## Parasitology

Symposia of the British Society for Parasitology Volume 31

### Functional molecules on the surface of protozoan parasites

EDITED BY J. E. SMITH

CO-ORDINATING EDITOR L. H. CHAPPELL

CAMBRIDGE UNIVERSITY PRESS

**Subscriptions** may be sent to any bookseller or subscription agent or direct to the publisher: Cambridge University Press, The Edinburgh Building, Shaftesbury Road, Cambridge CB2 2RU. Subscriptions in the USA, Canada and Mexico should be sent to Cambridge University Press, Journals Department, 40 West 20th Street, New York, NY 10011-4211. All orders must be accompanied by payment. The subscription price (excluding VAT) of volumes 108 and 109, 1994 is £240 (US \$460 in the USA, Canada and Mexico), payable in advance, for ten parts plus supplements; separate parts cost £22 or US \$41 each (plus postage). EU subscribers (outside the UK) who are not registered for VAT should add VAT at their country's rate. VAT registered subscribers should provide their VAT registration number. Japanese prices for institutions (including ASP delivery) are available from Kinokuniya Company Ltd, P.O. Box 55, Chitose, Tokyo. Second class postage paid at New York, NY and at additional mailing offices. POSTMASTER : send address changes in USA, Canada and Mexico to *Parasitology*, Cambridge University Press, 110 Midland Avenue, Port Chester, New York, NY 10573-4930.

© Cambridge University Press 1994

The Pitt Building, Trumpington Street, Cambridge CB2 1RP 40 West 20th Street, New York, NY 10011–4211, USA 10 Stamford Road, Oakleigh, Melbourne 3166, Australia

Printed in Great Britain by the University Press, Cambridge

## Parasitology

Symposia of the British Society for Parasitology Volume 31

# Functional molecules on the surface of protozoan parasites

EDITED BY J. E. SMITH

CO-ORDINATING EDITOR L. H. CHAPPELL



#### Contents

| Preface                                        | <b>S</b> 1 |
|------------------------------------------------|------------|
| List of contributions                          | S3         |
| Proteins on the surface of the malaria         |            |
| parasite and cell invasion                     | S5         |
| Summary                                        | S5         |
| Introduction                                   | S5         |
| Features of surface proteins                   | S5         |
| Proteins stably expressed on the surface of    | ~-         |
| the parasite                                   | S5         |
| Proteins exported from secretory organelles    | S6         |
| Identification of functional structures in     | ~ .        |
| malaria surface proteins                       | S6         |
| A sulphated glycoconjugate-binding motif       | S6         |
| Epidermal growth factor modules                | S6         |
| Sporozoite proteins and hepatocyte invasion    | S7         |
| The circumsporozoite protein (CSP)             | <b>S</b> 7 |
| Region II in CSP mediates binding to           |            |
| sulphated sugars                               | <b>S</b> 8 |
| CSP interacts with specific cells and this is  |            |
| mediated by heparan sulphate                   | ~ ~        |
| proteoglycans                                  | S9         |
| Sporozoite surface protein-                    |            |
| 2/thrombospondin-related (SSP-                 | ~          |
| 2/TRAP) anonymous protein                      | S10        |
| Roles for CSP and SSP-2/TRAP in                | <b>.</b>   |
| sporozoite invasion?                           | S11        |
| Merozoite proteins and erythrocyte invasion    | S11        |
| Proteins on the surface of the merozoite       | S11        |
| Merozoite surface protein-1 (MSP-1)            | S11        |
| MSP-1 is processed on the merozoite            | <b>.</b>   |
| surface                                        | S12        |
| Antibodies to MSP-1 block invasion             | S12        |
| Different parasites use different receptors on | ~          |
| the erythrocyte surface                        | S12        |
| Red cell surface receptors                     | S13        |
| Erythrocyte binding proteins                   | S13        |
| Structure of the erythrocyte binding           | <b>.</b> . |
| proteins                                       | S14        |
| Location of the erythrocyte binding            |            |
| proteins                                       | S14        |
| What is the function of the erythrocyte        |            |
| binding proteins?                              | S14        |
| Conclusion                                     | S15        |
| References                                     | S15        |
|                                                |            |

| Molecular mechanisms of sequestration            |     |
|--------------------------------------------------|-----|
| in malaria                                       | S19 |
| Introduction                                     | S19 |
| Biological and clinical aspects of infected cell |     |
| adhesion                                         | S19 |

| Molecular mechanisms of sequestration         | S20 |
|-----------------------------------------------|-----|
| Clinical implications of molecular studies    | S22 |
| Recent experimental advances                  | S23 |
| Rosetting                                     | S23 |
| Ligands and antigens on the infected cell     |     |
| surface                                       | S23 |
| Clinical implications of phenotypic variation | S23 |
| Conclusions                                   | S24 |
| Acknowledgements                              | S26 |
| References                                    | S26 |
|                                               |     |

#### Mutational and functional analysis of the Leishmania metalloproteinase GP63: similarities to matrix

| metalloproteinases                              | S29 |
|-------------------------------------------------|-----|
| Summary                                         | S29 |
| Introduction                                    | S29 |
| Analysis of the catalytic site of L. major      |     |
| GP63                                            | S30 |
| Activation of latent metalloproteinase activity |     |
| of L. major rGP63                               | S31 |
| Generation of Leishmania GP63-deficient         |     |
| mutants by homologous recombination             | S32 |
| References                                      | S35 |

#### Trans-sialidase, SAPA amino acid repeats and the relationship between

#### Trypanosoma cruzi and the S37 mammalian host S37 Summary S37 Introduction Which T. cruzi molecules induce an antibody S38 response in natural human infections? Do the amino acid repeats occur in proteins S38 that are essential for parasite survival? SAPA/TS/NA as an antigen with enzymic S38 activity S39 A mucin-like glycoprotein in T. cruzi Amino acid repeats in SAPA/TS/NA and the core protein of a putative mucin-like glycoprotein have different functions S40 A superfamily of T. cruzi surface antigens S40 Antigens, enzymes and the host-parasite S41 relationship: conclusions S42 Acknowledgements S42 References

| Glycosyl-phosphatidylinositol molecules |     |
|-----------------------------------------|-----|
| of the parasite and the host            | S45 |
| Summary                                 | S45 |
| Introduction                            | S45 |
| GPI structure                           | S45 |

#### Contents

| The molecular architecture of the     |     |
|---------------------------------------|-----|
| kinetoplastid cell surface            | S45 |
| The mammalian stages                  | S46 |
| The insect stages                     | S46 |
| Inhibitors of GPI-anchor biosynthesis | S49 |
| Enzyme purification                   | S52 |
| Mechanistic enzymology                | S52 |
| Future work                           | S52 |
| Acknowledgements                      | S52 |
| References                            | S53 |
|                                       |     |

#### The role of lipophosphoglycan of Leishmania in vector biology

| Leishmania in vector biology           | S55 |
|----------------------------------------|-----|
| Summary                                | S55 |
| Introduction                           | S55 |
| Metacyclogenesis in Leishmania         |     |
| promastigotes                          | S56 |
| The lipophosphoglycan of Leishmania    |     |
| promastigotes                          | S56 |
| Developmental polymorphisms of LPG     | S58 |
| Species-specific LPG polymorphisms and |     |
| vector competence                      | S59 |
| References                             | S60 |

| Characterization of phosphoglycan-           |     |
|----------------------------------------------|-----|
| containing secretory products of             |     |
| Leishmania                                   | S63 |
| Summary                                      | S63 |
| Introduction                                 | S63 |
| The 'excreted factor'                        | S63 |
| Lipophosphoglycan at the promastigote cell   |     |
| surface                                      | S64 |
| Characterization of components released into |     |
| the promastigote culture supernatant         | S64 |
| Lipophosphoglycan and phosphoglycan          | S64 |
| Secreted acid phosphatase from               |     |
| L. donovani and L. mexicana                  | S66 |
| sAP from L. mexicana is a filamentous        |     |
| polymer                                      | S66 |
| Fibrous networks                             | S67 |
|                                              |     |

| Proteo-HMWPG is released from                  |     |
|------------------------------------------------|-----|
| amastigotes into the parasitophorous           |     |
| vacuole of macrophages                         | S68 |
| Synopsis and some speculations                 | S68 |
| Acknowledgements                               | S69 |
| References                                     | S69 |
| Biochemistry and molecular genetics of         |     |
| Leishmania glucose transporters                | S73 |
| Summary                                        | S73 |
| Introduction                                   | S73 |
| Biochemistry of glucose transport in           |     |
| Leishmania                                     | S74 |
| Glucose catabolism                             | S74 |
| Glucose transport                              | S74 |
| Glucose transport in promastigotes             |     |
| compared to amastigotes                        | S75 |
| Inhibition studies and identification of a     |     |
| potential glucose transporter protein          | S76 |
| Structure of glucose transporters in           |     |
| eukaryotes and prokaryotes                     | S76 |
| Facilitated and active transporters            | S76 |
| Structure of the facilitated glucose           |     |
| transporters                                   | S77 |
| Leishmania genes encoding members of the       |     |
| glucose transporter family                     | S77 |
| Identification of the Pro-1 glucose            |     |
| transporter gene from Leishmania               |     |
| enriettii                                      | S77 |
| Genomic arrangement of Pro-1 genes             | S78 |
| Possible functions of different isoforms       | S79 |
| Isolation of genes for two related             |     |
| transporters from L. donovani                  | S80 |
| Genes for glucose transporter-like proteins in |     |
| other trypanosomatids                          | S80 |
| Trypanosoma brucei                             | S80 |
| Trypanosoma cruzi                              | S80 |
| Conclusion                                     | S81 |
| References                                     | S82 |
|                                                |     |