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Abstract. In this paper we use an example of Mukai to construct semistable
bundles of rank 3 with six independent sections on a general curve of genus 9 or 11
with Clifford index strictly less than the Clifford index of the curve. The example also
allows us to show the non-emptiness of some Brill–Noether loci with negative expected
dimension.

2000 Mathematics Subject Classification. Primary 14H60

1. Introduction. Mukai stated in Proposition 2 in [13] that if C is a non-
pentagonal curve of genus 9, then there exists a unique stable bundle E of rank 3
and determinant KC with h0(E) = 6 (actually Mukai said ‘quasi-stable’, which is what
is now usually called ‘polystable’, but since deg E = 16 is coprime to 3, this implies
that E is stable). Computing the Clifford index γ (E) as defined in [6] gives

γ (E) = 1
3

(16 − 6) = 10
3

.

Since C has Clifford index Cliff(C) = 4, this contradicts the conjecture in [12] (see also
Conjecture 9.3 in [6]). It further shows that the Brill–Noether locus B(3, 16, 6), which
has ‘expected dimension’ −11, is non-empty. It also sheds light on the main result of
[8], which implies that any semistable bundle of rank 3 with h0 = 6 on C has degree
≥15; in fact such a bundle of degree 15 cannot exist (see Proposition 5.2 and Comment
1), so Mukai’s bundle has the minimum possible degree for a semistable bundle of rank
3 with h0 = 6.

In fact, [13] contains no proofs. The above result is proved in [14], except that the
stability of E is only indicated in Remark 5.7(2) in [14] (the full proof may be found
in the addendum [15]). In this paper, we give a complete proof, show that a similar
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result holds for genus 11 and consider possible generalisations and extensions. In the
main theorem (Theorem 3.6) we give general conditions under which the Clifford index
Cliffn(C) defined in [6] is strictly smaller than Cliff(C) either for n = 2 or n = 3. The
methods for the most part are those of Mukai.

In a postscript, we comment on developments since this paper was completed.
We would like to thank the referee for some helpful comments.

2. Background and preliminaries. Let C be a smooth projective curve of genus
g ≥ 4 defined over an algebraically closed field of characteristic zero. We denote by KC

the canonical line bundle on C. In [6], the classical Clifford index Cliff(C) of C was
generalised to semistable bundles in two different ways, only one of which is needed in
this paper. First we define for any vector bundle E of rank n and degree d,

γ (E) := 1
n

(
d − 2(h0(E) − n)

) = μ(E) − 2
h0(E)

n
+ 2,

where μ(E) = d
n . Then the Clifford index Cliffn(C) is defined by

Cliffn(C) := min
E

{
γ (E)

∣∣∣∣∣
E semistable of rank n

h0(E) ≥ 2n, μ(E) ≤ g − 1

}

(this invariant is denoted by γ ′
n in [6–10]). We say that a bundle E contributes to Cliffn(C)

if it is semistable of rank n with μ(E) ≤ g − 1 and h0(E) ≥ 2n and that E computes
Cliffn(C) if in addition γ (E) = Cliffn(C). Note that Cliff1(C) = Cliff(C).

A conjecture was made in [12] concerning the maximum value of h0(E) for E,
a semistable bundle of any given rank and degree; the most important part of this
conjecture can be stated as follows.

CONJECTURE (Conjecture 9.3 in [6]). Cliffn(C) = Cliff(C).

The main purpose of this paper is to give examples to show that this conjecture
can fail. For this purpose we use a bundle of rank 3 on a curve of genus 9 constructed
by Mukai (see [13–15]). We show that the construction works also for genus 11.

In the remainder of this section, we introduce some notation that we shall need.
First we recall the gonality sequence d1, d2, . . . , dr, . . . of C defined by

dr := min{deg L | L a line bundle on C with h0(L) ≥ r + 1}.

Note that a line bundle L of degree dr with h0(L) ≥ r + 1 in fact has h0(L) = r + 1 and
is generated by its sections, so we have an exact evaluation sequence

0 → E∗ → H0(L) ⊗ OC → L → 0. (1)

The bundle E is often called the dual span of L. Note that Cliff(C) is the minimum
value of dr − 2r taken over all r for which dr ≤ g − 1. We shall say that dr computes
Cliff(C) if dr ≤ g − 1 and dr − 2r = Cliff(C). The numbers dr satisfy the inequalities

dr ≤ g + r −
[

g
r + 1

]
(2)
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with equality if C is a Petri curve, that is, a curve for which the multiplication map

H0(L) ⊗ H0(L∗ ⊗ KC) −→ H0(KC)

is injective for every line bundle L on C. It is important to note that the general curve
of any given genus is a Petri curve (see, for example [11]).

We need also to recall the definitions of the higher rank Brill–Noether loci (see [5]
for a survey of the theory and [1] for the notations we use here). Let M(n, d) denote the
moduli space of stable bundles of rank n and degree d on C. For any positive integer
k, the Brill–Noether locus, B(n, d, k), is defined by

B(n, d, k) = {E ∈ M(n, d) | h0(E) ≥ k}.

For every irreducible component Z of B(n, d, k), we have

dim Z ≥ β(n, d, k) := n2(g − 1) − k(k − d + n(g − 1)).

The number β(n, d, k) is often called the expected dimension of B(n, d, k).
Throughout the paper, C will denote a smooth projective curve of genus g and

Clifford index Cliff(C) ≥ 3 (hence, g ≥ 7 by (2)) defined over an algebraically closed
field of characteristic zero. For a vector bundle G on C, the rank and degree of G will
be denoted by rG and dG, respectively.

The following lemma of Paranjape–Ramanan will be used on several occasions.

LEMMA 2.1. Let E be a vector bundle on C of rank n ≥ 2 with h0(E) = n + s (s ≥ 1)
such that E possesses no proper subbundle F with h0(F) > rF . Then h0(det E) ≥ ns + 1
and so dE ≥ dns.

Proof. This is a restatement of Lemma 3.9 in [17]. �

3. The main theorem. Let C be a smooth curve with Cliff(C) ≥ 3 and n an integer,
n ≥ 3. We begin by taking two line bundles L1, L2 on C of degree dn−1 with h0(Li) = n.
Let Ei denote the dual span of Li (see (1)), so we have exact sequences

0 → E∗
i → H0(Li) ⊗ OC → Li → 0. (3)

LEMMA 3.1. Suppose dp

p ≥ dp+1

p+1 for all p < n − 1 and dn−1 
= (n − 1)d1. Then, Ei is
semistable and h0(Ei) = n for i = 1, 2.

Proof. Dualising (3), we see at once that h0(Ei) ≥ n. The result now follows from
Proposition 4.9(d) and Theorem 4.15(a) in [6]. �

Now consider non-trivial extensions

0 → E1 → E → L2 → 0. (4)

Note that, if the hypotheses of Lemma 3.1 hold, then h0(E1) = h0(L2) = n, so h0(E) ≤
2n.

LEMMA 3.2. Suppose that h0(E1) = n. Then there exists a non-trivial extension (4)
with h0(E) = 2n if and only if h0(E2 ⊗ E1) > n2.
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Proof. Clearly h0(E) = 2n if and only if all sections of L2 lift to E. We consider
the dual of the sequence (3) for i = 2 tensored by E1. If α : L2 → E1 is a non-zero
homomorphism, then H0(L2) ⊂ H0(E1). Since both spaces have dimension n, it follows
that all sections of E1 have the form α ◦ s for some s ∈ H0(L2), contradicting the fact
that E1 is generated. So H0(L∗

2 ⊗ E1) = 0 and, taking cohomology, we obtain an exact
sequence,

0 → H0(L2)∗ ⊗ H0(E1)
ψ→ H0(E2 ⊗ E1) → H1(L∗

2 ⊗ E1)
ϕ→ H0(L2)∗ ⊗ H1(E1). (5)

An extension (4) has the property that all sections of L2 lift if and only if its class is in
ker ϕ. So there exists such an extension with this property if and only if ψ fails to be
surjective. Since H0(L2)∗ ⊗ H0(E1) has dimension n2, the result follows. �

LEMMA 3.3. Suppose E is as in Lemma 3.2. If γ (E) < Cliff(C), then 2dn−1 < nd1.
Conversely, if d1 computes Cliff(C) and 2dn−1 < nd1, then γ (E) < Cliff(C).

Proof. We have γ (E) = 1
n (2dn−1 − 2n) = 2dn−1

n − 2. Since Cliff(C) ≤ d1 − 2 with
equality if d1 computes Cliff(C), the result follows. �

LEMMA 3.4. Suppose C is a Petri curve of genus g ≥ 7 and n ≥ 3. Then 2dn−1 < nd1

except when n = 3, g = 8, 10, 14.

Proof. This follows by direct computation from the formulae for dr (see (2)). �
PROPOSITION 3.5. Suppose that d1 computes Cliff(C), 3d1 ≥ 2d2 and Cliff2(C) =

Cliff(C). Suppose further that n = 3 and the extension (4)

0 → E1 → E → L2 → 0

is non-trivial with h0(E) = 6. Then E is semistable.

Proof. Suppose first that F is a subbundle of E of rank 2 contradicting semistability.
Then dE/F < 2d2

3 . Since E is generated with h0(E∗) = 0, the same holds for E/F , so
E/F 
 O and hence h0(E/F) ≥ 2 and dE/F ≥ d1. This contradicts the hypothesis 3d1 ≥
2d2.

Now suppose there is no subbundle of rank 2 contradicting semistability, but that
L is a line subbundle with dL > 2d2

3 . If E/L is not stable, we can pull back a line
subbundle of E/L to get a subbundle F of E of rank 2 with

dF ≥ 1
2

dE/L + dL = 1
2

(dE + dL) >
4d2

3
.

This is a contradiction, so E/L is stable. Since L 
⊂ E1 and (4) is assumed non-trivial,
we have dL < d2. So h0(L) ≤ 2 and h0(E/L) ≥ 4. It follows that E/L contributes to
Cliff2(C), so

dE/L ≥ 2 Cliff2(C) + 4 = 2 Cliff(C) + 4 = 2d1. (6)

But dE/L < 4d2
3 , so this again contradicts the hypothesis 3d1 ≥ 2d2. �

THEOREM 3.6. Suppose C is a curve for which d1 computes Cliff(C), 3d1 > 2d2 and
there exist L1, L2 of degree d2 with h0(Li) = 3 for which h0(E2 ⊗ E1) > 9. Then either
Cliff2(C) < Cliff(C) or Cliff3(C) < Cliff(C).
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Proof. This follows from Lemmas 3.1, 3.2 and 3.3 and Proposition 3.5. �
REMARK 3.7. Suppose that all the hypotheses of Proposition 3.5 hold except that

Cliff2(C) < Cliff(C). Then Cliff(C) ≥ 5 by Proposition 3.8 in [6] and hence g ≥ 11;
moreover, by Theorem 5.2 in [6], we have Cliff2(C) ≥ d4

2 − 2. It follows that the proof
of the proposition is valid except that (6) must be replaced by

dE/L ≥ d4. (7)

If 3d4 ≥ 4d2, this contradicts the assumption that E is not semistable.

COROLLARY 3.8. Suppose C is a curve for which d1 computes Cliff(C), 3d1 > 2d2,
3d4 ≥ 4d2 and there exist L1, L2 of degree d2 with h0(Li) = 3 for which h0(E2 ⊗ E1) > 9.
Then Cliff3(C) < Cliff(C).

Proof. This follows from the proof of Theorem 3.6 and Remark 3.7. �
REMARK 3.9. The assumption 3d4 ≥ 4d2 holds for Petri curves of genus 12, 13,

14, 15, 18, 19 and 24 (also for genus ≤ 10, but in this case Cliff2(C) = Cliff(C), so the
corollary does not lead to any improvement).

4. Curves of genus 9 and 11. To find examples of curves for which Cliff3(C) <

Cliff(C), it remains only to choose C suitably and then show that there exist L1, L2 as
in the statement of Theorem 3.6 such that h0(E2 ⊗ E1) > 9.

For g = 9, Mukai (Proposition 1.2 in [14]) proves this by a very special argument,
which works also for g = 11. This is based on a result of Mumford [16]; for completeness
and in view of possible generalisations, we give a proof using only Mumford’s result.

PROPOSITION 4.1. With the notations of the previous section, suppose n = 3 and
let C be a Petri curve of genus 9 or 11. Then there exist E1, E2 as above such that
h0(E2 ⊗ E1) > 9.

Proof. Note first (see (2)) that d2 = g + 2 − [ g
3

] = g − 1 in both cases. Take any
line bundle L1 of degree d2 with h0(L1) = 3 and put L2 = L∗

1 ⊗ KC . Then dL2 = d2 and
h0(L2) = 3. Moreover,

det E1 ⊗ det E2  L1 ⊗ L2  KC .

The canonical homomorphism

(E2 ⊗ E1) ⊗ (E2 ⊗ E1) →
2∧

E2 ⊗
2∧

E1  KC

defines a KC-valued quadratic form Q on E2 ⊗ E1. Now let L be a line subbundle of
E1, put M = E1/L and consider the family of extensions

0 → L → F → M → 0

with L and M fixed. Tensoring by E2, we obtain a family

0 → E2 ⊗ L → E2 ⊗ F → E2 ⊗ M → 0. (8)
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The quadratic form Q extends to a quadratic form on the family (8). It follows from
the theorem in [16] (see Application (5) p. 186 in [16]) that

h0(E2 ⊗ E1) ≡ h0(E2 ⊗ L) + h0(E2 ⊗ M) mod 2.

On the other hand, by Serre duality and Riemann–Roch,

h0(E2 ⊗ L) + h0(E2 ⊗ M) = h0(E2 ⊗ L) + h1(E2 ⊗ L) ≡ deg E2 mod 2.

Now deg E2 = g − 1 is even, so h0(E2 ⊗ E1) is also even. The result now follows from
(5). �

REMARK 4.2. The only place where C being Petri is used here is in the requirement
that d2 = g − 1. For genus 9, this is true whenever Cliff(C) takes its maximum value
4. In fact, we have in this case d2 ≥ Cliff(C) + 4 = 8 and (by (2)) d2 ≤ g + 2 − [ g

3 ] = 8.
We have also d1 = 6 (in the language of Mukai’s papers, C is ‘non-pentagonal’) and
hence 3d1 > 2d2.

THEOREM 4.3. Let C be a curve of genus 9 with Clifford index Cliff(C) = 4. Then
(i) Cliffr(C) < Cliff(C) whenever r is divisible by 3;

(ii) 3 ≤ Cliff3(C) ≤ 10
3 ;

(iii) the expected dimension of the Brill–Noether locus B(3, 16, 6) is −11, but this locus
is non-empty.

Proof. (i) If r is divisible by 3, Cliffr(C) ≤ Cliff3(C) by Lemma 2.2 in [6], so it is
sufficient to prove that Cliff3(C) < Cliff(C). When Cliff(C) = 4, we have Cliff2(C) =
Cliff(C) by Proposition 3.8 in [6]. The result now follows from Theorem 3.6, Proposition
4.1 and Remark 4.2.

(ii) By Propositions 4.1 and 3.5, there exists a semistable bundle E of rank 3 and
degree 2d2 = 16 with h0(E) = 6. Hence, γ (E) = 10

3 , so Cliff3(C) ≤ 10
3 . On the other

hand, by Theorem 4.1 in [8], Cliff3(C) ≥ 3.
(iii) We have β(3, 16, 6) = 9g − 8 − 6(6 − 16 + 3g − 3) = −11. The bundle E is

semistable and therefore stable since gcd(3, 16) = 1, so B(3, 16, 6) 
= ∅. �
For g = 11, there is more work to do. For a Petri curve of genus 11, we have

Cliff(C) = 5 and d4 = 13. It follows from Theorem 5.2 in [6] that

9
2

≤ Cliff2(C) ≤ 5. (9)

We wish to investigate the possibility that Cliff2(C) = 9
2 . We begin with a lemma which

generalises part of Theorem 5.2 in [6].

LEMMA 4.4. Let C be any smooth curve and F a semistable bundle of rank 2 and
slope μ(F) ≤ g − 1 on C with h0(F) = n + s, s > 0. Then

γ (F) ≥ min
{

Cliff(C),
d2s

2
− s

}
.

Proof. If F has a line subbundle L with h0(L) ≥ 2, then, as in the first part of
the proof of Theorem 5.2 in [6], we have γ (F) ≥ Cliff(C). Otherwise, by Lemma 2.1,
dF ≥ d2s, giving γ (F) ≥ d2s

2 − s. �
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PROPOSITION 4.5. Let C be a curve of genus 11 with Cliff(C) = 5 and Cliff2(C) <

Cliff(C). Then Cliff2(C) is computed by one or more generated stable bundles F of rank
2 and degree 13 with h0(F) = 4 and by no other bundles.

Proof. We have Cliff2(C) = 9
2 by (9). Let F be a bundle computing Cliff2(C) with

h0(F) = 2 + s. If s ≥ 3, then by Lemma 4.4,

γ (F) ≥ min
{

Cliff(C),
d2s

2
− s

}
≥ min

{
5,

d6 + 2s − 6
2

− s
}

= min
{

5,
d6

2
− 3

}
= 5,

since d6 = 16 by (2) and Lemma 4.6 in [6], a contradiction. So s = 2, giving h0(F) = 4
and dF = 13. Since F is semistable and gcd(2, 13) = 1, it is, in fact, stable. If F is not
generated, then there exists a subsheaf F ′ of degree 12 with h0(F ′) = 4; moreover, F ′ is
a semistable bundle. Then γ (F ′) = 4, a contradiction. �

THEOREM 4.6. Let C be a Petri curve of genus 11. Then,
(i) Cliffr(C) < Cliff(C) whenever r is divisible by 3;

(ii) 11
3 ≤ Cliff3(C) ≤ 14

3 ;
(iii) the expected dimension of the Brill–Noether locus B(3, 20, 6) is −5, but this locus

is non-empty.

Proof. (i) If Cliff2(C) = Cliff(C), this follows from Theorem 3.6, Lemma 3.4 and
Proposition 4.1 together with Lemma 2.2 in [6].

If Cliff2(C) < Cliff(C), Theorem 3.6 does not apply and, since d2 = 10 and d4 = 13,
neither does Corollary 3.8. However, by Proposition 4.5, there exists a generated stable
bundle F of rank 2 and degree 13 with h0(F) = 4. Any line subbundle of F has degree
≤6 and hence h0 ≤ 1. So, by Lemma 2.1, we have h0(det F) ≥ 5, and in fact this is an
equality since deg det F = 13 = d4.

Now let L = det F and consider extensions

0 → F → E → KC ⊗ L∗ → 0. (10)

It is clear that deg E = 20 and that, if (10) does not split, then E is stable. Moreover,
since h0(L) = 5, it follows by Riemann–Roch that h0(KC ⊗ L∗) = 2. Thus, h0(E) ≤ 6
with equality if and only if all sections of KC ⊗ L∗ lift to E. For this we require that
the canonical homomorphism

H1(K∗
C ⊗ L ⊗ F) → Hom(H0(KC ⊗ L∗), H1(F))

should fail to be injective. Equivalently, the dual homomorphism

H0(KC ⊗ L∗) ⊗ H0(KC ⊗ F∗) → H0(K2
C ⊗ L∗ ⊗ F∗) (11)

should be non-surjective. We already know that h0(KC ⊗ L∗) = 2 and, by Riemann–
Roch,

h0(KC ⊗ F∗) = h1(F) = h0(F) − 13 + 20 = 11.

So the dimension on the left-hand side of (11) is equal to 22. The bundle K2
C ⊗ L∗ ⊗ F∗

is a stable bundle of rank 2 and degree 41 = 4g − 3, so, by Riemann–Roch, the right-
hand side of (11) has dimension 2g − 1 = 21. Moreover, by the base point free pencil
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trick, the kernel of (11) is isomorphic to

H0(K∗
C ⊗ L ⊗ KC ⊗ F∗) = H0(det F ⊗ F∗) = H0(F).

Since h0(F) = 4, this completes the proof that (11) is not surjective.
(ii) The stable bundles E constructed in (i) have γ (E) = 1

3 (20 − 6) = 14
3 . On the

other hand, since Cliff2(C) ≥ 9
2 , we have Cliff3(C) ≥ 10

3 by Theorem 4.1 in [8]. Checking

the proof of Theorem 4.1 in [8], one sees easily that one can replace 2 Cliff2(C)+1
3 in the

statement of the theorem by min
{ 2 Cliff(C)+1

3 ,
2 Cliff2(C)+2

3

}
. So, in our case, Cliff3(C) ≥

11
3 .

(iii) We have β(3, 20, 6) = 9g − 8 − 6(6 − 20 + 3g − 3) = −5. The bundle E is
semistable and therefore stable since gcd(3, 20) = 1, so B(3, 20, 6) 
= ∅. �

5. Questions and comments. In this section, we raise a number of interesting
questions with some observations on possible answers.

QUESTION 5.1. Can one find further examples of semistable bundles E of rank 3
with h0(E) = 6 and γ (E) < Cliff(C)?

In attempting to answer this, we first note the following.

PROPOSITION 5.2. Let E be a semistable bundle of rank 3 on C with h0(E) = 6. Then,

γ (E) ≥ min
{

d9

3
− 2, d1 − 2,

2d2

3
− 2,

d4

2
− 2

}
. (12)

Proof. If E has no proper subbundle F with h0(F) > rF , then dE ≥ d9 by Lemma 2.1.
So γE ≥ 1

3 (d9 − 6) = d9
3 − 2.

If E has a line subbundle L with h0(L) ≥ 2, then dL ≥ d1, so by semistability
dE ≥ 3d1, giving γ (E) ≥ 1

3 (3d1 − 6) = d1 − 2.
If E has a subbundle F of rank 2 with h0(F) = 3 and no line subbundle with

h0 ≥ 2, then dF ≥ d2. Moreover, h0(E/F) ≥ 3, so dE/F ≥ d2. Thus, dE ≥ 2d2 and γ (E) ≥
2d2
3 − 2.

Finally, if E has a subbundle F of rank 2 with h0(F) ≥ 4 but no line subbundle with
h0 ≥ 2, then, by Lemma 2.1 again, we have dF ≥ d4. So dE ≥ 3d4

2 and γ (E) ≥ d4
2 − 2. �

COMMENT 1. The value d1 − 2 in (12) can always be attained (by a direct sum of three
line bundles of degree d1 with h0 = 2), but it is not clear whether it can be attained
by a stable bundle; in any case, d1 − 2 ≥ Cliff(C), so this is not interesting from the
point of view of Question 5.1. In general, the construction of (4) seems most likely to
yield examples and the main obstacle is that we need to prove that h0(E2 ⊗ E1) > 9.
For Petri curves of low genus, we have
� g = 7: (12) gives γ (E) ≥ 8

3 . This could be attained only by a bundle of the form
(4) and such bundles exist if and only if h0(E2 ⊗ E1) > 9. Apart from this, γ (E) ≥
Cliff(C).

� g = 8, 10: (12) gives γ (E) ≥ d1 − 2 = Cliff(C), so there is nothing to prove.
� g = 9: (12) gives γ (E) ≥ 10

3 and this value can be attained by Theorem 4.3.
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� g = 11: (12) gives γ (E) ≥ 13
3 . By Theorem 4.6, the value 14

3 can be attained, but we
do not know about 13

3 . Any bundle attaining this value would have to be of degree
19 and to have no proper subbundle F with h0(F) > rF .

� g = 12: (12) gives γ (E) ≥ 14
3 . This value could be attained by a bundle of the form

(4) or by a bundle possessing no subbundle F with h0(F) > rF ; we do not know
whether any such bundles exist.

COMMENT 2. If we restrict attention to stable bundles on Petri curves, Question 5.1
can be rephrased in terms of the Brill–Noether loci. In fact, on a Petri curve, we have
(using (2)),
� g odd: β(3, d, 6) < 0 if and only if d ≤ 3d1 − 1;
� g even: β(3, d, 6) < 0 if and only if d ≤ 3d1 + 1. In this case the Brill–Noether locus

B(3, 3d1 + 1, 6) is non-empty. (Take three line bundles L1, L2, L3 of degree d1 with
h0(Li) = 2 and no two of the Li isomorphic, and take E to be a general positive
elementary transformation 0 → L1 ⊕ L2 ⊕ L3 → E → τ → 0 with τ of length 1;
then E ∈ B(3, 3d1 + 1, 6).)

We have also Cliff(C) = d1 − 2; so, for E of rank 3 with h0(E) = 6, the condition
dE ≤ 3d1 ± 1 is equivalent to γ (E) ≤ Cliff(C) ± 1

3 . We, therefore, have the following
version of Question 5.1.

QUESTION 5.3. Do there exist non-empty Brill–Noether loci B(3, d, 6) on a Petri
curve C with negative expected dimension in addition to those listed in Comment 2
above and those of Theorems 4.3 and 4.6?

COMMENT. The case dE = 3d1, where γ (E) = Cliff(C), is interesting here. There
certainly exist semistable bundles in this case, but it is not clear whether stable bundles
exist.

QUESTION 5.4. Can one calculate Cliff3(C) precisely or at least obtain a better
estimate than that of [8]?

COMMENT. For a Petri curve of genus 11, we have slightly improved the estimate of
[8] in the proof of Theorem 4.6(ii) and this improvement applies to other curves. The
arguments of [8] suggest that one example to be considered for a low value of γ (E)
would be a bundle of degree 2g + 3 expressible in the form

0 → F → E → L → 0,

where F is a semistable bundle of rank 2 and degree d2 with h0(F) = 3, L is a line bundle
with the maximal number of sections possible for its degree and h0(E) = 3 + h0(L).
Possible examples are
� C Petri of genus 7: dL = 10 = d4, so h0(E) = 8 and γ (E) = 7

3 ; if such a bundle exists,
it computes Cliff3(C);

� C Petri of genus 9: dL = 13 = d5, so h0(E) = 9 and γ (E) = 3; again, if such a bundle
exists, it computes Cliff3(C);

� C Petri of genus 11: dL = 15, h0(L) = 6, so h0(E) = 9 and γ (E) = 13
3 ; even if such a

bundle exists, it may not compute Cliff3(C).

QUESTION 5.5. On a Petri curve of genus 11, does there exist a stable bundle of
rank 2 and degree 13 with h0 = 4?
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COMMENT. As we have seen in Proposition 4.5, this is the only way in which one could
have Cliff2(C) < Cliff(C) on such a curve. By Theorem 3.2 and Remark 5.4 in [4], such
a bundle exists if and only if there is a non-degenerate morphism C → �4 of degree 13
whose image is contained in a quadric.

QUESTION 5.6. What about n = 4?

COMMENT. There are now two obstacles to using the method of Section 3; both
Propositions 3.5 and 4.1 use n = 3. It may be possible to generalise the first of these
propositions; the second looks more problematic. Another possible method is to use
extensions 0 → E → G → M → 0 with E of rank 3 and degree 2d2 with h0(E) = 6
and M a line bundle of degree d1 with h0(M) = 2; one still needs to prove semistability
and show that the multiplication map

H0(M) ⊗ H0(KC ⊗ E∗) → H0(M ⊗ KC ⊗ E∗)

is not surjective.

QUESTION 5.7. Can one find examples with Cliff3(C) > Cliff2(C) (or more generally
Cliffn+1(C) > Cliffn(C))?

COMMENT. Any example would show that the hypotheses of Theorem 2.4 in [7] can
fail. Genus 11 is the first case where this might happen, but note that the bundles
E constructed in the proof of Theorem 4.6 are all generated, so the conclusion of
Theorem 2.4 in [7] could still hold.

6. Postscript. Since this paper was completed in September 2010, there have been
remarkable developments in the construction of bundles providing counter-examples
to Mercat’s conjecture and relating them to Koszul cohomology, the maximal rank
conjecture and the geometry of the moduli space of curves [2, 3, 9, 10]. It is interesting
(and probably significant) to note that all currently known counter-examples involve
curves lying on K3 surfaces. Most of this work concerns bundles of rank 2 and in
particular (Theorem 1.3 in [3]) gives a negative answer to Question 5.5 for a general
curve of genus 11. Paper [3] also contains a significant result for bundles of rank 3,
showing that Cliff3(C) < Cliff(C) for curves of genus g ≥ 11 of maximal Clifford index
which lie on K3 surfaces, thus extending the results of this paper and providing an
answer to Question 5.1 (Corollary 1.6 in [3]).
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