A finitely generated, infinitely related group with trivial multiplicator

Gilbert Baumslag

We exhibit a 3-generator metabelian group which is not finitely related but has a trivial multiplicator.

1.

The purpose of this note is to establish the existence of a finitely generated group which is not finitely related, but whose multiplicator is finitely generated. This settles negatively a question which has been open for a few years (it was first brought to my attention by Michel Kervaire and Joan Landman Dyer in 1964, but I believe it is somewhat older). The group is given in the following theorem.

THEOREM. The 3-generator, metabelian group

$$
\begin{align*}
G=\left\langle a, b, t ; t^{-1} a t=a^{4}, t b t^{-1}=b^{2},\left[a, t^{-i} b t^{i}\right]=\right. & 1 \tag{1}\\
& (i=0, \pm 1, \ldots)\rangle
\end{align*}
$$

is not finitely related but its multiplicator* $M(G)$ is zero.
The proof of this theorem will be carried out in two parts. First we prove, in $\S 2$, that $M(G)=0$. Then, in $\S 3$, we prove G is not finitely related.

Received 22 February 1971. The author gratefully acknowledges support from the National Science Foundation.

* That is the second homology group of G with integral coefficients.

2.

Let F be the free group on x, y, z and let R be the normal subgroup of F generated by the elements

$$
z^{-1} x z x^{-4}, z y z^{-1} y^{-2},\left[x, z^{-i} y z^{i}\right] \quad(i=0, \pm 1, \ldots)
$$

Then

$$
M(G) \cong([F, F] \cap R) /[F, R] .
$$

Put

$$
\bar{F}=F /[F, R], \bar{R}=R /[F, R], \bar{x}=x[F, R], \bar{y}=y[F, R], \bar{z}=z[F, R] .
$$

Furthermore let N be the normal subgroup of F generated by x and y. Then N contains R (and hence [F, R]). We put

$$
\bar{N}=N /[F, R] .
$$

Our objective is to prove

$$
[\bar{F}, \bar{F}] \cap \bar{R}=1
$$

In order to do so we prove first that \bar{N} is abelian. Clearly \bar{N} is a central extension of \vec{R} by the direct product of two copies of the additive group of dyadic fractions, that is, the subgroup of the additive group of rational numbers consisting of rationals of the form $\frac{r}{2^{s}}$ where r and e are integers. Putting

$$
\bar{x}_{i}=\bar{z}^{-i} \bar{x}_{i}, \quad \bar{y}_{i}=\bar{z}^{-i} \bar{y}_{\bar{z}} \quad(i=0, \pm 1, \ldots),
$$

we see that \bar{N} is generated by the elements \bar{x}_{i}, \bar{y}_{i}, where here i is allowed to range over all the integers. Notice that

$$
\bar{z}^{-1} \bar{x}_{i} \bar{z}=\bar{x}_{i}^{4} \bar{x}_{i}, \quad\left(\bar{z}^{-1} \bar{y}_{j} \bar{z}\right)^{2}=\bar{y}_{j} \bar{s}_{j} \quad\left(\bar{r}_{i}, \bar{s}_{j} \in \bar{R}\right)
$$

for any choice of integers i and j. Hence, remembering \bar{R} is central in \bar{F}, we find

$$
\begin{aligned}
{\left[\bar{x}_{i}, \bar{y}_{j}\right] } & =\bar{z}^{-1}\left[\bar{x}_{i}, \bar{y}_{j}\right] \bar{z}=\left[\bar{z}^{-1} \bar{x}_{i}, \bar{z}^{-1} \bar{y}_{j} \bar{z}\right]=\left[\bar{x}_{i}^{4} \bar{r}_{i}, \bar{z}^{-1} \bar{y}_{j} \bar{z}\right]=\left[\bar{x}_{i}^{4}, \bar{z}^{-1} \bar{y}_{j} \bar{z}\right] \\
& =\left(\left[\bar{x}_{i}, \bar{z}^{-1} \bar{y}_{j} \bar{z}^{2}\right]^{2}=\left[\bar{x}_{i},\left(\bar{z}^{-1} \bar{y}_{j} \bar{z}\right]^{2}\right]^{2}=\left[\bar{x}_{i}, \bar{y}_{j} \bar{s}_{j}\right]^{2}=\left[\bar{x}_{i}, \bar{y}_{j}\right]^{2} .\right.
\end{aligned}
$$

So

$$
\left[\bar{x}_{i}, \bar{y}_{j}\right]=1
$$

for all i and j. Hence

$$
\bar{R}=g p\left(\bar{z}^{-1} \bar{x} \bar{z} \bar{x}^{-4}, \bar{z}_{y} \bar{z}^{-1} \bar{y}^{-2}\right) .
$$

Since

$$
\left(\bar{z}^{-1} \bar{x} \bar{z} \bar{x}^{-4}\right)^{Z}\left(\bar{z}_{y} \bar{z}^{-1} \bar{y}^{-2}\right)^{m} \in \bar{F}^{\prime} \text { only if } \quad Z=m=0
$$

it follows that

$$
[\bar{F}, \bar{F}] \cap \bar{R}=1 .
$$

Consequently $M(G)$ is trivial, as required.

3.

We complete the proof of the theorem by showing that G is not finitely related. Let us suppose the contrary. Then by a theorem of Neumann [2] finitely many of the given defining relations of G suffice to define G. Thus we may present G in the form

$$
\begin{aligned}
G=\left\langle a, b, t ; t^{-1} a t=a^{4}, t b t^{-1}=b^{2},\right. & {\left[a, t^{-i} b t^{i}\right]=1 } \\
& (-n \leq i \leq n, n>0 \text { a fixed integer })\rangle .
\end{aligned}
$$

However since $t b t^{-1}=b^{2}$ the relations

$$
\left[a, t^{-i} b t^{i}\right]=1 \quad(-n \leq i \leq n)
$$

all follow from the single relation

$$
\left[a, t^{n} b t^{-n}\right]=1
$$

(because the elements $t^{i} b t^{-i} \quad(-n<i \leq n)$ are powers of $\left.t^{n} b t^{-n}\right)$. Thus, replacing b by $t^{n} b t^{-n}$ if necessary, it follows that G can be presented in the form

$$
\begin{equation*}
G=\left\langle a, b, t ; t^{-1} a t=a^{4}, t b t^{-1}=b^{2},[a, b]=1\right\rangle . \tag{2}
\end{equation*}
$$

Observe now, as we in fact observed earlier, that if H is the normal
subgroup of G generated by a and b then H is the direct product of two copies of the dyadic fractions and is therefore abelian (cf. the presentation (1)). But by the Reidemeister-Schreier method for finding generators and defining relations for a subgroup of a group given by generators and defining relations it is easy enough to obtain a presentation for H from the presentation (2) (see Magnus, Karrass and Solitar [1], p. 91 sqq). Indeed let us put

$$
a_{i}=t^{-i} a t^{i}, \quad b_{i}=t^{-i} b t^{i} \quad(i=0, \pm 1, \ldots)
$$

Then

$$
\begin{align*}
& H=\left\langle\ldots, a_{i}, \ldots, \ldots, b_{i}, \ldots, \ldots, a_{i+1}=a_{i}^{4}, \ldots,\right. \tag{3}\\
&\left.\ldots, b_{i}=b_{i+1}^{2}, \ldots, \ldots,\left[a_{i}, b_{i}\right]=1, \ldots\right\rangle
\end{align*}
$$

Notice in the presentation above the subscript i ranges over all the integers. Our aim is to show that the group presented by (3) is non-abelian, thereby contradicting the fact that H is indeed an abelian subgroup of G. This, in turn, contradicts the assumption that G is finitely related and so completes the proof of our theorem.

The easiest way to prove H (as presented by (3)) is non-abelian is to represent it as an ascending union of generalised free products. To this end let

$$
A_{i}=\left\langle\tilde{a}_{i}\right\rangle \text { and } B_{i}=\left\langle\tilde{D}_{i}\right\rangle \quad(i=0, \pm 1, \ldots)
$$

be infinite cyclic groups. Let

$$
H_{0}=A_{0} \times B_{0}
$$

be the direct product of A_{0} and B_{0}. We define now H_{1} to be the generalised free product of H_{0} and $A_{1} \times B_{1}$ identifying \tilde{a}_{0}^{4} with \tilde{a}_{1} and \tilde{E}_{0} with \tilde{b}_{1}^{2} :

$$
H_{1}=\left\{H_{0} *\left(A_{1} \times B_{1}\right) ; \tilde{a}_{0}^{4}=\tilde{a}_{1}, \tilde{b}_{0}=\tilde{b}_{1}^{2}\right\} .
$$

Observe that H_{1} is non-abelian since

$$
\tilde{a}_{0} \tilde{b}_{1} \neq \tilde{b}_{1} \tilde{a}_{0} .
$$

We define similarly (and inductively)

$$
\begin{gathered}
\text { A group with trivial multiplicator } \\
H_{i+1}=\left\{H_{i} *\left(A_{i+1} \times B_{i+1}\right) ; \tilde{a}_{i}^{4}=\tilde{a}_{i+1}, b_{i}=b_{i+1}^{2}\right\}
\end{gathered}
$$

and thence

$$
H_{\infty}=\bigcup_{i=0}^{\infty} H_{i}
$$

It follows that H_{∞} may be presented in the form

$$
\begin{aligned}
& H_{\infty}=\left\langle\tilde{a}_{0}, \tilde{a}_{1}, \ldots, \delta_{0}, \tilde{b}_{1}, \ldots ; \tilde{a}_{0}^{4}=\tilde{a}_{1}, \tilde{a}_{1}^{4}=\tilde{a}_{2}, \ldots,\right. \\
&\left.\tilde{b}_{0}=\tilde{b}_{1}^{2}, \tilde{b}_{1}=\tilde{b}_{2}^{2}, \ldots,\left[\tilde{a}_{0}, \tilde{b}_{0}\right]=1,\left[\tilde{a}_{1}, \tilde{b}_{1}\right]=1, \ldots\right\rangle .
\end{aligned}
$$

Now we put

$$
K_{0}=H_{\infty}
$$

and define

$$
K_{1}=\left\{K_{0} *\left(A_{-1} \times B_{-1}\right) ; \tilde{a}_{0}=\tilde{a}_{-1}^{4}, \tilde{b}_{0}^{2}=\tilde{b}_{-1}\right\}
$$

We define similarly (and inductively)

$$
K_{i+1}=\left\{K_{i} *\left(A_{-(i+1)}^{\times B}-(i+1)\right) ; \tilde{a}_{-i}=\tilde{a}_{-(i+1)}^{4}, \tilde{b}_{-i}^{2}=\bar{b}_{-(i+1)}\right\}
$$

Finally we put

$$
\tilde{H}\left(=K_{\infty}\right)=\bigcup_{i=0}^{\infty} K_{i} .
$$

It follows that \tilde{H} is a non-abelian group (since it contains H_{1}). Moreover \tilde{H} can clearly be presented in the form
(4) $\tilde{H}=\left\langle\ldots, \tilde{a}_{-1}, \tilde{a}_{0}, \tilde{a}_{1}, \ldots, \ldots, \tilde{b}_{-1}, \tilde{b}_{0}, \tilde{b}_{1}, \ldots\right.$;

$$
\left.\ldots, \tilde{a}_{i+1}=\tilde{a}_{i}^{4}, \ldots, \ldots, \tilde{b}_{i}=\tilde{b}_{i+1}^{2}, \ldots, \ldots,\left[\tilde{a}_{i}, \tilde{b}_{i}\right]=1, \ldots\right\rangle
$$

where here the subscript i is allowed to range over all possible integers. A comparison of (3) with (4) immediately shows

$$
H \cong \tilde{H}
$$

So H is non-abelian. This completes the proof of our theorem.

References

[1] Wilhelm Magnus; Abraham Karrass; Donald Solitar, Combintorial group theory: Presentations of groups in terms of generators and reZations (Interscience [John Wiley \& Sons], New York, London, Sydney, 1966).
[2] B.H. Neumann, "Some remarks on infinite groups", J. London Math. Soc. 12 (1937), 120-127.

```
Rice University,
Houston,
Texas, USA.
```

