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The well-known quadratic temperature–velocity (TV) relation is significant for physical
understanding and modelling of compressible wall-bounded turbulence. Meanwhile, there
is an increasing interest in employing the TV relation for laminar modelling. In this work,
we revisit the TV relation for both laminar and turbulent flows, aiming to explain the
success of the TV relation where it works, improve its accuracy where it deviates and relax
its limitation as a wall model for accurate temperature prediction. We show that the general
recovery factor defined by Zhang et al. (J. Fluid. Mech., vol. 739, 2014, pp. 392–440)
is not a wall-normal constant in most laminar and turbulent cases. The effective Prandtl
number Pre is more critical in determining the shape of temperature profiles. The
quadratic TV relation systematically deviates for laminar boundary layers irrespective of
Mach number and wall boundary conditions. We find a universal distribution of Pre, based
on which the TV relation can be notably improved, especially for cold-wall cases. For
turbulent flows, the TV relation as the wall model can effectively improve the near-wall
temperature prediction for cold-wall boundary layer cases, but it involves boundary-layer-
edge quantities used in the Reynolds analogy scaling, which hinders the application of
the wall model in complex flows. We propose a transformation-based temperature wall
model by solving inversely the newly developed temperature transformation of Cheng and
Fu (Phy. Rev. Fluids, vol. 9, 2024, no. 054610). The dependence on edge quantities is thus
removed in the new model and the high accuracy in turbulent temperature prediction is
maintained for boundary layer flows.
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1. Introduction
The relation between mean temperature and velocity stands as a central fundamental
problem in compressible flows research, significant for reliable modelling of high-speed
wall-bounded flows (Bradshaw 1977; Cheng et al. 2024). The classical relations of Crocco
(1932), Busemann (1931) and Walz (1969) suggest that the mean temperature is almost
a quadratic function of the mean streamwise velocity, yet these relations only hold for
adiabatic flows. A crucial improvement was contributed by Duan & Martín (2011), who
introduced a semi-empirical quadratic function of the velocity for turbulent boundary
layers. The resulting quadratic temperature–velocity (TV) relation for a calorically perfect
gas (CPG) is

T̄ = Tw + (T̄r − Tw)

[
CT

ū

ūe
+ (1 − CT )

(
ū

ūe

)2
]

+ (
T̄e − T̄r

) (
ū

ūe

)2

, (1.1a)

where T̄ and ū are the mean temperature and velocity; w and e denote wall and boundary
layer edge, respectively; T̄r = T̄e + r ū2

e/(2cp) is the recovery temperature with r the
recovery factor and cp the isobaric heat capacity; the constant CT is determined to be
0.8259 for air flows. Equation (1.1) is highly accurate for both adiabatic and diabatic
turbulent flat-plate boundary layers, even with high-enthalpy effects (using enthalpy
instead; Passiatore et al. 2022). Moreover, it works well for turbulent channel and pipe
flows if ūe and T̄e are replaced by the centreline counterparts (e.g. Modesti & Pirozzoli
2019). Due to its high accuracy, (1.1) has become a conventional method to examine newly
accumulated direct numerical simulation (DNS) data. More importantly, (1.1) enables
accurate and efficient recovery of the mean flow and the construction of reliable wall
models when combined with velocity transformations, which provides a robust way to
model the compressibility effects (Song, Zhang & Xia 2023; Chen et al. 2023a; Griffin,
Fu & Moin 2023; Hasan et al. 2024; Chen, Gan & Fu 2024).

An important theoretical work to interpret (1.1a) is accomplished by Zhang et al.
(2014) through introducing the generalised Reynolds analogy (GRA). A critical step is
to introduce a general recovery factor rg , so a counterpart of (1.1a) is derived as

T̄ = Tw + (T̄rg,e − Tw)
ū

ūe
+ (

T̄e − T̄rg,e
) (

ū

ūe

)2

, (1.1b)

where T̄rg,e = T̄e + rg,eū2
e/(2cp). Equation (1.1b) takes the same form as Walz’s equation

except for replacing T̄r with T̄rg,e. Furthermore, CT is recast to be s Pr , where Pr ≈ 0.71 is
the Prandtl number and the Reynolds analogy factor s is approximately 1.14 for canonical
air flows. Hereafter, (1.1a) and (1.1b) are referred to collectively as the TV relation without
distinctions. Although (1.1) is constructed for turbulent flows, the recent interesting work
of Mo & Gao (2024) shows that (1.1) is also applicable to laminar boundary layers,
indicating a kind of essential similarity between laminar and turbulent flows. They
proceeded to propose a laminar wall model, in combination with velocity scalings, which
enables fast and accurate prediction of the skin friction and surface heat flux on a coarse
mesh with very low grid density near the wall (wall-normal height of the first grid point
off the wall relaxed from 10−6 m to 10−3 m for their hypersonic cases). This laminar
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wall model is also applicable to curved-wall cases where no simple self-similar solutions
exist. Nevertheless, the TV relation for laminar flows has not been fully examined in large
parameter spaces, compared with their turbulent counterparts. It is therefore the first task
of this work to take scrutiny on these TV relations over a wide range of parameters and seek
for possible improvements. Moreover, in deriving these TV relations, a crucial assumption
is that rg (or the effective Prandtl number defined later) is a constant independent of wall-
normal height. Consequently, two questions naturally arise. (1) Is rg really a constant in
laminar and turbulent flows? And (2) if it is not a constant, why does the quadratic relation
still work (or not) in these regions?

The last motivation of this work is from the modelling perspective. Equation (1.1) has
been employed for modelling the mean flow within the frameworks of ordinary differential
equations (ODEs), Reynolds-averaged Navier–Stokes (RANS) and wall-modelled large
eddy simulations (WMLES) (Griffin et al. 2023; Hasan et al. 2024; Chen et al. 2023b,
2024). Though notable improvements have been obtained, an obvious limitation of these
models is that (1.1) is explicitly dependent on boundary-layer edge values ūe and T̄e.
Consequently, they cannot be directly used in more complex flow configurations, where the
boundary-layer edge cannot be easily determined (Griffin, Fu & Moin 2021a). Therefore,
we aim to propose an alternative temperature wall model based on newly developed
temperature transformations, which excludes the use of boundary-layer edge quantities.

The remaining sections are organised as follows. The TV relation and related parameters
are examined in § 2 for both laminar and turbulent flows using wide DNS datasets. We
explain the success of the TV relation where it works and improve its accuracy where it
deviates. The modelling issues are discussed in § 3, where a new temperature wall model
is proposed using recently developed temperature transformations. Finally, concluding
discussions are provided in § 4.

2. Results of the TV relations

2.1. Basic relations of GRA
For CPG turbulent boundary layers, Zhang et al. (2014) define rg from a GRA relation on
the total enthalpy,

H̄g − Hw = cp
∂ T̄

∂ ū
|wū, (2.1)

where H̄ is the total enthalpy and H̄g = cpT̄ + rgū2/2 is the general recovery enthalpy.
Equation (2.1) is explicitly expressed as

T̄ + rg

2cp
ū2 − Tw = ∂ T̄

∂ ū
|wū, then rg = 2cp

ū2

(
Tw − T̄ + ∂ T̄

∂ ū
|wū

)
. (2.2a,b)

By definition, rg varies with the wall-normal height y, and can be obtained a posteriori
using T̄ and ū. Zhang et al. (2014) further introduce an effective turbulent Prandtl number
Pre, which relates to rg as

rg = cp

ū

(
∂ T̄

∂ ū
|w − 1

Pre

∂ T̄

∂ ū

)
(2.3a)

or conversely,
1

Pre
= 1 + ū2

2cp

∂rg

∂ ū
/
∂ T̄

∂ ū
. (2.3b)
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The combination of (2.2) and (2.3) finally leads to an important ODE for the TV
relation,

T̄ − ū

2

(
∂ T̄

∂ ū
|w + 1

Pre

∂ T̄

∂ ū

)
= Tw, (2.4)

which can be solved provided a prescribed distribution of Pre, and under the outer
boundary condition, T̄ |ū=ūe = T̄e. Zhang et al. (2014) further assume Pre ≈ 1, which is
equivalent to assuming rg a constant, as seen from (2.3b). As a result, the integration
of (2.4) leads to the quadratic relation (1.1). The remaining unknown (∂ T̄ /∂ ū)w can be
computed from (2.3a) at the boundary-layer edge using rg,e, and rg,e is related to the
analogy factor s as

rg = rg,e = r [s Pr + (1 − s Pr)Θ] , s ≡ 2Ch

C f
= q̄wūe

τ̄wcp(T̄r − Tw)
, (2.5a,b)

where the non-dimensional wall temperature Θ = (Tw − T̄e)/(T̄r − T̄e) is also called the
diabatic parameter; C f and Ch are the coefficients of skin friction and heat transfer, and
τw and qw are the wall friction and heat flux. Since s is found to be a robust parameter (Chi
& Spalding 1966; Bons 2005; Fu et al. 2021), rg,e can be computed a priori, so (1.1) can
be fully determined. Notably, the original definition of Pre by Zhang et al. (2014) is based
on turbulent fluctuations, which gives Pre physical interpretations. The resulting (2.4)
provides another way to evaluate Pre a posteriori, using only T̄ and ū without fluctuation
statistics. As will be shown below, such an evaluation from the mean flow is critical to
interpret the TV relations and improve modelling.

Interestingly, Wenzel, Gibis & Kloker (2022) (and also Cogo et al. (2023)) showed that
a form of Eckert number, Ec = ū2

e/[cp(T̄r − Tw)] for a CPG, is an insightful parameter to
account for heat-transfer effects. In fact, we note that Ec can be related to rg,e as

Ec−1 = r

2
(1 − Θ) = r − rg,e

2(1 − s Pr)
or rg,e = r − 2(1 − s Pr)Ec−1. (2.6a,b)

Since the parameters r , Pr and s are nearly independent of the Mach number Ma and
Tw/T̄r , Ec−1 and rg,e are essentially equivalent in accommodating heat-transfer effects;
Ec−1 measures the departure of rg,e from r .

The above GRA relations are also generally applicable to turbulent channel and pipe
flows, if all the edge quantities are replaced by the channel/pipe centreline quantities
(ūc, T̄c, rg,c, etc.; Modesti & Pirozzoli (2019); Song et al. (2022)). Note that (1.1) has
been expressed using both the Reynolds-averaged and Favre-averaged variables among
literatures. The differences between these two forms are usually minor (e.g. Zhang, Duan
& Choudhari (2018)), so the Reynolds average is used here throughout, denoted by
overbars. In addition to turbulent flows, Mo & Gao (2024) reformulate the GRA relations
for laminar boundary layers. They define rg the same as in (2.2), and assume rg a constant,
which is mathematically equivalent to Pre = 1 and leads to exactly the same ODE (2.4)
(after enforcing Pre = 1) for laminar flows. The constant rg can be obtained from (2.5) and
the same quadratic relation (1.1b) is arrived. Therefore, the relations (2.2) to (2.5) turn out
to be universal for both turbulent and laminar flows, in both boundary layer and channel
(and pipe) configurations.

In short, two components are required to solve (2.4) for the TV relation: the first is the
wall-normal distribution of Pre, which determines the shape of T̄ ; the second is rg,e, or
equivalently s, which determines the wall boundary condition (∂ T̄ /∂ ū)w. Previous models
assume constancy of rg (and Pre) for both turbulent and laminar flows, leading to the
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quadratic TV relation and temperature wall models. In the following, we carefully examine
these assumptions for laminar and turbulent flows, respectively. Both channel flow and
flat-plate boundary layers are considered. Although laminar flows are much easier to be
resolved than turbulence, we still present the laminar TV results for three reasons. First, as
mentioned in § 1, the laminar TV relation can be used to efficiently improve the prediction
of C f and Ch by largely relaxing the near-wall grid density; this strategy for flat plates
can be directly applied to curved-wall cases which inhibits simple self-similar solutions
(Mo & Gao 2024). Therefore, a comprehensive evaluation on the accuracy of the laminar
TV relation is required. Second, Mo & Gao (2024) only studied three severely cold-wall
boundary layer cases (Tw/T̄r < 0.2), where rg has a mild wall-normal variation. Here, we
explore a wide parameter space (Ma from 2 to 10 and Tw/T̄r from 0.1 to 1.6 for boundary
layers), and will show that rg severely differs at different Tw/T̄r but a universal distribution
of Pre can be identified. Third, a number of similarities of the TV relation between laminar
and turbulent flows will be reported, suggesting some fundamental resemblance between
the two flows, as already partly exhibited from their common GRA relations above.

Only CPG air flows are considered. The laminar flow is solved from the Navier–Stokes
(NS) equations (detailed later), where the viscosity μ is from Sutherland’s law (reference
temperature set to 270 K) and a constant Pr = 0.71 is adopted throughout. For turbulent
cases, elaborated DNS datasets of wide parameter ranges are employed. The factor r for
all cases is set to Pr1/3.

2.2. Laminar channel flows
The compressible NS equations for laminar channel flow degenerate into ODEs,

(
μ̄ū y

)
y = p̄x = − τ̄w

h
, μ̄ū2

y + cp

Pr

(
μ̄T̄y

)
y = 0, (2.7)

where the subscript y denotes wall-normal derivatives, p̄x is the streamwise pressure
gradient and h is the channel half-height (y ∈ [0, 2h]). The overbars are retained for
consistency in notation. After non-dimensionalisation, the only parameter controlling the
shape of the flow is the bulk Mach number Mab, measuring the ratio of bulk velocity ūb
and the wall speed of sound. The Chebyshev collocation point method is adopted to solve
(2.7) using Ny = 201 grid points, which achieves grid independence.

The temperature profiles at different Mab are shown in figure 1(a) as a function of the
streamwise velocity. The TV relation (1.1) is also displayed with s computed from (2.5b),
as labelled in the legend. It is shown that even with Mab up to 5, (1.1) agrees with the
T̄ from NS equations very well, which is not widely expected before for laminar channel
flows. After attaining the mean flow, rg is determined by (2.2), as displayed in figure 1(b).
An immediate observation is that rg increasingly varies with ū as Mab rises; it changes
by over 15 % in the wall-normal direction at Mab = 5. Also, rg decreases more rapidly
near the wall than in the outer region. Therefore, it seems difficult to trust the results of
constancy rg in § 2.1, so a natural question is why does the TV relation still work?

As noted in § 2.1, Pre is more significant than rg in determining the shape of T̄ , so
we define the counterpart of Pre in laminar flows from (2.3) and (2.4), whose physical
meaning will be discussed in § 4.1. For convenience of writing, we still use the notation
Pre, so (2.2) to (2.5) take the same form for both turbulent and laminar flows. From (2.4),
Pre can be expressed as

Pr−1
e = 2(T̄ − Tw)/ū − (∂ T̄ /∂ ū)w

∂ T̄ /∂ ū
. (2.8)
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×10–4

Pr
e–

1

Figure 1. Laminar channel results: (a) temperature from NS equations and (1.1), (b) general recovery factor,
(c) effective Prandtl number and (d) the sensitivity factor for flows at different Mab. The legends for panels
(b)–(d) are the same.

The distributions of Pr−1
e are plotted in figure 1(c) at 0 < Mab � 5. Compared with rg ,

Pr−1
e is indeed less sensitive to Mab and is approximately unity at ū/ūc � 0.6. In fact,

its theoretical wall limit is just Pre,w = 1, obtained from (2.8). Further away from the
wall, Pr−1

e rapidly diminishes and can be negative. To better quantify the effects of Pr−1
e

variations, a sensitivity study on (2.4) is designed. Specifically, we compute the global
variation of T̄ when the Pr−1

e at a specific y0 is perturbed, i.e.

E(y0) = 1∫ ūc
0 T̄ dū

∫ ūc

0

∣∣∣∣∂ T̄ (Pr−1
e ; ū)

∂ Pr−1
e (y0)

∣∣∣∣ dū, (2.9)

where T̄ (Pr−1
e ; ū) represents the solution of (2.4) on the ū grid, under the outer boundary

condition T̄ |ū=ūc = T̄c. The partial differentiation is computed after the numerical
discretisation. The E in different cases are plotted in figure 1(d), where the spikes of E
near the centreline are due to the singularity of Pre there (Pr−1

e = 0). A general trend is
that E peaks in the middle regime (ū ≈ 0.5ūc), and diminishes towards the wall and the
centreline; meanwhile, E is amplified with the rise of Mab. These features are consistent
with the trend in figure 1(a) that the TV relation slightly degrades in the middle region
and with Mab increased.

Therefore, the success of the TV relation in figure 1(a) can be explained. On the one
hand, the temperature is sensitive to the middle-regime Pr−1

e , but Pr−1
e is close to unity
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Mab 0.01 0.5 1 2 3 4 5 6

s 0.976 0.980 0.987 1.007 1.021 1.029 1.034 1.037

Table 1. Reynolds analogy factor (2.5b) at different bulk Mach numbers for laminar channel flows.

there. On the other hand, Pr−1
e deviates from unity further away towards the centreline, but

T̄ is already less sensitive to Pr−1
e . More physical explanations on the above trends will

be presented in § 2.3, through comparisons with the boundary layer cases. For modelling
usage, we note that s varies mildly with Mab. As listed in table 1, s changes from 0.98
to 1.04 when Mab is ranged from 0.01 to 6. Thereby, the TV relation (1.1) with s ≈ 1 is a
highly accurate model for laminar channel flows.

2.3. Laminar boundary layers
The results for laminar boundary layers are rather different from § 2.2. The mean flow on a
flat plate can be efficiently obtained by solving the self-similar equations (White 1974),⎧⎪⎪⎨

⎪⎪⎩
C1ūηη +

(
C1,η + Π

2

)
ūη = 0,

C2T̄ηη +
(

C2,η + cp
Π

2

)
T̄η + C1ū2

η = 0,

(2.10)

where η is the transformed wall-normal coordinate, and C1 = ρ̄μ̄/ρ̄eμ̄e, C2 = cpC1/Pr
and Π = ∫

ū/ūe dη. Equation (2.10) is independent of streamwise locations, and we
consider cases at different free steam Mach numbers Ma∞ (2–10) and Tw/T̄r (0.1–1.6).
The Chebyshev collocation point method with Ny = 201 is also adopted, which leads to
grid-independent mean flow and GRA parameters.

The adiabatic wall cases (Tw = T̄r ) are investigated first and the rg at different Ma∞ is
shown in figure 2(a). It is found that rg is not sensitive to Ma∞ and exhibits a universal
wall-normal distribution for adiabatic walls. Its theoretical wall limit, obtained from (2.10),
is rg,w = Pr = 0.71, which represents a balance between viscous terms and molecular heat
flux (see Appendix A). Nevertheless, rg is not a wall-normal constant, but keeps rising
away from the wall due to stronger convection terms. The effects of wall cooling on rg

are displayed in figure 2(b) at Ma∞ = 6. A clear trend is that as Tw/T̄r drops, rg exhibits
weaker wall-normal variations, so the assumption of rg constancy roughly holds only for
severely cooled walls, which was shown by Mo & Gao (2024). Nevertheless, the above
trend does not mean that the TV relation becomes more accurate for cooler walls, as will
be shown later.

As learned from § 2.2, Pre is more significant than rg in interpreting the shape of T̄ , so
the Pr−1

e at different Ma∞ and Tw/T̄r are plotted collectively in figure 2(c). A surprising
observation is that the 20 curves (and also other Ma∞ and Tw/T̄r cases not displayed)
almost collapse with each other, except for abrupt jumps near the temperature peaks in
cold-wall cases. In other words, Pr−1

e is nearly independent of Ma∞ and Tw, beneficial
for a robust modelling. The sensitivity examination of T̄ on Pr−1

e is also performed as
in (2.9). As shown in figure 2(d), the outer region T̄ is mostly affected by the deviation
of Pr−1

e , where Pr−1
e systematically departs from unity. Consequently, different from the

channel flows, the TV relation (1.1) for laminar boundary layers has systematic deviations
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Figure 2. Laminar boundary layer results: general recovery factor for (a) adiabatic and (b) Ma∞ = 6 isothermal
cases, and (c) effective Prandtl number and (d) the sensitivity factor for 20 cases with different Ma∞ and
Tw/T̄r , as labelled. The jumps in panel (c) are plotted as dotted lines for conciseness, and the red dashed line
denotes (2.13).

in the outer region, irrespective of Ma∞ and Tw. This deviation is reflected by Mo & Gao
(2024) (their figure 1b), and will be improved later.

Considering the collapse of Pr−1
e among cases in terms of ū/ūe, we seek for analytical

relations from (2.10) for further interpretation. After eliminating the viscous parameters,
an equation with separated variables is obtained (see Appendix A for derivations):

(1 − Pr)
Ψū

Ψe − Ψ
= T̄ūū − T̄ūū,w

T̄ū
= Q̄ūū

T̄ū
, Ψ =

∫ ū

0
Π dū, (2.11)

where the left-hand side relates to the velocity, and the right-hand sides correspond to the
TV relation; the subscript ū denotes partial derivatives. If T̄ is a perfect quadratic function
of ū, which is denoted as T̄qd(ū), then the second-order derivative T̄ūū is a constant and
the right-hand sides should remain zero (T̄ūū = T̄ūū,w). This is definitely invalid since the
left-hand side monotonically increases from zero as ū rises. In other words, a quadratic
T̄ (ū) is not supported by the governing equation. Consequently, the non-zero right-hand
side continuously contributes to the deviation of T̄ from a quadratic function, though the
accumulating error may be finally restricted by the enforced outer boundary condition
T̄e. For clarity, we further define a residual temperature Q̄ = T̄ − T̄qd , then Q̄ = 0 means
a perfect quadratic T̄ (ū) (see Appendix A for details). From (2.11), the second-order
derivative of Q̄ relates to Ψ , so Q̄ūū is non-zero except at the wall. However, substituting
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Q̄ into (2.3) and (2.4) results in expressions of Pre and rg as

Pr−1
e = 1 −

(
Q̄

ū2

)
ū

ū2

T̄ū
, rg = Pr − 2cp

Q̄

ū2 . (2.12)

Therefore, the introduction of Q̄ connects the deviation of T̄ from T̄qd with the departure
of Pre from unity and of rg from Pr .

Model improvement is required for laminar boundary layers considering the systematic
deviation of Pre and thus (1.1). The robust distribution of Pr−1

e in figure 2(c) can be
modelled. For convenience of model usage, we provide a curve fitting

Pr−1
e = 2 − [1 − (ū/ūe)

3]−0.1, (2.13)

then (2.4) can be numerically solved. Another source of error besides Pr−1
e is the

estimation of s, required for the wall boundary condition. Unlike in § 2.2, s exhibits a
moderate dependence on Ma∞ and Tw/T̄r , as depicted in figure 3(a). Note that the s
around Tw ≈ T̄r is not displayed because both the numerator and denominator tend to zero
(see (2.5b)); the s there is also of little significance because rg,e ≈ r when Tw ≈ T̄r . The
cold-wall boundary is more frequently encountered than the heated one in realistic high-
speed applications (e.g. Bradshaw (1977); Chen et al. (2022b)). In the former case, s is
generally 1.0–1.2, close to the turbulent counterparts. The temperature predictions using
Pre = 1 (i.e. (1.1)) and the fitted Pre (2.13) are compared in figure 3(b), where s = 1.14 are
used for both. As pointed out above, (1.1) systematically underestimates the temperature
in the outer region (ū � 0.3ūe) at different Ma∞ and Tw/T̄r . In comparison, solving (2.4)
with (2.13) exhibits a notable improvement as expected, which attains a close agreement
with the NS results.

To quantify the prediction accuracy of the TV relation, the relative error to the NS
results,

εT =
∫ ūe

0 |T̄N S − T̄T V |dū∫ ūe
0 T̄N S dū

, (2.14)

is computed. The errors from the two models are compared in figure 3(c) as a function of
Tw/T̄r for Ma∞ = 3, 6, 10. Although rg tends to be wall-normally invariant at low Tw/T̄r ,
the error of (1.1) for colder-wall cases is not lower but higher. At Ma∞ > 5, εT is higher
than 3 % for nearly all Tw/T̄r conditions and its maximum reaches 7 %. In comparison, a
notable reduction in εT is realised by using (2.13) for all the Ma∞ and Tw/T̄r shown. The
improvement is most evident for cold-wall cases where εT are all less than 2 %, which has
practical significance for high-speed realistic applications.

Finally, it is important to explain the different behaviours of rg and Pre between channel
and boundary layer cases. The channel flow is driven by the streamwise pressure gradient,
which is a wall-normal constant, whereas for flat-plate boundary layers, the convection
term acts as the driving force. In the latter case, the convection term is minor near the
wall, so the rough balance between the viscous terms and molecular heat flux leads
to rg ≈ Pr in the near-wall region, as noted above. In contrast, the constant pressure
gradient for channels disrupts the condition for constancy rg (≈ Pr ) near the wall, so
rg exhibits a converse trend that it varies more rapidly close to the wall than in the outer
region. Another region worth discussing is that close to the boundary layer edge or the
channel centreline, where the sensitivity of Pre largely differs between the two cases. For
explanation, the numerator and denominator of Pr−1

e in (2.8) are plotted in figure 4 for
channel, and adiabatic and cold-wall boundary layers. The two curves in the channel case
are nearly linear functions of ū throughout the field. For the two boundary layer cases
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Figure 3. Laminar boundary layer results: (a) contours of the Reynolds analogy factor at different Ma∞ and
Tw/T̄r ; (b) temperature from NS equations, (1.1) and (2.13) for three cases, and (c) the prediction error of T̄ at
different Ma∞ and Tw/T̄r . The notation M4Tw02 in panel (b) denotes Ma∞ = 4, Tw = 0.2T̄r and the same for
the others.

(figures 4b and 4c), however, ∂ T̄ /∂ ū declines dramatically near the edge (ū � 0.8ūe),
leading to the uncertainty and sensitivity of Pre. The sudden mismatch of the two curves
near the edge is due to the thickness difference between the momentum and thermal
boundary layers, i.e. δu �= δT , since Pr �= 1. Therefore, the TV relation is difficult to follow
in the transition region between δu and δT . This transition region does not exist in the
channel case because the thicknesses of the momentum and thermal layers are forced
to be the same, equal to h. In short, two primary factors responsible for the differences
between channel and boundary layers are the spatial distribution of the driving force, and
the thicknesses of the momentum and thermal boundary layers.

2.4. Turbulent boundary layers
In the following, turbulent cases are dealt with using wide elaborated DNS data. For
turbulent boundary layers, 17 DNS cases from five different sources are employed with
Ma∞ from 2 to 14 under cold, adiabatic and heated walls (Tw/T̄r = 0.18−1.9). The
specific parameters and data sources of these cases are listed in table 2.

The mean flow ū and T̄ are employed to compute Pre and rg . The adiabatic and
heated wall cases are considered first, whose Pr−1

e distributions are plotted in figure 5(a).
Here, Pr−1

e is indeed around unity in most regions, which explains the wide success of
(1.1) for these cases. Meanwhile, Pr−1

e declines markedly near the boundary layer edge
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Figure 4. Numerator and denominator of Pr−1
e in (2.8) for (a) laminar channel case Mab = 5, and laminar

boundary layer cases (b) Ma∞ = 5, Tw = T̄r and (c) Ma∞ = 5, Tw = 0.1T̄r . All the curves are normalised by
T̄c/ūc or T̄e/ūe, accordingly.

No. Source Notation Ma∞ Tw/T̄r Θ Reθ Reτ

1 PB M2Tw10R39 2.0 1.0 1.0 6040 1113
2 ZDC M2p5Tw10R17 2.50 1.0 1.0 2835 510
3 PB M3Tw10R18 3.0 1.0 1.0 4340 502
4 PB M4Tw10R21 4.0 1.0 1.0 5910 505
5 ZWLSL M6Tw10R32 6.0 1.0 1.0 20460 622
6 ZWLSL M8Tw10R38 8.0 1.0 1.0 35710 623
7 VBL M2Tw19R3 2.28 1.9 2.84 870 100
8 VBL M5Tw19R7 5.0 1.9 2.06 3900 176
9 VBL M2Tw05R13 2.28 0.5 −0.04 1250 512
10 ZWLSL M4Tw05R20 4.0 0.5 0.32 3328 675
11 VBL M5Tw08R23 5.0 0.8 0.74 6980 685
12 ZDC M6Tw025R11 5.84 0.25 0.13 2121 450
13 ZDC M6Tw076R17 5.86 0.76 0.71 9455 453
14 CSPB M6Tw076R84 5.86 0.76 0.72 29349 1947
15 ZWLSL M8Tw025R20 8.0 0.25 0.18 6465 615
16 ZDC M8Tw048R20 7.87 0.48 0.43 9714 480
17 ZDC M14Tw018R24 13.64 0.18 0.16 14408 646

Table 2. Parameters of the turbulent boundary layer DNS datasets, where Reτ and Reθ are the friction and
momentum-thickness-based Reynolds numbers. The abbreviations for data sources are: PB for Pirozzoli &
Bernardini (2011, 2013); ZDC for Zhang et al. (2018); VBL for Volpiani et al. (2018, 2020); ZWLSL for Zhang
et al. (2022); and CSPB for Cogo et al. (2022). The notation expresses Ma∞, Tw/T̄r and Reδ2 = ρ∞u∞δ99/μ̄w

(divided by 100) with ρ the density and δ99 the nominal thickness.

(ū � 0.9ūe) for all cases, in line with the laminar case in figure 2(c). This is not unexpected
because the flow has become episodic and intermittent near the edge (Zhang et al. 2014),
and the momentum and thermal boundary layers differ in thicknesses as Pr �= 1 (see
§ 2.3). The cold wall cases are considered separately in figure 5(b) because there are
temperature peaks inside the boundary layer, around which Pr−1

e becomes singular due to
the diminishing ∂ T̄ /∂ ū. The Pr−1

e varies dramatically around the temperature peak, but
it becomes close to unity again further away from the wall, the same as in figure 5(a). The
sensitivity examination is similarly conducted as for laminar flows to study the influence of
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Figure 5. Turbulent boundary layer results: effective Prandtl number for (a) adiabatic and heated-wall cases
and (b) cold-wall cases, and (c) general recovery factor and (d) the sensitivity factor for all cases. The legends
(see notation in table 2) are the same for all panels, separately shown in the two boxes.

Pr−1
e variations on T̄ . As shown in figure 5(d), E is mostly amplified at ū � 0.7ūe, where

Pr−1
e is close to unity. Also, the dramatic variation of Pr−1

e near the temperature peak
for cold-wall cases limitedly influences the accuracy of the TV quadratic relation owing to
the relatively low E . The above two facts support the wide accuracy of (1.1) for turbulent
boundary layers.

In addition to Pr−1
e , the rg profiles of all cases are collectively displayed in figure 5(c).

We note that the near-wall rg (at ū � 0.1ūe) can be highly sensitive to ∂ T̄ /∂ ū|w and thus
the post-processing discretisation schemes, because both the numerator and denominator
in (2.2b) and their first-order derivatives are zero at the wall. We use the Chebyshev
collocation point method to compute these derivatives and ensure that the results are grid
independent by increasing Ny up to 401. Using other schemes may lead to different near-
wall rg , but the primary conclusions remain unaltered. For all the cases, rg tends to be
invariant at ū � 0.5ūe, but the near-wall rg rapidly changes, not following constancy.

The velocity and temperature transformations can provide insights into the near-wall
behaviour of rg . The major difference between the temperature transformation and the TV
relation is that, the former is derived from the energy equation (Patel, Boersma & Pecnik
2017; Chen et al. 2022a), while the latter is built upon the analogy between momentum and
energy equations. Therefore, the three relations (two transformations and the TV relation)
firmly connect with each other. We first consider the TL velocity transformation of Trettel
& Larsson (2016) and the semi-local temperature transformation of Chen et al. (2022a). In
the viscous sublayer, these two transformations can reproduce the incompressible scalings
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of velocity and temperature, under the semi-local units. The transformed velocity and
temperature (θ̄ = T̄ − Tw) follow

ū+
T L(y∗) =

∫ y∗

0
μ̄+ ∂ ū+

∂y+ dy∗ ≈ y∗, (2.15a)

θ̄+
SL(y∗) =

∫ y∗

0

y+
y∗

√
ρ̄+ ∂θ̄+

∂y+

1 − ūτ̄w

q̄w

dy∗ ≈ Pr y∗, (2.15b)

where y∗ = y+ρ̄+1/2/μ̄+ is the semi-local coordinate; ū+, ρ̄+, y+, μ̄+ and θ̄+ are
normalised by the wall viscous units uτ = (τ̄w/ρ̄w)1/2, ρ̄w, μ̄w/(ρ̄wuτ ), μ̄w and
Tτ = q̄w/(ρ̄wcpuτ ), respectively. Note that (2.15b) is the re-derived version by Cheng &
Fu (2024a) for channels and boundary layers, essentially the same as the original version
for Couette flows. Also, for adiabatic walls with q̄w ≈ 0 and Tτ ≈ 0, (2.15b) can still
be defined by multiplying the numerator and denominator by a factor q̄w (Chen et al.
2022a). The combination of (2.15a) and (2.15b) yields a simple TV relation (derivation in
Appendix A),

∂θ̄+

∂ ū+ = Pr

(
1 − u2

τ

cpTτ

ū+
)

or
∂ T̄

∂ ū
= Pr

cp

(
q̄w

τ̄w

− ū

)
= ∂ T̄

∂ ū
|w − Pr

cp
ū. (2.16)

Therefore, (2.16) by itself suggests a quadratic relation between T̄ and ū near the wall. An
analytical relation is further obtained by substituting (2.16) into (2.2 a) that rg = Pr in the
viscous sublayer, irrespective of wall thermal boundary conditions (see Appendix A). This
relation results directly from the balance between viscous terms and molecular heat flux,
the same as the laminar case in § 2.3. Nevertheless, the near-wall rg ≈ Pr is not in line with
figure 5(c), so we conclude that the accuracy of these transformations (2.15) is only guar-
anteed integrally. Their point-by-point derivatives may not be accurate enough. Similar
analyses for the buffer and logarithmic layers can be performed using the GFM velocity
transformation of Griffin et al. (2021b), and the temperature transformation of Cheng &
Fu (2024a), which will be used in § 3 to implement a new temperature wall model.

2.5. Turbulent channel flows
The turbulent channel flows are studied using 12 DNS cases with Mab � 4, whose
parameters and data sources are detailed in table 3. As shown in figure 6(a), the rg of
these cases generally experiences a decreasing trend away from the wall, and the Reynolds
number effect on rg is weak. The near-wall rg also does not follow the constancy deduced
from (2.16), i.e. rg ≈ Pr , like the boundary layer cases, though the two transformations
in (2.15) are generally applicable to the channel cases in the viscous sublayer. Moreover,
the centrelines rg (rg,c) all fall within 0.62 ± 0.01 for these cases, which is also reflected
from the weakly varied Θ in table 3 (see (2.5a)). Nonetheless, substituting the T̄c
scaling derived by Song et al. (2022) into (2.5a) suggests a weak dependence of rg,c on
ūc/ūb, as

rg,c = Pr
[
sr − 1.034(1 − s Pr)ūb/ūc

]
. (2.17)

As shown in figure 6(b), Pr−1
e systematically deviates from unity in the middle regime

0.2�ū/ūc�0.7, different from the boundary layer cases in § 2.4. Meanwhile, there is a
pronounced sensitivity of T̄ on Pr−1

e in that region, as seen from figure 6(d), and the
sensitivity (E) rapidly grows with the rise of Mab. Consequently, the quadratic relation
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No. Source Notation Mab Reτ ūc/ūb T̄c/Tw Θ

1 TL M07R4 0.7 440 1.15 1.08 −0.72
2 TL M07R7 0.7 650 1.14 1.08 −0.73
3 YH M08R9 0.8 910 1.14 1.11 −0.73
4 YH M08R17 0.8 1690 1.12 1.11 −0.76
5 YH M15R10 1.5 1030 1.14 1.39 −0.74
6 CF M15R12 1.5 1160 1.14 1.39 −0.74
7 YH M15R19 1.5 1910 1.13 1.39 −0.77
8 TL M17R7 1.7 660 1.15 1.48 −0.72
9 TL M17R10 1.7 970 1.15 1.48 −0.72
10 TL M30R12 3.0 1230 1.15 2.49 −0.72
11 TL M30R19 3.0 1880 1.15 2.49 −0.72
12 TL M40R10 3.9 1020 1.17 3.64 −0.72

Table 3. Parameters of the turbulent channel DNS datasets. The abbreviations for data sources are: TL for
Trettel & Larsson (2016); YH for Yao & Hussain (2020); and CF for Cheng & Fu (2022). The notation expresses
Mab and Reτ (divided by 100). Note that TL uses the power viscous law instead of sutherland’s law.
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Figure 6. Turbulent channel results: (a) general recovery factor; (b) effective Prandtl number; (c) mean
temperature from DNS and (1.1); and (d) the sensitivity factor for different cases. The legends (see notation
in table 3) are the same for panel (a,b,d). The black dashed line in panel (b) is a fitted curve detailed in
Appendix B.
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Figure 7. Numerator and denominator of Pr−1
e in (2.8) for turbulent (a) channel case TL-M30R19, and

boundary layer cases (b) adiabatic PB-M3Tw10R14 and (c) cold-wall ZDC-M6Tw025R11. All the curves are
normalised by T̄c/ūc or T̄e/ūe, accordingly.

(1.1) has a modest deviation (overprediction) in the middle regime, especially for high-
Mab cases, which is clearly demonstrated in figure 6(c). The fact that (1.1) performs
better for turbulent boundary layers than turbulent channel flows is reasonable, because
the constant pressure gradient term in the channel momentum equation hinders the GRA
between momentum and energy equations. For modelling usage, a curve fitting of Pr−1

e in
figure 6(b) can be made, similar to the implementation for (2.13) and figure 3, to improve
the accuracy of the TV relation for turbulent channel flows. A sample is provided in
Appendix B.

Considering the different behaviours of Pre between laminar and turbulent cases, the
numerator and denominator of Pr−1

e in (2.8) for three turbulent cases are plotted in
figure 7, in a similar style to figure 4. For turbulent boundary layers, the major difference
from the laminar counterpart is that ∂ T̄ /∂ ū in figures 4(b) and 4(c) follow more closely
the denominator, until ū ≈ 0.97ūe, so the TV relation is more accurate than the laminar
boundary layers. This enhanced TV connection in the outer region in turbulent cases can
be attributed to the intense wall-normal eddy transport of momentum and energy, and the
strong TV fluctuation coupling of very large scale motions (Jiménez et al. 2010; Pirozzoli
& Bernardini 2011; Cheng & Fu 2023, 2024b).

3. A new temperature wall model
As introduced in § 1, (1.1) has been employed as a temperature wall model for the
inner layer to increase the prediction accuracy of laminar and turbulent mean flows.
Nevertheless, (1.1) is dependent on boundary-layer-edge quantities ūe and T̄e, so this wall
model is less applicable to complicated flow configurations. In this section, we discuss
how to remove the dependence of the temperature wall model on ūe and T̄e for turbulent
boundary layers. In fact, Mo & Gao (2024) has proposed one solution for laminar flows to
remove the usage of ūe and T̄e, but their strategy cannot be directly extended to turbulent
cases. The main difficulties and possible solutions are presented in the following.

The Pre ≈ 1 case is considered first. The introduction of a temperature wall model is
in the same spirit as the velocity counterpart, where the inner layer and outer layer of the
velocity are treated separately for improved scalings of near-wall eddy viscosity (Griffin
et al. 2023; Hasan et al. 2024). Within the frameworks of RANS and WMLES, (1.1) can
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Figure 8. Illustration of the RANS/WMLES frameworks using velocity transformations and temperature wall
models in the inner layer for improved near-wall scalings, following Griffin et al. (2023) and Chen et al. (2024).
y∗

mu and y∗
m are the matching points of streamwise velocity (eddy viscosity) and temperature, respectively.

be employed as a temperature wall model in the inner layer y < ym with ym the matching
point, as illustrated in figure 8. The outer region y > ym is still solved from the RANS
or LES equations (Griffin et al. 2023; Chen et al. 2024). This modelling strategy does
not introduce additional empirical functions and can effectively improve the temperature
prediction, especially for cold-wall cases, compared with the conventional method which
solves the RANS equation in the inner layer with prescribed turbulent Prandtl number
Prt . The reason is that the inner-layer T̄ is sensitive to local Prt , and Prt can dramatically
vary with y and be singular near the wall in boundary layers, especially for cold-wall
cases (Subbareddy & Candler 2012; Chen et al. 2024). Also, the near-wall Prt can change
considerably from case to case, so a universal and simple model of Prt (or the eddy
diffusivity) for boundary layers is not currently available.

Using the field samples at ym , i.e. ūm and T̄m , as the outer boundary condition, the
solution of (2.4) reads

T̄ = Tw + ∂ T̄

∂ ū
|wū

(
1 − ū

ūm

)
+ (T̄m − Tw)

ū2

ū2
m

, (3.1)

so the only unknown is (∂ T̄ /∂ ū)w. Note that for adiabatic walls, (∂ T̄ /∂ ū)w is zero and Tw

is unknown. This case can be converted into an approximately isothermal-wall case with
Tw = T̄r , as adopted by, e.g. Pirozzoli & Bernardini (2011) in their DNS. From the GRA
in § 2.1, (∂ T̄ /∂ ū)w robustly relates to the boundary-layer-edge quantities,

∂ T̄

∂ ū
|w = Pr

cp

q̄w

τ̄w

= ūerg,e

2cp
+ T̄e − Tw

ūe
= s Pr(T̄r − Tw)

ūe
. (3.2)

Equation (3.2) demonstrates where ūe and T̄e are involved in the temperature wall model.
This TV wall model using (3.1) and (3.2) is adopted by Griffin et al. (2023) and Chen et al.
(2024). For laminar flows, Mo & Gao (2024) propose that ūe and T̄e can be excluded by
designing the wall model as a post-processing method, or an inverse problem. This strategy
is built upon the fact that even though the near-wall mesh is coarse, the laminar mean flow
off the wall can be accurately attained using the NS equation, then the temperature wall
model can be used inversely to improve the estimation of the wall temperature gradient.
Specifically, (∂ T̄ /∂ ū)w can be obtained inversely from (3.1) using a coarse-mesh T̄ (three
grid samples to determine the quadratic function), then (3.2) enables accurate recovery of
τw and qw, combined with velocity transformations. Furthermore, since this laminar wall
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model excludes the use of the edge quantities, Mo & Gao (2024) showed that it can be
directly applied to laminar curved-wall cases. For turbulent flows, however, this strategy of
an inverse problem is not applicable due to the inclosure or inaccuracy of near-wall RANS
equations. In other words, (∂ T̄ /∂ ū)w needs to be determined prior to T̄ , so the temperature
wall model should be coupled with the governing equation during the iteration of the flow
field.

Next, we search for alternatives to (3.2) in determining (∂ T̄ /∂ ū)w. A straightforward
thought is to establish relations between (∂ T̄ /∂ ū)w and ūm , T̄m , in a similar form to
(3.2). For example, a simple idea is to directly replace φe (φ denotes variables) in (3.2)
with φm . Unfortunately, the resulting rg,m and sm vary markedly with ym , as inferred
from their wall-normal variations in § 2, which obstructs robust modellings. We provide
another solution by incorporating the temperature transformation in the wall model. Since
the temperature transformation is derived from the energy equation, it provides extra
constraints to the TV relation, hence providing a closure condition. The temperature
transformation of Cheng & Fu (2024a) is employed, which was shown to perform better
in boundary layer cases than other transformations. The transformed temperature for the
inner layer takes the form

θ̄+
S (y∗) =

∫ y∗

0
Φ+

S dy∗ =
∫ y∗

0

√
ρ̄+ ∂θ̄+

∂y∗

1 − ūτ̄w

q̄w

dy∗, (3.3)

which does not involve boundary-layer-edge values; here, Φ+
S is the transformation kernel.

It is worth emphasising that the transformations (2.15b) and (3.3) are derived from the
original unmodelled turbulent energy equation, not from the modelled one involving Prt
models.

Ideally, θ̄+
S (y∗) should collapse with the incompressible counterpart with heat transfer

θ̄+
inc(y+) (Kader 1981; Alcántara-Ávila et al. 2021). It is important to remark that if in

that case, there is no need to compute (∂ T̄ /∂ ū)w and use the TV relation as the wall
model, because the velocity and temperature transformations already constitute a closed
system to compute the inner-layer ū and T̄ . However, unfortunately, current temperature
transformations are not as accurate as the velocity counterparts, especially for cold-wall
cases. A critical challenge is the non-monotonicity of T̄ (y) for cold-wall cases. Based on
the relation of local heat transfer (e.g. Bradshaw, Huang & Launder (1995)), q̄ ≈ q̄w −
ūτ̄w, the denominator in (3.3) (and also (2.15b)) can be zero near the temperature peak
yT̄y = 0 where q̄ ≈ 0, then θ̄+

S is ill-defined or singular. Consequently, the inner-layer T̄ up
to the logarithmic region cannot be constructed as a whole.

A positive result from Cheng & Fu (2024a) is that the two parts of θ̄+
S below and

above the singular point can be constructed separately. For example, the latter part is
formulated as

θ̄+
S (y∗) = θ̄+

ref(y∗(+)

T̄y = 0
) +

∫ y∗

y∗(+)

T̄y = 0

Φ+
S dy∗ for y∗ > y∗(+)

T̄y = 0
, (3.4)

where y∗(+)

T̄y = 0
is a point above y∗̄

Ty = 0
and θ̄+

ref is a reference value discussed later. For

all the datasets in table 2, y∗̄
Ty = 0

falls within or below the buffer layer, so (3.4) can be
constructed for the logarithmic region. Cheng & Fu (2024a) showed that (see their figure
14) the two parts of θ̄+

S (y∗) below and above the singular point can generally match with
θ̄+

inc(y+), respectively. In other words, the match between θ̄+
S and θ̄+

inc are piecewise, in the
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two regions away from y∗̄
Ty = 0

. Particularly, θ̄+
S (y∗) in (3.4) can follow the incompressible

logarithmic scaling of temperature, where their reference point is at y∗ = 50. Note that
very recently, Gibis et al. (2024) presented a comprehensive summary of y∗̄

Ty = 0
for

turbulent boundary layers. They revealed its dependence on Θ and Reτ , and showed that
the temperature peak can move higher into the logarithmic region for strongly cooled walls
(Θ < 0) and high-Reτ (� 104) regions, so then y∗(+)

T̄y = 0
needs to be larger accordingly. As

a result of the match with the incompressible scaling of temperature, a combined strategy
can be designed that we first compute (∂ T̄ /∂ ū)w from a selected point of (3.3), and then
use (3.1) to construct the inner-layer T̄ . This new implementation excludes the usage of
boundary-layer-edge quantities. If Pre ≈ 1 is not followed, the above framework is also
feasible, because (2.4) can be directly solved using a prescribed modelled Pre and the
(∂ T̄ /∂ ū)w from temperature transformations.

The specific expressions are presented below. Since the matching point of a wall
model is usually in the logarithmic layer (see figure 8), we consider the region above
the singular point of θ̄+

S , i.e. (3.4). Considering the piecewise match between θ̄+
S and θ̄+

inc,
the transformation is rewritten in its derivative form, based on (3.3) or (3.4), as

dθ̄+
inc

dy+ ≈ dθ̄+
S

dy∗ = Φ+
S =

√
ρ̄+ ∂ ū+

∂y∗ ∂ T̄
∂ ū

1
Pr

∂ T̄
∂ ū |w − ū

cp

for y∗ > y∗(+)

T̄y = 0
,

where
∂ T̄

∂ ū
= ∂ T̄

∂ ū
|w

(
1 − 2ū

ūs

)
+ (T̄s − Tw)

2ū

ū2
s
.

(3.5)

Here, the expression of ∂ T̄ /∂ ū originates from (3.1), except for using another set of field
samples ūs , T̄s at ys . The point ys just provides a reference to the TV relation, and for
practical use, it can be any point inside or outside (then φs = φe) the boundary layer,
provided ys � ym . Compared with (3.4), the reference value θ̄+

ref is eliminated in (3.5) due
to the derivative operation, hence not required to be specified. Afterwards, (∂ T̄ /∂ ū)w can
be obtained inversely from (3.5) at a single point, using local variables, reference values at
ys and θ̄+

inc. The incompressible reference θ̄+
inc(y+) uses the DNS data of Alcántara-Ávila

et al. (2021), with Reτ up to 5000. The point-by-point derivatives can be sensitive to local
perturbations, so (3.5) is also rewritten into an integral manner to improve robustness, as

θ̄+
inc|y+

20 ≈ θ̄+
S |y∗

20 =
∫ y∗

20

√
ρ̄+ ∂ ū+

∂y∗ ∂ T̄
∂ ū

1
Pr

∂ T̄
∂ ū |w − ū

cp

dy∗. (3.6)

Here, the lower limit of integration is simply set to 20 in the buffer layer, considering
the relatively low y∗̄

Ty = 0
(<20) under the present Θ and Reτ ranges in table 2. In the

following, we first examine a priori the accuracy of (∂ T̄ /∂ ū)w from (3.5) and (3.6)
using the DNS data. Second, we implement the new temperature wall model in RANS
simulations to test a posteriori the temperature prediction.

Chen et al. (2024) found that the temperature wall model is most effective for highly
cooled-wall cases in terms of improving the temperature prediction. Therefore, we also
focus on such wall conditions and follow Gibis et al. (2024) to use Θ instead of Tw/T̄r
to classify different wall-cooling regimes. For the cases in table 2, those with Θ < 0.2
and with 0.2 �Θ < 0.5 are termed severe and modest cooling cases, respectively. We
plot in figure 9 the (∂ T̄ /∂ ū)w computed from (3.5) and (3.6), respectively, for the six
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Figure 9. Ratios of (∂ T̄ /∂ ū)w (a) from (3.5) and (b) from (3.6) to the DNS data for six severe or modest
cooling turbulent boundary layer cases, sorted by Θ . The curves at y/δ99 > 0.2 are plotted by dotted lines.

severe and modest cooling cases. For convenience of inter-case comparisons, the results
are shown in ratios to (∂ T̄ /∂ ū)w from the DNS data. Since the temperature transformation
is not expected to work above the logarithmic region, the curves at y/δ99 > 0.2 are plotted
as dotted lines. As shown in figure 9(a), the accuracy of (3.5) varies dramatically with
y∗. The maximum relative error reaches 30 % for case ZDC-M8Tw048R20. After using
the integral version (3.6), the prediction of (∂ T̄ /∂ ū)w becomes much more robust, and
the relative errors to DNS are all less than 5 % within y∗ < 80 for the severe cooling
cases. Therefore, incorporating the temperature transformation is a viable path to estimate
(∂ T̄ /∂ ū)w without using the boundary-layer-edge values. It is worth mentioning that the
accuracy of (3.6) may be further improved by adding to (3.3) the functions related to high-
order fluctuation terms (Cheng & Fu 2024a). Nevertheless, the simplest form is adopt here
for convenience of modelling usage. Equations (3.1) and (3.6) constitute a new temperature
wall model, which we term a transformation-based wall model.

Finally, we examine the new temperature wall model a posteriori by applying it to our
improved Baldwin–Lomax (BL) algebraic RANS model (Chen et al. 2024), as illustrated
in figure 8. Since our focus is on temperature prediction, the so-called BL-GFM-VD
model is selected as the benchmark one, which uses the GFM and VD (van Driest
1951) velocity transformations for improved scalings of the inner- and outer-layer eddy
viscosity, respectively. On this basis, three models are compared: Model 1 does not use
temperature wall models but prescribes Prt = 0.9 throughout (other choices of Prt have
been discussed by Chen et al. (2024) and do not affect the main conclusions below); Model
2 uses (3.1) and (3.2) as the TV wall model; and Model 3 employs the transformation-based
wall model instead. For the latter two models, the matching point is fixed at y∗

m = 60, to
which T̄ is not sensitive (Chen et al. 2024). The sampling point for Model 3 to compute
(∂ T̄ /∂ ū)w is selected to be y∗ = 80, according to figure 9. The temperature prediction
from these three models is compared with the DNS data in figure 10 for four severe cooling
cases. A fifth case with a modestly cooled wall is also included, aiming to demonstrate that
its higher prediction error of (∂ T̄ /∂ ū)w than the severe cooling cases (see figure 9) has
limited effects on the behaviour of Model 3. As discussed by Chen et al. (2024), the Model
1 results have obvious deviations from DNS for severe cooling cases even though the two
velocity transformations have been incorporated, due to the rapid variation of Prt below
the logarithmic region. Employing the TV wall model (Model 2) effectively improves the
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Figure 10. Temperature predicted by different Baldwin–Lomax models and from DNS for cases
(a) VBL-M2Tw05R13, (b) ZDC-M6Tw025R11, (c) ZWLSL-M8Tw025R20, (d) ZDC-M14Tw018R24 and
(e) ZDC-M8Tw048R20. The first four are severe cooling cases and the fifth one is a modest cooling case.

temperature prediction and attains close agreement with DNS for all the cases shown. The
results between Models 2 and 3 are close to each other, proving that the transformation-
based temperature wall model serves as an ideal alternative to the TV wall model and
successfully excludes the dependence on boundary-layer-edge quantities.

4. Discussions and summary

4.1. Discussions
Zhang et al. (2014) derived and explained Pre as the effective Prandtl number. It is related
to Prt as Pre = Prt/(1 + ε), where ε corresponds to the wall-normal eddy transport of
the residual temperature fluctuation. This residual fluctuation can be difficult to obtain
in simulations and measurements, so the interpretation and examination of Pre have to be
made more from the mean flow perspective. In this work, we show that besides turbulence,
Pre is also significant in determining T̄ in laminar flows, which demonstrates that Pre is
more fundamental than previous belief in describing the TV relation for compressible
flows. In particular, the perfect collapse of Pre for laminar boundary layers over wide
Ma∞ and Tw/T̄r ranges suggests that Pre serves as a robust modelling parameter,
beneficial for constructing highly accurate laminar temperature models (figure 3).

This work also raises the significance of studying temperature transformations. A
previous popular viewpoint is that temperature transformations are of limited interest for
compressible turbulence modelling because the TV relation is already quite accurate.
Nevertheless, as discussed in § 3, the TV relation is not closed by itself because it
is derived from the analogy between the momentum and energy equations, while the
analogy factor is left to be determined. Hence, the TV relation requires two outer boundary
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conditions: one is the outer field samples ūm and T̄m (not necessarily to be the edge; see
(1.1) and (3.1)), and the other is the Reynolds analogy factor (3.2) which firmly relies on
boundary layer edge quantities. This dependence on outer and edge values prevents the
TV wall model from being a true self-determined inner-layer model, at least logically,
and can obstruct its application to complex flow configurations. The combined strategy
proposed in this work actually reaches a compromise between the inclosure of the TV
relation and the inaccuracy of current temperature transformations. We anticipate more
accurate temperature transformations in the future, which will help constitute a more solid
inner-layer wall model, combined with velocity transformations.

Finally, from the turbulent results in §§ 2.4 and 2.5, we note that the near-wall rg may
serve as a means to examine the convergence of DNS data due to its high requirement
to reach convergence. The velocity and temperature transformations can provide part of
the theoretical foundation. Meanwhile, an important issue is raised to the community that
a comprehensive examination is urgently required on the quality (convergence, spectral
resolution, effects of numerical schemes, etc.) of established DNS datasets.

4.2. Summary
In this work, we revisit the compressible mean TV relation for both laminar and turbulent
flows, considering both channels and boundary layers. A wide range of DNS datasets are
employed for a comprehensive evaluation. We inspect two primary parameters, rg and
Pre, which are fundamental in the GRA deduced by Zhang et al. (2014) and in deriving
the quadratic TV relation (1.1). Our efforts are on three aspects: explain the success of the
TV relation where it works, improve its accuracy where it deviates and relax its limitation
as a wall model by removing the dependence on boundary-layer-edge quantities.

The basic TV relations and related parameters turn out to be universal for the four
configurations (§§ 2.2–2.5), indicative of some fundamental resemblance between laminar
and turbulent flows. Common observations are summarised as follows. First, rg is not
a constant and has at least modest wall-normal variations in most cases, in contrast to
the model assumption. Second, Pre is more critical than rg in determining the shape of
T̄ , and is less sensitive than rg to flow conditions. Third, the sensitivity study designed
on Pre is effective in explaining the success and failure of (1.1) in specific regions. For
laminar channels, we show that (1.1) with fixed s is highly accurate at different Mab.
For laminar boundary layers, we find that the quadratic TV relation has a systematic
deviation (over-estimation) in temperature prediction, due to the systematic departure of
Pre from unity. The Pr−1

e (ū/ūe) turns out to exhibit a universal distribution irrespective
of Ma∞ and Tw/T̄r . Therefore, the prediction accuracy of T̄ is significantly improved
(figure 3) after introducing a curve fit of Pr−1

e (ū/ūe), especially for cold-wall cases.
The quadratic TV relation is generally accurate for turbulent boundary layers and channel
flows, as widely reported before. Nevertheless, we note that Pr−1

e has a modest systematic
deviation from unity in the middle regime for channel cases, which results in modest
temperature overprediction in that region; this overprediction can be reduced by using
an improved description of Pr−1

e . The velocity and temperature transformations can assist
to understand the near-wall behaviour of rg , which may also serve as a criterion to examine
the convergence of DNS data.

Finally, we discuss the strategies to exclude the boundary-layer-edge quantities in
turbulent temperature wall models. This is significant for expanding the applicability of
the wall model because the boundary layer edge may not be easily determined in complex
flows. The edge quantities are involved in the Reynolds analogy scaling to determine the
wall boundary condition (∂ T̄ /∂ ū)w. As a means to exclude the dependence on the edge
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quantities, we propose to employ the temperature transformation of Cheng & Fu (2024a)
in the logarithmic region to close the TV relation. A priori examination using the DNS
data proves that the temperature transformation can accurately recover (∂ T̄ /∂ ū)w for cold-
wall boundary layer cases. Moreover, a posteriori examination in our improved BL model
demonstrates that the new transformation-based wall model can improve the mean flow
prediction compared with those without temperature wall models (using prescribed Prt )
for severe cooling cases (Θ < 0.2), and it serves as an ideal alternative to the original TV
wall model.

Future attention will be paid on possible extensions of the modified models to more
complex configurations and their behaviours in the flows with moderate pressure gradients.
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Appendix A. Derivations for laminar and turbulent boundary layers
First, we present the derivation of (2.11). Equation (2.10) can be rewritten as

− Π

2
= (C1ūη)ū =

(
C1

ηū

)
ū
,

1
Pr

(
C1

ηū
T̄ū

)
ū
− T̄ū

(
C1

ηū

)
ū
+ 1

cp

C1

ηū
= 0. (A1)

Then, the coefficient C1/ηū is solved as

C1

ηū
= C1,w

ηū,w

− Ψ

2
= Ψe − Ψ

2
, with Ψ ≡

∫ ū

0
Π dū. (A2)

As a result, the viscous parameters can be eliminated by substituting (A2) into (A1) as

(1 − Pr)T̄ūΨū = (T̄ūū + Pr/cp)(Ψe − Ψ ). (A3)

The wall boundary condition Ψū,w = Πw = 0 leads to T̄ūū,w = −Pr/cp, so (2.11) is
arrived after a separation of variables. In addition, the perfect quadratic function T̄qd(ū)

reads

T̄qd(ū) = Tw + T̄ū,wū + T̄ūū,w

2
ū2, (A4)

which is subject to three wall boundary conditions T̄qd |w = Tw, T̄qd,ū |w = T̄ū,w and
T̄qd,ūū |w = T̄ūū,w. As a result, the Q̄-related expressions in (2.11) and (2.12) are obtained.
Afterwards, the wall limit of rg is derived. The numerator and denominator of (2.2b) and
their first-order derivatives are all zero at the wall, so the wall limit is obtained by using
L’Hôpital’s rule twice, as rg,w = −cpT̄ūū,w, which simply equals to Pr .
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(a) (b)

Figure 11. Relative error of the TV relations using different Pre models to the DNS data for turbulent channel
cases: (a) error relative to T̄DN S , and (b) error relative to (T̄DN S − Tw); see (B2a,b). The case numbers are
defined in table 3. The horizontal dashed lines are the averaged errors of all cases.

The derivation of (2.16) is next presented. From (2.15), the first-order derivatives of ū+
T L

and θ̄+
SL in the viscous sublayer are

∂ ū+
T L

∂y∗ = μ̄+ ∂ ū+

∂y+ ≈ 1 ≈ 1
Pr

∂θ̄+
SL

∂y∗ = 1
Pr

y+
y∗

√
ρ̄+ ∂θ̄+

∂y+

1 − ūτ̄w

q̄w

. (A5)

As a result, (2.16) and rg = Pr are obtained after some simple algebra. This near-wall
limit of rg is the same as the laminar case. Similar derivations regarding the combination
of velocity and temperature transformations were also provided by Chen et al. (2022a) for
Couette flows, though they used Walz’s equation instead of (1.1).

Appendix B. An improved fitting of Pre for turbulent channel flows
As discussed in § 2.5, an improved distribution of Pre can raise the accuracy of the TV
relation for turbulent channel flows. Due to the scattering of Pre in figure 6(b) for different
cases, an optimal model for Pre is not currently available. Therefore, we provide a simple
curve fitting of the mean Pr−1

e for these cases, as a demonstration of the possible strategies
for model improvement. Using a third-order rational polynomial function, the mean Pr−1

e
is fitted as

Pr−1
e

(
ū

ūc
≡ x

)
= 1 − ∑3

n=1 anxn

1 − ∑3
n=1 bnxn

, where
{

a1 = 3.605, a2 = −4.432, a3 = 1.826,

b1 = 3.434, b2 = −4.030, b3 = 1.588.

(B1)
The fitted curve is plotted in figure 6(b) as the black dashed line for reference.

Now, the accuracy of two TV relations is compared: the first relation solves (2.4) with
Pre = 1, leading to the quadratic relation (1.1); the second relation numerically solves (2.4)
with (B1). Two types of errors are defined to measure their prediction accuracy relative to
the DNS data:

εT,c =
∫ ūc

0 |T̄T V − T̄DN S| dū∫ ūc
0 T̄DN S dū

, εT,w =
∫ ūc

0 |T̄T V − T̄DN S| dū∫ ūc
0 (T̄DN S − Tw) dū

. (B2a,b)

As shown in figure 6(c), the T̄ variation relative to T̄c is small for low-Mab cases, which
may conceal the error of the TV relation, so the second type εT,w is introduced for better
inter-case comparisons. The distributions of εT,c and εT,w for the 12 cases in table 3, sorted
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by Mab and Reτ , are plotted in figure 11. As discussed above, εT,c generally increases with
the rise of Mab due to stronger T̄ variations, whereas εT,w is more uniform among cases
and thus more strictly measures the errors at low Mab. Compared with the errors with
Pre = 1, the Pre model (B1) reduces εT,c and εT,w in most cases, suggesting improved
accuracy of the TV relation. As an overall measure, the mean εT,c and εT,w for all cases
are reduced from 0.6 % and 2.4 % to 0.2 % and 1.1 %, respectively.
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