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Abstract

In this paper we provide some sufficient conditions to stochastically compare linear
combinations of independent random variables. The main results extend those given
in Proschan (1965), Ma (1998), Zhao et al. (2011), and Yu (2011). In particular, we
propose a new sufficient condition to compare the peakedness of linear combinations of
independent random variables which may have heavy-tailed properties.
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1. Introduction

Proschan (1965) showed that

P

(∣∣∣∣
n∑

i=1

λiXi

∣∣∣∣ ≤ ε

)

is Schur concave in λ = (λ1, λ2, . . . , λn) ∈ R
n+ for any ε > 0 and random samples X1, X2, . . . ,

Xn from the same symmetric log-concave density population. That is,

(λ1, λ2, . . . , λn)
m� (λ′

1, λ
′
2, . . . , λ

′
n) �⇒ P

(∣∣∣∣
n∑

i=1

λiXi

∣∣∣∣ ≥ ε

)
≥ P

(∣∣∣∣
n∑

i=1

λ′
iXi

∣∣∣∣ ≥ ε

)
,

where ‘
m�’ denotes the majorization order (see Marshall et al. (2011)). This result and its

extensions have found wide applications in statistics, reliability theory, economic theory,
mathematical evolutionary theory, and other fields. We refer the reader to Tong (1994), Jensen
(1997), Ma (1998), Ibragimov (2007), and the references therein.

It is remarkable that Ibragimov (2007) made a significant contribution to this topic by showing
that Proschan’s result continues to hold in the case of convolutions of α-symmetric distributions
with α > 1, which can be used to model the heavy-tailedness phenomena. It should be noted
that if X has a log-concave density then its density has at most an exponential tail, i.e.

f (x) = O(exp(−λx)), λ > 0, x → ∞
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(see Corollary 1 of An (1998)). See An (1998) and Bagnoli and Bergstrom (2005) for surveys
of detailed properties of log-concave distributions.

The other significant contribution is by Yu (2011), who showed that

P

( n∑
i=1

λiXi ≤ t

)

is Schur concave in log λ = (log λ1, log λ2, . . . , log λn) for any t ≥ 0 and positive, independent
and identically distributed (i.i.d.) random samples X1, X2, . . . , Xn with log(Xi) having a log-
concave density. That is,

(log λ1, log λ2, . . . , log λn)
m� (log λ′

1, log λ′
2, . . . , log λ′

n) �⇒
n∑

i=1

λiXi ≥st

n∑
i=1

λ′
iXi,

where λi, λ
′
i > 0 for each i, and ‘≥st’ denotes the usual stochastic order.

In this paper we will further study this topic. First, we generalize Proschan’s result from
the i.i.d. case to the independent and possibly nonidentically distributed case under a weaker
assumption. Then, we present the other sufficient condition which could be used to model heavy-
tailed distributions, such as the Cauchy distribution, t-distribution, etc. We also generalize
Yu’s result to the independent and possibly nonidentically distributed case under a weaker
assumption.

Pan et al. (2011), the companion paper to this one, unifies the study of linear combinations
of independent random variables under the general setup by using some monotone transforms.

Throughout the paper, the terms ‘increasing’and ‘decreasing’are used to mean ‘nondecreas-
ing’ and ‘nonincreasing’, respectively. A random variable X is simply called symmetric if its
probability density is symmetric about 0.

2. Preliminaries

In this section we recall some stochastic orders and majorization orders, which will be used
in the sequel.

Assume that the random variables X and Y have distribution functions F and G, and density
functions f and g, respectively.

Definition 2.1. We say that X is smaller than Y in the usual stochastic order, denoted by
X ≤st Y , if F(x) ≥ G(x) for all x.

Definition 2.2. For two random variables X and Y , and real constants u and v, X is said to be
more peaked about u than Y about v, denoted by X ≥peak Y , if

P(|X − u| ≥ t) ≤ P(|Y − v| ≥ t), t ≥ 0.

When u = v = 0, we simply say that X is more peaked than Y , or, equivalently, |X| ≤st |Y |.
Note that in the literature X ≤peak Y if X is more peaked about u than Y about v. In this

paper we use the notation X ≥peak Y in Definition 2.2.

Definition 2.3. We say that X is smaller than Y in the likelihood ratio order, denoted by
X ≤lr Y , if g(x)/f (x) is increasing in x for which the ratio is well defined.
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For more discussions on stochastic orders, we refer the reader to the excellent book Shaked
and Shanthikumar (2007).

We will also use the concept of majorization in our discussion. Let x(1) ≤ x(2) ≤ · · · ≤ x(n)

be the increasing arrangement of components of the vector x = (x1, x2, . . . , xn).

Definition 2.4. For vectors x, y ∈ R
n, x is said to be

• majorized by y, denoted by x
m� y, if

j∑
i=1

x(i) ≥
j∑

i=1

y(i) for j = 1, . . . , n − 1,

and
∑n

i=1 x(i) = ∑n
i=1 y(i),

• weakly submajorized by y, denoted by x �w y, if

n∑
i=j

x(i) ≤
n∑

i=j

y(i) for j = 1, . . . , n.

For extensive and comprehensive details on the theory of majorization orders and their
applications, see the book Marshall et al. (2011).

3. Main results

The following lemma, which is due to Birnbaum (1948) (see also Theorem 3.D.4 of Shaked
and Shanthikumar (2007)), will be used in the sequel.

Lemma 3.1. Let X1, X2, . . . , Xn and Y1, Y2, . . . , Yn be two sets of independent random vari-
ables, with the Xis and Yis (i = 1, . . . , n) having distribution functions that are symmetric
about possibly different centers and unimodal densities with possibly some probability mass at
their respective centers. If Xi ≤peak Yi for i = 1, . . . , n, then

n∑
i=1

Xi ≤peak

n∑
i=1

Yi.

We first present the following useful lemma which is essentially due to Ma (1998).

Lemma 3.2. Let X1 and X2 be independent and symmetric random variables defined on R

with densities f1 and f2, respectively. If |X1| ≤lr |X2| and f2(x) (or f1(x)) is log-concave in
x ∈ R, then

(λ1, λ2)
m� (λ′

1, λ
′
2)

implies that

P(λ(1)X1 + λ(2)X2 ≥ t) ≥ P(λ′
(1)X1 + λ′

(2)X2 ≥ t), t ≥ 0.

Now, we are ready to generalize Proschan’s result under a weaker assumption.

Theorem 3.1. Let X1, X2, . . . , Xn be independent and symmetric random variables defined
on R with densities f1, f2, . . . , fn, respectively. If |X1| ≤lr |X2| ≤lr · · · ≤lr |Xn| and fi(x) is
log-concave for each i, then

(λ1, . . . , λn) �w (λ′
1, . . . , λ

′
n)
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implies that

P

(∣∣∣∣
n∑

i=1

λ(i)Xi

∣∣∣∣ ≥ t

)
≥ P

(∣∣∣∣
n∑

i=1

λ′
(i)Xi

∣∣∣∣ ≥ t

)
, t ≥ 0,

or, equivalently,
n∑

i=1

λ(i)Xi ≤peak

n∑
i=1

λ′
(i)Xi.

Proof. According to Proposition 5.A.9 of Marshall et al. (2011, p. 177), if

(λ(1), . . . , λ(n)) �w (λ′
(1), . . . , λ

′
(n))

then there exists a real vector (γ1, . . . , γn) such that

(λ(1), . . . , λ(n))
m� (γ(1), . . . , γ(n)) ≥ (λ′

(1), . . . , λ
′
(n)).

Since, for γ(i) ≥ λ′
(i),

γ(i)Xi ≤peak λ′
(i)Xi,

using Lemma 3.1, it holds that

n∑
i=1

γ(i)Xi ≤peak

n∑
i=1

λ′
(i)Xi.

Hence, it is sufficient to prove that

n∑
i=1

λ(i)Xi ≤peak

n∑
i=1

γ(i)Xi.

Since the density of convolution of symmetric random variables with log-concave densities
is symmetric and log-concave (see Ibragimov (1956) and also Dharmadhikari and Joag-Dev
(1988)), by the nature of majorization, it is enough to verify that

λ(1)X1 + λ(2)X2 ≤peak γ(1)X1 + γ(2)X2. (3.1)

From Lemma 3.2, it holds that, for t ≥ 0,

P(λ(1)X1 + λ(2)X2 ≥ t) ≥ P(γ(1)X1 + γ(2)X2 ≥ t). (3.2)

Using the symmetric properties of X1 and X2, it holds that, for t ≥ 0,

P(λ(1)X1 + λ(2)X2 ≤ −t) = P(λ(1)X1 + λ(2)X2 ≥ t).

So, it follows that

P(λ(1)X1 + λ(2)X2 ≤ −t) ≥ P(γ(1)X1 + γ(2)X2 ≤ −t). (3.3)

Hence, (3.1) follows from (3.2) and (3.3).
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Remark 3.1. Ma (1998) proposed the following condition for Theorem 3.1:

(λ1, . . . , λn)
m� (λ′

1, . . . , λ
′
n).

Zhao et al. (2011) presented another sufficient condition for the peakedness order, namely,

(log λ1, . . . , log λn)
m� (log λ′

1, . . . , log λ′
n),

and they also proposed the following condition for the i.i.d. case:

(log λ1, . . . , log λn) �w (log λ′
1, . . . , log λ′

n).

However, by Theorem 5.A.2 of Marshall et al. (2011, p.167), it holds that

(log λ1, . . . , log λn) �w (log λ′
1, . . . , log λ′

n) �⇒ (λ1, . . . , λn) �w (λ′
1, . . . , λ

′
n).

So, the condition presented in Theorem 3.1 is very general.

The following lemma presents another sufficient condition for symmetric distributions,
which may have heavy-tailed properties.

Lemma 3.3. Let X1 and X2 be independent symmetric random variables defined on R with
densities f1 and f2, respectively. If |X1| ≤lr |X2| and f2(ex) (or f1(ex)) is log-concave in
x ∈ R then

(log λ1, log λ2)
m� (log λ′

1, log λ′
2)

implies that

P(λ(1)X1 + λ(2)X2 ≤ t) ≤ P(λ′
(1)X1 + λ′

(2)X2 ≤ t), t ≥ 0.

Proof. We only give the proof for the case that f2(ex) is log-concave; the proof of the other
case is similar. For fixed t > 0, define, for λ ∈ (0, 1],

Hλ(t) = P(λX1 + λ−1X2 ≤ t) =
∫ ∞

−∞
F2(tλ − λ2x)f1(x) dx,

where Fi is the distribution function of Xi for i = 1, 2. It is sufficient to prove that Hλ(t) is
increasing in λ ∈ (0, 1]. It is possible to justify differentiation under the integral sign, so

H ′
λ(t) =

∫ ∞

−∞
(t − 2λx)f2(tλ − λ2x)f1(x) dx = δ1 + δ2,

where

δ1 =
∫ t/(2λ)

0
(t − 2λx)f2(tλ − λ2x)f1(x) dx +

∫ t/λ

t/(2λ)

(t − 2λx)f2(tλ − λ2x)f1(x) dx

and

δ2 =
∫ 0

−∞
(t − 2λx)f2(tλ − λ2x)f1(x) dx +

∫ ∞

t/λ

(t − 2λx)f2(tλ − λ2x)f1(x) dx.

In the following, we will show that δ1 ≥ 0 and δ2 ≥ 0, separately.
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Proof of δ1 ≥ 0. For δ1, using the transform x �→ t/λ − x in the second integral, it holds
that

δ1 =
∫ t/(2λ)

0
(t − 2λx)

[
f2(tλ − λ2x)f1(x) − f2(λ

2x)f1

(
t

λ
− x

)]
dx.

It is enough to show that, for 0 < x ≤ t/(2λ),

f2(tλ − λ2x)f1(x) − f2(λ
2x)f1

(
t

λ
− x

)
≥ 0. (3.4)

Since |X1| ≤lr |X2|, it holds that, for 0 < x ≤ t/(2λ),

f2

(
t

λ
− x

)
f1(x) ≥ f1

(
t

λ
− x

)
f2(x).

Thus, to prove (3.4), it suffices to prove that

f2(tλ − λ2x)f2(x) ≥ f2(λ
2x)f2

(
t

λ
− x

)
. (3.5)

Since, for 0 < x ≤ t/(2λ) and 0 < λ ≤ 1,

λ2x ≤ min{tλ − λ2x, x},
it holds that

(log(tλ − λ2x), log x)
m�

(
log(λ2x), log

(
t

λ
− x

))

(see Yu (2011)). Since f2(ex) is log-concave, (3.5) holds. Therefore, δ1 ≥ 0.
Proof of δ2 ≥ 0. For δ2, using the transform x �→ t/λ − x in the second integral, it holds

that

δ2 =
∫ 0

−∞
(t − 2λx)

[
f2(tλ − λ2x)f1(x) − f2(λ

2x)f1

(
t

λ
− x

)]
dx.

It is enough to show that, for x ≤ 0,

f2(tλ − λ2x)f1(x) − f2(λ
2x)f1

(
t

λ
− x

)
≥ 0.

Since |X1| ≤lr |X2| and X1 and X2 are symmetric, it holds that, for t ≥ 0 and x ≤ 0,

f2

(
t

λ
− x

)
f1(x) ≥ f1

(
t

λ
− x

)
f2(x). (3.6)

Note that, for x ≤ 0, 0 < λ ≤ 1, and t ≥ 0,

−λ2x ≤ min{tλ − λ2x, −x};
thus,

(log(tλ − λ2x), log(−x))
m�

(
log(−λ2x), log

(
t

λ
− x

))
.

Since f2(ex) is log-concave, it follows that

f2(tλ − λ2x)f2(−x) ≥ f2(−λ2x)f2

(
t

λ
− x

)
,
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i.e.

f2(tλ − λ2x)f2(x) ≥ f2(λ
2x)f2

(
t

λ
− x

)
. (3.7)

Combining (3.7) and (3.6), it holds that δ2 ≥ 0.
This completes the proof.

Now, we show that Proschan’s result will continue to be true for some heavy-tailed distribu-
tions. First, recall that, for a random variable with density function f , f is said to be unimodal
if there exists a value a such that f is increasing on (−∞, a] and decreasing on [a, +∞).

Theorem 3.2. Let X1, X2, . . . , Xn be independent symmetric random variables defined on
R with unimodal densities f1, f2, . . . , fn, respectively. If |X1| ≤lr |X2| ≤lr · · · ≤lr |Xn|, and
fi(ex) is log-concave for each i, then

(log λ1, . . . , log λn) �w (log λ′
1, . . . , log λ′

n)

implies that

P

(∣∣∣∣
n∑

i=1

λ(i)Xi

∣∣∣∣ ≥ t

)
≥ P

(∣∣∣∣
n∑

i=1

λ′
(i)Xi

∣∣∣∣ ≥ t

)
, t > 0,

or, equivalently,
n∑

i=1

λ(i)Xi ≤peak

n∑
i=1

λ′
(i)Xi.

Proof. There exists a real vector (γ1, . . . , γn) such that

(log λ(1), . . . , log λ(n))
m� (log γ(1), . . . , log γ(n)) ≥ (log λ′

(1), . . . , log λ′
(n)).

Since, for γ(i) ≥ λ′
(i),

γ(i)Xi ≤peak λ′
(i)Xi,

and the Xis are unimodal, using Lemma 3.1, it holds that

n∑
i=1

γ(i)Xi ≤peak

n∑
i=1

λ′
(i)Xi.

Hence, it is sufficient to prove that

n∑
i=1

λ(i)Xi ≤peak

n∑
i=1

γ(i)Xi.

By the nature of majorization (see Lemma 2.B.1 of Marshall et al. (2011)), we assume
without loss of generality that λ(i) = γ(i) for i = 3, . . . , n and

(log λ(1), log λ(2))
m� (log γ(1), log γ(2)).

Since the convolution of two symmetric unimodal distributions on R is symmetric and unimodal
(see Wintner (1938), and also Dharmadhikari and Joag-Dev (1988) and Purkayastha (1998)),
by Lemma 3.1, it is enough to verify that

λ(1)X1 + λ(2)X2 ≤peak γ(1)X1 + γ(2)X2. (3.8)
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From Lemma 3.3, it holds that, for t ≥ 0,

P(λ(1)X1 + λ(2)X2 ≥ t) ≥ P(γ(1)X1 + γ(2)X2 ≥ t). (3.9)

Using the symmetric properties of X1 and X2 again, it holds that, for t ≥ 0,

P(λ(1)X1 + λ(2)X2 ≤ −t) = P(λ(1)X1 + λ(2)X2 ≥ t).

So, it follows that

P(λ(1)X1 + λ(2)X2 ≤ −t) ≥ P(γ(1)X1 + γ(2)X2 ≤ −t). (3.10)

Hence, (3.8) follows from (3.9) and (3.10). This completes the proof.

Remark 3.2. (a) The condition that f (ex) is log-concave in x ∈ R does not necessarily imply
that the density function f (x) is log-concave. For example, we may easily check that the
t-distribution has the log-concave property of f (ex). However, its density function is mixed.

(b) Theorem 3.2 can be used to construct the upper bound for some heavy-tailed distributions,
such as the Cauchy distribution, t-distribution, etc., i.e.

P

(∣∣∣∣
n∑

i=1

λiXi

∣∣∣∣ ≤ t

)
≤ P

(∣∣∣∣
n∑

i=1

Xi

∣∣∣∣ ≤ t

λ̃

)
, t > 0,

where λ̃ = (
∏n

i=1 λi)
1/n, the geometric mean of λ1, . . . , λn.

In the following, we will extend Yu’s result to independent and nonidentically distributed
random variables. We first present the following lemma, which follows from the proof of δ1 ≥ 0
of Lemma 3.3.

Lemma 3.4. Let X1 and X2 be independent random variables defined on R+ with densities
f1 and f2, respectively. If X1 ≤lr X2 and f2(ex) (or f1(ex)) is log-concave in x ∈ R then

(log λ1, log λ2)
m� (log λ′

1, log λ′
2) �⇒ λ(1)X1 + λ(2)X2 ≥st λ′

(1)X1 + λ′
(2)X2.

Now, we are ready to present the following result.

Theorem 3.3. Let X1, X2, . . . , Xn be independent random variables defined on R+ with den-
sities f1, f2, . . . , fn, respectively. If X1 ≤lr X2 ≤lr · · · ≤lr Xn, and fi(ex) is log-concave for
each i, then

(log λ1, . . . , log λn) �w (log λ′
1, . . . , log λ′

n) �⇒
n∑

i=1

λ(i)Xi ≥st

n∑
i=1

λ′
(i)Xi.

Proof. There exists a real vector (γ1, . . . , γn) such that

(log λ(1), . . . , log λ(n))
m� (log γ(1), . . . , log γ(n)) ≥ (log λ′

(1), . . . , log λ′
(n)).

Since, for γ(i) ≥ λ′
(i) > 0,

γ(i)Xi ≥st λ′
(i)Xi
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and the usual stochastic order is closed under convolution, it holds that

n∑
i=1

γ(i)Xi ≥st

n∑
i=1

λ′
(i)Xi.

Hence, it is sufficient to prove that

n∑
i=1

λ(i)Xi ≥st

n∑
i=1

γ(i)Xi.

By the nature of majorization, we only need to prove the case in which n = 2, which follows
from Lemma 3.4.

Remark 3.3. Theorem 3.3 can be applied to the following distributions (see also Yu (2011)).

(a) Uniform distribution with support (0, s].
(b) Power function distribution with density function

f (x) = cxc−1, 0 < x ≤ 1, c > 0.

(c) Pareto distribution with density function

f (x) = βx−β−1, x ≥ 1, β > 0.

(d) Beta distribution with density function

f (x) = xα−1(1 − x)β−1

B(α, β)
, 0 < x < 1, α > 0, β > 1.

(e) F-distribution with density function

f (x) = cxm1/2−1
[

1 + m1

m2
x

]−(m1+m2)/2

, x ≥ 0,

where c > 0 depends on (m1, m2) degrees of freedom.

(f) Generalized gamma distribution with density function

f (x) = p

�(q/p)
xq−1 exp(−xp), x ≥ 0, p, q > 0.

When p = q, it reduces to the Weibull distribution; when p = 2, it reduces to the
generalized Rayleigh distribution; when p = 1, it becomes the usual gamma distribution.

(g) Pareto distribution with density function

f (x) = (a + 1)b1+1/a(ax + b)−1/a−2, x ≥ 0, a > 0, b > 0.

Note that the distribution function is

F(x) = 1 −
(

b

ax + b

)1/a+1

.
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(h) Log-normal distribution with density function

f (x) = 1√
2πσx

exp

(−(log x − µ)2

2σ 2

)
, x > 0, σ > 0.

(i) Burr distribution (or generalized log-logistic distribution) with density function

f (x) = kcxc−1

(1 + xc)k+1 , x > 0, c > 0, k > 0.

Some further examples can be found in Hu et al. (2004). Finally, it is worth pointing out that,
for a positive random variable with decreasing density f , f (ex) is log-concave on R if f (x) is
log-concave on R+ (see Corollary 2 of An (1998)).
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