembled

fragments.

Furthermore, we note in passing that the modular syntax example above could

be developed using type-parameterized modules as well. Figure 4, summarizes the

correspondence between the implementation with classes and an alternative first-

class module implementation. Each class implementing a particular functionality

(such as Eval) can be replaced by a type-parameterized module (data type).

Instance declaration dependencies can be replaced by functions that transform

type-parameterized modules (the last line in figure 4).
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5 Retrofitting Two-Level Types

The use of two-level types for generic programming can be retrofitted into existing

Haskell programs. Given a normal recursive data type like Tree in an existing

program we can define a structure operator for that type. For example, given the

recursive type Tree:

data Tree = Tip | Leaf Int | Fork Tree Tree

We define its structure operator T:

data T x = Tip’ | Leaf’ Int | Fork’ x x

Here we use the convention that we prime (’) the original constructor function

names to obtain the constructor functions for the structure operator. To move back

and forth between the structure operator type T and the recursive type Tree we

define a pair of functions:

unwrap :: Tree -> T Tree

unwrap Tip = Tip’

unwrap (Leaf n) = Leaf’ n

unwrap (Fork x y) = Fork’ x y

wrap :: T Tree -> Tree

wrap Tip’ = Tip

wrap (Leaf’ n) = Leaf n

wrap (Fork’ x y) = Fork x y

These functions play the role of the normal two-level knot-tying constructor

functions such as Wrap, GT, Arith, etc. Of course, like any structure operator, T

can be made an instance of the class Sclass.

instance Sclass T where

mapS f Tip’ = Tip’

mapS f (Leaf’ n) = Leaf’ n

mapS f (Fork’ x y) = Fork’ (f x) (f y)

accS acc Tip’ b = b

accS acc (Leaf’ n) b = b

accS acc (Fork’ x y) b = acc x (acc y b)

seqS Tip’ = return Tip’

seqS (Leaf’ n) = return(Leaf’ n)

seqS (Fork’ x y) = do { a<-x; b<-y; return(Fork’ a b)}

These capture patterns of recursion that can then be reused in many different

functions. For example, we give two such examples which add all the Leaf values,

and which transform a Tree by adding 3 to each Leaf value.
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addAll (Leaf n) = n

addAll x = accS (+) (mapS addAll (unwrap x)) 0

plus3 (Leaf n) = (Leaf (n+3))

plus3 x = wrap (mapS plus3 (unwrap x))

Note how only one constructor is addressed in a specific manner in the functions

above, and how the others are treated in a generic fashion using the methods of

the class Sclass. When the original datatype has many constructors (such as an

abstract syntax for a language), and individual functions treat most them in a

uniform manner (such as might happen in alpha-renaming), then this can make the

resulting program considerably more concise.

It is possible to abstract the wrapping and unwrapping into its own class.

class Gen1 flat rec | rec -> flat where

wrap :: flat rec -> rec

unwrap :: rec -> flat rec

By using Haskell’s functional dependency extension (Jones, 2000) we note that there

should be a unique structure operator (flat) for each recursive datatype (rec).

Now generic functions can be written for any normal recursive datatype which

has a structure operator. First supply the Gen1 instances:

instance Gen1 T Tree where

unwrap Tip = Tip’

unwrap (Leaf n) = Leaf’ n

unwrap (Fork x y) = Fork’ x y

wrap Tip’ = Tip

wrap (Leaf’ n) = Leaf n

wrap (Fork’ x y) = Fork x y

Then by using the methods of the Sclass, we can define very generic functions.

For example a generic summing operator can be defined by:

genSum :: (Sclass a, Num b, Gen1 a c) => c -> b

genSum x = accS (+) (mapS genSum (unwrap x)) 0

And this can be specialized to numerous different recursive datatypes if they have

been made instances of the Gen1 class.

addAll (Leaf x) = x

addAll y = genSum y

6 Discussion

We have shown how two-level types can be used to support both generic program-

ming and modularity.
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In the unification example, we demonstrated how two-level algebraic data-types,

along with generic operators such as map, seq, acc, and match allow the construction

of generic algorithms in Haskell without the use of any language extensions. We

also demonstrated how to encode user-defined parameterized modules with the

use of rank-2 polymorphism and Haskell records. Such modules allow a level

of abstraction not possible using Haskell’s class system since they allow arbitrary

“overlapping” instances. Such flexibility comes at the cost of a few explicit type anno-

tations.

In the Modular Syntax example we demonstrated how two-level types could be

used in Haskell to achieve a modular decomposition of both data representation

and functionality. This is the kind of decomposition is normally only available in

an object oriented language. The use of Haskell’s class system was critical in this

example. First, the class system supports the modular decomposition of functionality,

partitioning each operation into separate instances for each building block. It is

possible for each building block, along with specific functionality to reside in a

separate file. In addition, the class system was instrumental in ensuring that the

blocks are correctly composed. Constrained classes provide just the right tool to

track and manage the additional functionality required by each language building

block.

Our exploration of these new techniques has not been without its setbacks.

Using advanced features often pushes the limits of a paradigm or a language

implementation. Three issues are worth discussion.

Mutual recursion. To generalize two-level datatypes to mutually recursive struc-

tures one needs to parameterize each structure operator over all of the recursive

components, both direct and indirect. We can illustrate this using a simple language

for Haskell-like expressions and declarations. Below, E is the structure operator

for expressions, and D is the structure operator for declarations. Both E and D

have parameters e and d which are used where recursive sub-components of type

expression or declaration would normally be used.

type N = String -- names

data E d e

= Var N -- x

| Const Integer -- 5

| App e e -- f x

| Abs [N] e -- \ x1 x2 -> e

| Let [d] e -- let x=e1 in e2

data D d e

= Fun N [([N],e,[d])] -- f p1 p2 = b where ds

| Val N e [d] -- p = e where ds

newtype Exp = E (E Decl Exp)

newtype Decl = D (D Decl Exp)
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Since the structure operators (E and D) have more than one parameter, the generic

operators map and seq must be generalized as well. For example:

mapD :: (a->b) -> (c->d) -> D a c -> D b d

seqD :: Monad m => D (m a) (m b) -> m(D a b)

Two-level types are not restricted to lazy languages like Haskell. We have used

them in ML as well. In fact we have found them to scale quite well to even very

large, highly mutually-recursive datatype declarations. We use two-level types to

represent all the datatypes in the MetaML2 implementation. We found them both

easy to use, and advantageous in the genericity they supplied.

The following two problems were encountered using the Hugs interpreter in our

initial research. Each has simple work-arounds. Further investigation has shown that

neither problem occurs when using GHC.

Pattern matching polymorphic records. Using data types with polymorphic com-

ponents as the input to functors (like makeUnify) worked well, but when we tried

using pattern matching to bind the results of functor application, we stretched the

limits of the Hugs implementation. For example consider the functor-like function

makeSeqmap that takes a (RSclass s r m) as input and produces a (T1 s m)

object as output:

data T1 s m =

T1 {seqmapGT :: forall x y .

(x->m y) -> (s x) -> m(s y) }

makeSeqmap :: RSclass s r m -> T1 s m

makeSeqmap lib = T1 { seqmapGT = seqmap }

where seqmap f x = seqRS lib(mapRS lib f x)

Everything works fine until we try and use the pattern matching feature of records

to produce an actual instance of a (T1 s m) object with a component called seqmap.

This top-level definition is not allowed:

T1 { seqmapGT = seqmap } = makeSeqmap rs

because of restrictions on the use of rank-2 polymorphism in pattern matching in

Hugs. A work around for this is not to use pattern matching, but use the field

selection mechanism instead.

lib = makeSeqmap rs

seqmap = seqmapGT lib

Update syntax of polymorphic records. In section 3.6 we specialized the emPartial

structure by updating its (undefined) fields for seqRS, mapRS, accRS, and matchRS.

Unfortunately, in the Hugs interpreter, the record update syntax is not implemented

for records that contain explicitly-typed polymorphic components. Fortunately there

2 See http://www.cse.ogi.edu/PacSoft/projects/metaml/index.html
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is a work around for this as well. We can replace the elegant:

commandClass :: RSclass C (STRef a) (EM a)

commandClass =

emPartial { seqRS = seqS

, mapRS = mapS

, accRS = accS

, matchRS = matchS

}

with the equivalent, but much less elegant:

addSpart (RSclass sv wv rv nv e s m a mtch) =

(RSclass sv wv rv nv e seqC mapC accC matchC)

commandClass :: RSclass C (STRef a) (EM a)

commandClass = addSpart emPartial

7 Conclusion

Despite these minor complications, the techniques discussed here show great promise

in writing high-level, generic, reusable programs in Haskell (with minor extensions).

The two techniques demonstrated here: two-level syntax with generic operators,

and type-parameterized data types with rank-2 polymorphic components, are

both useful and complementary ideas that every functional programmer should be

aware of.

The second idea could be made easier to use by incorporating it into a high-level

module system based upon parameterized signatures as suggested by Mark Jones.

Such a system should include the facility to define parameterized modules. They

would serve the same purpose as the makeUnify function of this paper. A good

design for parameterized modules would allow the names of components in the input

module to be used directly, rather than relying on the selector function mechanism

as was done in the definition of makeUnify in Appendix A. A well designed module

system would also alleviate the last two problems discussed in the previous section.

Finally, although we have not used them in our implementation, we conjecture that

work on generic (and polytypic) programming (Jansson & Jeuring, 1997; Jeuring

& Jansson, 1996; Hinze, 2000a) could be combined beneficially with techniques

presented in this paper. Combinators such as seq and map (and similar “boilerplate”

(Lämmel & Peyton Jones, 2003)), which must be written anew for each new structure

functor, could be automatically derived in a generic or polytypic setting, as functions

over the structure of types.

These techniques would be particularly useful at retrofitting one-level types into

a two-level type setting, since both structure functors, wrapping and unwrapping

operations, as well as generic traversal operators on derived structure functors could

be defined automatically.

A number of proposed systems add such programming techniques to Haskell

(Winstanley, 1997; Hinze, 1999; Lämmel & Visser, 2000; Lämmel, 2002; Sheard
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& Peyton Jones, 2002), and they could all be used in concert with the techniques

advocated in this paper. We leave a fuller exploration of these issues for future work.

8 History

The first author was introduced to the use of two-level types by Erik Meijer in the

fall of 1996, in a talk in which he used them to define catamorphisms, and other

uniform control structures in Haskell.

data Fix f = Fix (f (Fix f))

fmap :: Functor f => (a->b) -> f a -> f b

cata :: Functor f => (f a -> a) -> Fix f -> a

cata phi (Fix x) = phi (fmap (cata phi) x)

This started a long period of experimentation with these ideas as a mechanism

to write programs that did not depend upon the structure of the datatype they

operated on. Ultimately, the use of uniform control structures, like cata, turned out

to be too inflexible, but the generic operators, like fmap above, and acc, match, and

seq turned out to be just the right stuff.

Most of these generic operators originate in the work of Johan Jeuring and his

colleagues on polytypic programming (Jansson & Jeuring, 1997; Jeuring & Jansson,

1996). The one exception is seq :: Monad m => s(m a) -> m(s a), which the

first author likes to believe he independently discovered (though it’s probably been

around for years). Generic unification is one of the prime examples (Jansson &

Jeuring, 1998) of polytypic programming, but the efficient algorithm employing

mutable references has not been described.

The idea of type-parameterized modules originated from a discussion with Mark

Jones about examples illustrating multi parameter type classes. Mark suggested

abstracting the operations on stateful references away from the actual reference type

constructor and monad type constructor.

class Monad m => Mutable r m where

read :: r x -> m x

write :: r x -> x -> m ()

new :: x -> m(r x)

Frustration trying to retrofit some existing examples into this framework led to

the techniques presented.

A number of works have attempted to build language implementation from

reusable building blocks. The first publication of such an approach that the authors

are aware off was made by Guy Steele (Steele, Jr., 1994). Sheng Liang has also used

Haskell’s class system together with monad transformers to structure semantics of

modular programming languages (Liang et al., 1995a; Liang et al., 1995b; Liang &

Hudak, 1996); a similar approach combining modular monadic syntax with staging

in MetaML (Taha & Sheard, 1997) was also described by the authors (Sheard et al.,

1999).
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A makeUnify

data GTstruct s r m =

B { unifyGT :: GT s r -> GT s r -> m ()

, matchGT :: GT s r -> GT s r -> m()

, equalGT :: GT s r -> GT s r -> Bool

, freshGT :: m (GT s r)

, occursGT :: Ptr s r -> GT s r -> m Bool

, colGT :: GT s r -> m(GT s r)

, pruneGT :: GT s r -> m(GT s r)

, instanGT :: [GT s r] -> GT s r -> m(GT s r)

, tofixGT :: GT s r -> m(Fix s)

, fromfixGT :: Fix s -> GT s r

}

makeUnify :: Monad m => RSclass s r m -> GTstruct s r m

makeUnify lib =

B { unifyGT = unify

, matchGT = match

, equalGT = equal

, freshGT = freshVar

, occursGT = occursIn

, colGT = col

, pruneGT = prune

, instanGT = inst

, tofixGT = toFix

, fromfixGT = fromFix

}

where

-- first some common patterns

seqmap f x = seqRS lib(mapRS lib f x)

write r x = writeVarRS lib r x

freshVar = do { r <- newVarRS lib Nothing

; return (MutVar r) }

prune (typ @ (MutVar ref)) =

do { m <- readVarRS lib ref

; case m of
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Just t ->

do { newt <- prune t

; write ref (Just newt)

; return newt }

Nothing -> return typ}

prune x = return x

col x =

do { x’ <- prune x

; case x’ of

(S y) ->

do { t <- (seqmap col y)

; return (S t)}

(MutVar r) -> return(MutVar r)

(GenVar n) -> return(GenVar n)}

occursIn v t =

do { t2 <- prune t

; case t2 of

S w ->

do { s <- (seqmap (occursIn v) w)

; return(accRS lib (||) s False)

}

MutVar z -> return(sameVarRS lib v z)

GenVar n -> return False }

varBind r1 t2 =

do { b <- occursIn r1 t2

; if b

then errorRS lib "OccursErr"

else write r1 (Just t2) }

unify tA tB =

do { t1 <- prune tA

; t2 <- prune tB

; case (t1,t2) of

(MutVar r1,MutVar r2) ->

if sameVarRS lib r1 r2

then return ()

else write r1 (Just t2)

(MutVar r1,_) -> varBind r1 t2

(_,MutVar r2) -> varBind r2 t1

(GenVar n,GenVar m) ->

if n==m

then return ()

else errorRS lib "Gen error"

(S x,S y) ->

case matchRS lib x y of

Nothing -> errorRS lib "ShapeErr"
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Just pairs ->

mapM_ (uncurry unify) pairs

(_,_) -> errorRS lib

"ShapeErr"

}

match tA tB =

do { t1 <- prune tA

; t2 <- prune tB

; case (t1,t2) of

(MutVar r1,_) ->

write r1 (Just t2)

(GenVar n,GenVar m) ->

if n==m

then return ()

else errorRS lib "Gen error"

(S x,S y) ->

case matchRS lib x y of

Nothing -> errorRS lib "ShapeErr"

Just pairs ->

mapM_ (uncurry match) pairs

(_,_) -> errorRS lib "ShapeErr"

}

equal x y =

case (x,y) of

(MutVar r1,MutVar r2) ->

sameVarRS lib r1 r2

(GenVar n,GenVar m) -> m==n

(S x,S y) ->

case matchRS lib x y of

Nothing -> False

Just pairs -> all (uncurry equal) pairs

(_,_) -> False

inst sub x =

do { x’ <- prune x

; case x’ of

MutVar r -> return(MutVar r)

GenVar n -> col (sub !! n)

S x ->

do { x’ <- (seqmap (inst sub) x)

; return (S x’)

} }

fromFix (Fix x) = S(mapRS lib fromFix x)

toFix x =

do { x’ <- prune x

; case x of
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MutVar r -> errorRS lib "No vars"

GenVar m -> errorRS lib "No generic vars"

S y -> do { y’ <- seqmap toFix y

; return(Fix y’)

}}

B Command language example

type Var = String

type Exp = Bool

data C x

= If Exp x x -- if e then s2 else s1

| While Exp x -- while e do s

| Begin x x -- { s1 ; s2 }

| Skip -- {}

| Assign Var Exp -- x := e

-- the lowercase constructor convention

ifc e x y = S(If e x y)

while e x = S(While e x)

begin x y = S(Begin x y)

skip = S Skip

assign v e = S(Assign v e)

type Command a = GT C (STRef a)

---- The S structure operators

mapC f (If e x y) = If e (f x) (f y)

mapC f (While e x) = While e (f x)

mapC f ( Begin x y) = Begin (f x) (f y)

mapC f Skip = Skip

mapC f (Assign v e) = Assign v e

accC acc (If e x y) ans = acc x (acc y ans)

accC acc (While e x) ans = acc x ans

accC acc ( Begin x y) ans = acc x (acc y ans)

accC acc Skip ans = ans

accC acc (Assign v e) ans = ans

seqC (If e x y) =

do { x’ <- x; y’ <- y; return (If e x’ y’)}

seqC (While e x) =

do { x’ <- x; return(While e x’)}
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seqC ( Begin x y) =

do { x’ <- x; y’ <- y; return( Begin x’ y’) }

seqC Skip = return Skip

seqC (Assign v e) = return(Assign v e)

matchC (If e w x) (If f y z) =

if f==e then Just[(w,y),(x,z)]

else Nothing

matchC (While e w) (While f y) =

if f==e then Just[(w,y)]

else Nothing

matchC (Begin w x) (Begin y z) = Just[(w,y),(x,z)]

matchC Skip Skip = Just[]

matchC (Assign v e) (Assign u f) =

if v==u && e==f

then Just []

else Nothing

matchC _ _ = Nothing
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