ISOMETRIC PREDUALS OF JAMES SPACES

LEON BROWN AND TAKASHI ITO

A Banach space B is called an *isometric predual*, or simply a *predual*, of a Banach space X if the dual B^* of B is isometrically isomorphic to X. A Banach space X is said to have a *unique (isometric) predual* if X has a predual and all preduals are mutually isometrically isomorphic. In general a Banach space does not have a unique predual even if it has a predual. A simple example of this is the space l^1 , because c_0 and c are isometric preduals of l^1 but not isometrically isomorphic. A. Grothendieck [3] first noticed that L^{∞} -spaces have unique preduals, and then S. Sakai generalized this to von Neumann algebras (see p. 30 of [9]). Recently one of the authors [4] has shown that every quotient space of a von Neumann algebra by a σ -weakly closed subspace, as a Banach space with quotient norm, has a unique predual. Also T. Ando [1] has shown that the space H^{∞} has a unique predual and P. Wojtasczcyk has also proved this result independently. Evidently, these are the only known non-reflexive Banach spaces with unique preduals. See the Addendum.

In this paper we prove uniqueness of preduals of James quasi-reflexive spaces. In particular, we are interested in James spaces having norms presented in [5] and [6]. Note that quasi-reflexive spaces have a different character from L^{∞} -spaces and the spaces mentioned previously.

We use the following standard notation. We shall always regard a Banach space X as a subspace of its second dual X^{**} in the canonical way. A subspace means a closed linear subspace. For a subset A of a Banach space X, A^{\perp} denotes the annihilator of A in the dual X^{*} . If A is a subset of a dual Banach space X^{*} , then A_{\perp} denotes the set of all elements in X annihilated by A. For a subset A of a Banach space X, [A] denotes the closed linear span of A in X, and $X = A \oplus B$ means that X is the direct sum of subspaces A and B.

The proof of our results is based on the following idea: If X is a Banach space, then $X^{***} = X^{\perp} \oplus X^*$ where X^* is norm 1 complemented in X^{***} . That is, the projection from X^{***} onto X^* associated with this decomposition has norm 1. Thus a sufficient condition for X^* to have a unique predual is that X^{\perp} is the only norm 1 complement of X^* in X^{***} . In order to show this, it is sufficient to show that if $\varphi \in X^{***}$ and

(1)
$$||\varphi + x^*|| \ge ||x^*||$$
 for all $x^* \in X^*$

then $\varphi \in X^{\perp}$.

As an illustration of this method, we present a proof (different from the usual

Received January 20, 1978. This research was partially supported by N.S.F. Grant No. MCS 76-04408.

proof) that l^{∞} has a unique predual. If $X = l^1$, then we have $X^* = l^{\infty}$ and $X^{***} = X^{\perp} \oplus X^* = X^{\perp} \oplus l^{\infty}$. A straightforward argument, using the representation $X^* = l^{\infty} = C(\beta N)$ and

$$X^{**} = C(\beta N)^* = M(\beta N) = M(\beta N \setminus N) \oplus M(N) = M(\beta N \setminus N) \oplus X$$

where βN is the Stone Cech compactification of the set N of positive integers, yields the fact that if $x^* \in c_0 \subset l^{\infty}$ and $\psi \in X^{\perp}$ then

 $||\psi + x^*|| = Max(||\psi||, ||x^*||).$

If $\varphi \in X^{***}$, then $\varphi = \psi - x_0^*$ where $\psi \in X^{\perp}$ and $x_0^* \in l^{\infty} = X^*$. Proving that inequality (1) implies $\varphi \in X^{\perp}$ is equivalent to showing that

(2)
$$||\psi + x^*|| \ge ||x_0^* + x^*||$$
 for all $x^* \in X^*$

implies $x_0^* = 0$. Assume inequality (2), and let *n* be a positive integer. If $x^* = ce_n^*$, where e_n^* is the usual basis element of c_0 and *c* is a complex number, then we have

$$||\psi + x^*|| = \operatorname{Max}(||\psi||, |c|) \ge ||x_0^* + ce_n^*|| \ge |x_0^*(n) + c|.$$

Since this holds for every complex number c, $x_0^*(n)$ must be 0 for each n which completes the proof.

The James space $(J, ||\cdot||)$ ([5]) is defined to be the space consisting of all complex sequences x = (x(n)) such that

$$||x|| = \sup \left(\sum_{j=1}^{k} |\sum_{n \in I_j} x(n)|^2\right)^{1/2} < +\infty$$

where the supremum is taken over all choices of disjoint finite intervals I_1, I_2, \ldots, I_k of positive integers.

We are interested in an equivalent norm on this space, first defined by James [6]. The following is a slight modification of his norm.

$$|||x||| = \sup \left(\sum_{j=1}^{k} |\sum_{n \in \hat{I}_j} x(n)|^2\right)^{1/2}$$

where \hat{I}_j are either intervals or complements of intervals in the space of positive integers and the supremum is taken over all choices of disjoint $\hat{I}_1, \ldots, \hat{I}_k$. One easily sees that for $x \in J$,

$$||x|| \le |||x||| \le \sqrt{2}||x||.$$

1. $(J, ||\cdot||)$. In this section, J will always stand for $(J, ||\cdot||)$. The space J has the natural normalized basis $\{e_n\}$; for every $x \in J$ we have $x = \sum_{n=1}^{\infty} x(n)e_n$, where $e_n = (e_n(j)) = (\delta_{n,j})$ for $n, j = 1, 2, \ldots$. Let $\{e_n^*\}$ be the biorthogonal sequence with respect to $\{e_n\}$ and let Y be the closed linear span of $\{e_n^*\}$. Since $\{e_n\}$ is a boundedly complete monotone basis of J, J is isometrically isomorphic to the dual Y^* of Y by the canonical mapping (see p. 91 of [**2**]). We introduce the linear functionals φ_n on J by $\varphi_n(x) = \sum_{j=n}^{\infty} x(j)$ for $x \in J$ and $n = 1, 2, \ldots$.

As proved in [5], $\{\varphi_n\}$ forms a normalized basis of J^* and we have

$$J^* = [\varphi_1] \oplus Y.$$

We define $f_2 \in J^{**}$ as follows: $f_2(\varphi_1) = 1$ and f_2 annihilates Y. Then we have $J^{**} = [f_2] \oplus J$. More generally, denote $J^n(n = 0, 1, 2, ...)$ as the n'th dual of J, then we have

$$J = J^0 \subset J^2 \subset \ldots \subset J^{2n} \subset \ldots, \text{ and}$$
$$J^* = J^1 \subset J^3 \subset \ldots \subset J^{2n+1} \subset \ldots.$$

For $n \ge 3$, $f_n \in J^n$ is defined as follows: $f_n(f_{n-1}) = 1$ and f_n annihilates J^{n-1} . Thus the one dimensional space $[f_n]$ is a norm 1 complement of J^{n-2} in J^n and we have

$$J^n = [f_n] \oplus J^{n-2}$$
 for $n = 2, 3, ...$

For even $n \ge 2$, $\{f_n, f_{n-2}, \ldots, f_4, f_2, e_1, e_2, \ldots\}$ forms a basis of J^n and for odd $n \ge 3$, $\{f_n, f_{n-2}, \ldots, f_5, f_3, \varphi_1, e_1^*, e_2^*, \ldots\}$ forms a basis of J^n . The canonical bilinear functional defined on the product of $\bigcup_{n=0}^{\infty} J^{2n}$ and $\bigcup_{n=0}^{\infty} J^{2n+1}$ will be denoted by $\langle x, y \rangle$ for $x \in \bigcup_{n=0}^{\infty} J^{2n}$ and $y \in \bigcup_{n=0}^{\infty} J^{2n+1}$.

The following lemma will be used many times.

LEMMA 1. For each n = 1, 2, ...,

a)
$$f_{2n} = w^* - \lim_{k \to \infty} \sum_{j=1}^{n-1} (-1)^{j+1} f_{2n-2j} + (-1)^{n+1} e_k \text{ in } J^{2n},$$

b)
$$f_{2n+1} = w^* - \lim_{k \to \infty} \sum_{j=1}^{n-1} (-1)^{j+1} f_{2n-2j+1} + (-1)^{n+1} \varphi_k \text{ in } J^{2n+1}.$$

For each k = 1, 2, ..., and n = 2, 3, ...,

c)
$$||f_{2n} + x|| \leq \sup_{k < k_1 < k_2} ||(-1)^{n+1}e_{k_1} + (-1)^n e_{k_2} + x|| \quad (x \in J^{2n-2}),$$

d)
$$||f_{2n+1} + y|| \leq \sup_{k < k_1 < k_2} ||(-1)^{n+1}\varphi_{k_1} + (-1)^n \varphi_{k_2} + y|| \quad (y \in J^{2n-1}).$$

Proof. For a) and b) simply evaluate both sides of the equation on basis elements of J^{2n-1} and J^{2n} respectively.

c) Applying a) we have for $x \in J^{2n}$,

$$\begin{aligned} ||f_{2n} + x|| &\leq \underline{\lim}_{k_1 \to \infty} ||\sum_{j=1}^{n-1} (-1)^{j+1} f_{2n-2j} + (-1)^{n+1} e_{k_1} + x|| \\ &= \underline{\lim}_{k_1 \to \infty} ||f_{2n-2} + \sum_{j=2}^{n-1} (-1)^{j+1} f_{2n-2j} + (-1)^{n+1} e_{k_1} + x||. \end{aligned}$$

If $x \in J^{2n-2}$ we may apply a) again and we have

$$\begin{split} ||f_{2n} + x|| &\leq \underline{\lim}_{k_1 \to \infty} \underline{\lim}_{k_2 \to \infty} ||(-1)^{n+1} e_{k_1} + (-1)^n e_{k_2} + x|| \\ &\leq \sup_{k < k_1 < k_2} ||(-1)^{n+1} e_{k_1} + (-1)^n e_{k_2} + x||. \end{split}$$

d) is proven in a similar fashion to c) and we shall omit the proof.

LEMMA 2. a) $||f_{2n+1}|| = 1$ for n = 1, 2, 3, ...,

b)
$$||f_2|| = 1$$
 and $||f_{2n}|| = \sqrt{2}$ for $n = 2, 3, ...$

Proof. a) From Lemma 1d)

 $||f_{2n+1}|| \leq \sup_{k_1 < k_2} ||\varphi_{k_1} - \varphi_{k_2}|| = 1.$

On the other hand from standard duality arguments,

 $||f_{2n+1}||^{-1} = \inf_{x \in J^{2n-2}} ||f_{2n} + x||.$

Applying Lemma 1a), for all $x \in J^{2n-2}$

$$||f_{2n} + x|| \leq \underline{\lim}_{k \to \infty} ||\sum_{j=1}^{n-1} (-1)^{j+1} f_{2n-2j} + (-1)^{n+1} e_k + x||.$$

Setting $x = -\sum_{i=1}^{n-1} (-1)^{j+1} f_{2n-2i}$, we have

$$||f_{2n} + x|| \leq \underline{\lim}_{k \to \infty} ||(-1)^{n+1}e_k|| = 1.$$

Thus $||f_{2n+1}||^{-1} \leq 1$ and the proof of a) is complete.

b) We have $||f_2||^{-1} = \inf_{y \in Y} ||\varphi_1 + y||$, where $Y = [e_1^*, e_2^*, \ldots] \subset J^*$. For $y \in Y$,

$$||\varphi_1 + y|| \ge |\langle e_n, \varphi_1 + y \rangle| = |1 + \langle e_n, y \rangle| \to 1 \text{ as } n \to \infty.$$

Thus we have $||f_2||^{-1} = \inf_{y \in Y} ||\varphi_1 + y|| = 1$. Applying Lemma 1c), we have

 $||f_{2n}|| \leq \sup_{k_1 < k_2} ||e_{k_1} - e_{k_2}|| = \sqrt{2}.$

From standard duality arguments, we have

 $||f_{2n}||^{-1} = \inf_{y \in J^{2n-3}} ||f_{2n-1} + y||.$

Applying Lemma 1b), for $y \in J^{2n-3}$

$$||f_{2n-1} + y|| \leq \underline{\lim}_{k_1 \to \infty} || \sum_{j=1}^{n-2} (-1)^{j+1} f_{2n-2j-1} + (-1)^n \varphi_{k_1} + y||.$$

Setting $y = -\frac{1}{2} \left(\sum_{j=1}^{n-2} (-1)^{j+1} f_{2n-2j-1} + (-1)^n \varphi_1 \right)$ and applying Lemma 1b) again, we have

$$\begin{split} ||f_{2n-1} + y|| &\leq \underline{\lim}_{k_1 \to \infty} || \frac{1}{2} \sum_{j=1}^{n-2} (-1)^{j+1} f_{2n-2j-1} + (-1)^n \varphi_{k_1} - \frac{1}{2} (-1)^n \varphi_1 || \\ &\leq \underline{\lim}_{k_1 \to \infty} \underline{\lim}_{k_2 \to \infty} || - \frac{1}{2} (-1)^n \varphi_1 + (-1)^n \varphi_{k_1} + \frac{1}{2} (-1)^{n-1} \varphi_{k_2} || \\ &\leq \sup_{1 < k_1 < k_2} \frac{1}{2} || (-\varphi_1 + \varphi_{k_1}) + (\varphi_{k_1} - \varphi_{k_2}) || \leq \sqrt{2}/2. \end{split}$$

The last inequality is true because for $x \in J$,

$$\begin{aligned} |\langle x, -\varphi_{1} + \varphi_{k_{1}} + \varphi_{k_{1}} - \varphi_{k_{2}}\rangle| &= |-\sum_{1}^{k_{1}-1} x(j) + \sum_{k_{1}}^{k_{2}-1} x(j)| \\ &\leq \sqrt{2}(|\sum_{1}^{k_{1}-1} x(j)|^{2} + |\sum_{k_{1}}^{k_{2}-1} x(j)|^{2})^{1/2} \leq \sqrt{2}||x||. \end{aligned}$$

This completes the proof of the Lemma.

As a consequence of Lemma 2a), we have $||f_{2n} + x|| \ge 1$ for all $x \in J^{2n-2}$ and $n = 1, 2, \ldots$ which implies the following:

COROLLARY 1.

$$||\sum_{k=1}^n \beta_k f_{2k} + \sum_{j=1}^\infty \alpha_j e_j|| \ge \sup_{k,j} \{|\beta_k|, |\alpha_j|\}.$$

JAMES SPACES

THEOREM 1. 1) $(J^n, ||\cdot||)$ has a unique isometric predual for all n = 0, 1, 2, ...2) Y, the unique predual of J, does not have any isometric predual.

Proof. 1a). J^{2n-1} has a unique isometric predual for all $n = 1, 2, \ldots$.

To show this it suffices to show that $[f_{2n+1}]$ is the unique norm 1 complement of J^{2n-1} in J^{2n+1} . In this case, this is equivalent to showing that if $y_0 \in J^{2n-1}$ and

(3)
$$||f_{2n+1} + y|| \ge ||y_0 + y||$$
 for all $y \in J^{2n-1}$

then $y_0 = 0$. Let $y_0 = \sum_{i=1}^{n-1} \beta_k f_{2k+1} + \beta \varphi_1 + \sum_{i=1}^{\infty} \alpha_i e_i^*$ and assume inequality (3). Given *c*, a complex number and *l*, a positive integer, set $y = ce_i^*$. Then by Lemma 1d), we have

$$\begin{aligned} ||f_{2n+1} + ce_l^*|| &\leq \sup_{l < k_1 < k_2} ||ce_l^* + (-1)^{n+1}\varphi_{k_1} + (-1)^n \varphi_{k_2}|| \\ &\leq \sqrt{|c|^2 + 1} \end{aligned}$$

(use Schwartz's inequality as in the end of the proof of Lemma 2b)).

On the other hand

$$||y_0 + ce_i^*|| \ge |\langle e_i, y_0 + ce_i^* \rangle| = |\beta + \alpha_i + c|.$$

Thus $|\beta + \alpha_l + c| \leq \sqrt{|c|^2 + 1}$ for all complex numbers c which implies $\beta + \alpha_l = 0$ for all l and we have $\beta = \alpha_l = 0$ for all l. Suppose $\beta_k = 0$ for $1 \leq k < l \leq n - 1$. Applying Lemma 1d) two times, we have for each complex number c

On the other hand, since $[f_{2j+1}]$ is a norm 1 complement of J^{2j-1} in J^{2j+1} for all $j = 1, 2, \ldots$, we have

$$\begin{aligned} ||y_0 + cf_{2l+1}|| &= ||\sum_{k=l}^{n-1} \beta_k f_{2k+1} + cf_{2l+1}|| \ge ||(\beta_l + c)f_{2l+1}|| \\ &= |\beta_l + c| ||f_{2l+1}|| = |\beta_l + c| \quad \text{(Lemma 2a)).} \end{aligned}$$

Thus $|\beta_l + c| \leq \sqrt{|c|^2 + 1}$ for all complex numbers *c* which implies that $\beta_l = 0$. This completes the proof that $y_0 = 0$.

1b) J has a unique isometric predual.

In the beginning of this section, we noticed that J has an isometric predual Y (this fact can be proven directly by showing that $||f_2 + x|| \ge ||x||$ for all $x \in J$ in a manner similar to the proof of Lemma 3 in Section 2). Let $x_0 = \sum_{i=1}^{\infty} \alpha_i e_j$ and assume

$$||f_2 + x|| \ge ||x_0 + x|| \quad \text{for all } x \in J.$$

Given *l*, then $\alpha_l = e^{i\theta} |\alpha_l|$ and we set $x = ce_l - e_{l+1}$ with c > 0. Then applying Lemma 1a) we have

$$\begin{aligned} ||e^{-i\theta}f_2 + ce_l - e_{l+1}|| &\leq \underline{\lim}_{k \to \infty} ||ce_l - e_{l+1} + e^{-i\theta}e_k|| \\ &\leq \sqrt{c^2 + 2} \quad \text{(Definition of the norm in J)}. \end{aligned}$$

On the other hand, we have

$$||e^{-i\theta}x_0 + ce_l - e_{l+1}|| \ge |\langle e^{-i\theta}x_0 + ce_l - e_{l+1}, e_l^*\rangle| = |\alpha_l| + c.$$

Thus $|\alpha_l| + c \leq \sqrt{c^2 + 2}$ for all c > 0 which implies that $\alpha_l = 0$.

1c) J^{2n} has a unique isometric predual for all n = 1, 2, ...

Let $x_0 = \sum_{k=1}^n \beta_k f_{2k} + \sum_{j=1}^\infty \alpha_j e_j$ and assume

$$|f_{2n+2} + x|| \ge ||x_0 + x||$$
 for all x in J^{2n} .

i) We claim $\alpha_j = 0$ for all $j = 1, 2, \ldots$

As in 1b), we set $\alpha_l = e^{i\theta} |\alpha_l|$ and $x = ce_l - e_{l+1}$ with c > 0. Lemma 1c) implies that

$$\begin{aligned} ||e^{-i\theta}f_{2n+2} + ce_l - e_{l+1}|| &\leq \sup_{l+1 < k_1 < k_2} ||ce_l - e_{l+1} + e^{-i\theta}((-1)^{n+2}e_{k_1} \\ &+ (-1)^{n+1}e_{k_2})|| \leq \sqrt{c^2 + 5} \quad \text{(Definition of the norm in J)}. \end{aligned}$$

On the other hand, we have

 $||e^{-i\theta}x_0 + ce_l - e_{l+1}|| \ge |\alpha_l| + c.$

Thus $|\alpha_l| + c \leq \sqrt{c^2 + 5}$ for all c > 0 which implies that $\alpha_l = 0$. ii) We claim $\beta_k = 0$ for all k = 1, 2, ..., n.

Suppose $\beta_1 = \beta_2 = \ldots = \beta_{l-1} = 0$ for $1 \leq l \leq n$. Set

$$x = -\sum_{j=1}^{n} (-1)^{j+1} f_{2n-2j+2}$$

Then by Lemma 1a)

$$||f_{2n+2} + x|| \leq \lim_{k\to\infty} ||(-1)^{n+2}e_k|| = 1.$$

On the other hand the corollary to Lemma 2 implies that

 $||x_0 + x|| \ge |\beta_l + (-1)^{n-l+1}|.$

Consequently, we have

(4) $|\beta_l + (-1)^{n-l+1}| \leq 1.$

If l = 1, set $x = (-1)^{n+1}ce_1$ with c > 0. Then by Lemma 1c), we have

$$\begin{aligned} ||f_{2n+2} + (-1)^{n+1}ce_1|| &\leq \sup_{1 < k_1 < k_2} ||(-1)^{n+1}ce_1 + (-1)^{n+2}e_{k_1} \\ &+ (-1)^{n+1}e_{k_2}|| \\ &= \sup_{1 < k_1 < k_2} ||ce_1 - e_{k_1} + e_{k_2}|| \leq \sqrt{c^2 + 2}, \end{aligned}$$

and we have

$$\begin{aligned} ||\sum_{k=1}^{n}\beta_{k}f_{2k} + (-1)^{n+1}ce_{1}|| &\geq |\langle \sum_{k=1}^{n}\beta_{k}f_{2k} + (-1)^{n+1}ce_{1},\varphi_{1}\rangle| \\ &= |\beta_{1} + (-1)^{n+1}c|.\end{aligned}$$

Thus we have

(5) $|\beta_1 + (-1)^{n+1}c| \leq \sqrt{c^2 + 2}$ for all c > 0. If l > 1, we set $x = (-1)^{n-l}c \sum_{j=1}^{l-1} (-1)^{j+1}f_{2l-2j}$ with c > 0. Then by Lemma 1c), we have

$$\begin{aligned} ||f_{2n+2} + x|| &\leq \sup_{k_1 < k_2} ||(-1)^{n+2} e_{k_1} + (-1)^{n+1} e_{k_2} + x|| \\ &= \sup_{k_1 < k_2} ||(-1)^{n-l} c f_{2l-2} + (-1)^{n-l} c \sum_{j=2}^{l-1} (-1)^{j+1} f_{2l-2j} \\ &+ (-1)^{n+2} e_{k_1} + (-1)^{n+1} e_{k_2} ||. \end{aligned}$$

Applying Lemma 1a), we have

$$\begin{aligned} ||f_{2n+2} + x|| &\leq \sup_{k_1 < k_2 < k_3} ||(-1)^{n+2} e_{k_1} + (-1)^{n+1} e_{k_2} + (-1)^{n-l+l} c e_{k_3}|| \\ &= \sup_{k_1 < k_2 < k_3} ||e_{k_1} - e_{k_2} + c e_{k_3}|| \leq \sqrt{c^2 + 2}. \end{aligned}$$

On the other hand,

$$\begin{aligned} ||x_0 + x|| &= ||\sum_{k=l}^n \beta_k f_{2k} + (-1)^{n-l} c \sum_{j=1}^{l-1} (-1)^{j+1} f_{2l-2j}|| \\ &\ge |\langle x_0 + x, f_{2l-1} \rangle| = |\beta_l + (-1)^{n-l} c|. \end{aligned}$$

Note that we used the fact that $||f_{2l-1}|| = 1$, which was proved in Lemma 2a). Thus we have

(6)
$$|\beta_l + (-1)^{n-l}c| \le \sqrt{c^2 + 2}$$
 for all $c > 0$.

The inequalities (4), (5) and (6) say that for all l with $1 \leq l \leq n$, we have

 $|\beta_l + (-1)^{n-l+1}| \leq 1$ and $|\beta_l + (-1)^{n-l}c| \leq \sqrt{c^2 + 2}$ for all c > 0. Therefore if n - l is even, then $|\beta_l - 1| \leq 1$ and $|\beta_l + c| \leq \sqrt{c^2 + 2}$ for all c > 0 which implies $|\beta_l - 1| \leq 1$ and Re $\beta_l \leq 0$. Thus we have $\beta_l = 0$. A similar argument shows that when n - l is odd, $\beta_l = 0$. This completes the proof of 1).

2) To prove that Y has no isometric predual, we show that Y is not norm 1 complemented in J^* . That is, if $y_0 = \sum_{j=1}^{\infty} \alpha_j e_j^* \in Y$, then the condition

(7)
$$||\varphi_1 + y_0 + y|| \ge ||y||$$
 for all $y \in Y$

leads to a contradiction. Assuming (7) and setting $y = -y_0 - 2e_n^*$, we have

$$|\varphi_1 - 2e_n^*|| \ge ||-y_0 - 2e_n^*||$$
 for each n .

If
$$x = \sum_{j=1}^{\infty} \beta_j e_j \in J$$
, then
 $|\langle x, \varphi_1 - 2e_n^* \rangle| = |\sum_{1}^{n-1} \beta_j - \beta_n + \sum_{n+1}^{\infty} \beta_j|$

$$\leq \sqrt{3} \left(\left| \sum_{1}^{n-1} \beta_{j} \right|^{2} + \left| \beta_{n} \right|^{2} + \left| \sum_{n+1}^{\infty} \beta_{j} \right|^{2} \right)^{1/2} \leq \sqrt{3} ||x||.$$

Thus $||\varphi_1 - 2e_n^*|| \leq \sqrt{3}$ for each *n*. On the other hand, we have

$$||-y_0 - 2e_n^*|| \ge |\langle e_n, -y_0 - 2e_n^* \rangle| = |-\alpha_n - 2|.$$

Thus we have $\sqrt{3} \ge |\alpha_n + 2|$ for each *n* which is a contradiction since α_n approaches 0 as $n \to \infty$. This completes the proof of Theorem 1.

COROLLARY 2. If $n \neq m \geq -1$, then J^n is not isometrically isomorphic to J^m where $J^{-1} = Y$, the unique predual of J. Furthermore, J is not isometrically isomorphic to the second dual X^{**} of any Banach space X.

2. $(J, ||| \cdot |||)$. In this section, J^n will always stand for the *n*'th dual of $(J, ||| \cdot |||)$ and we use the same basis as introduced in Section 1 for J^n .

LEMMA 3. $|||f_2 - e_1 + x||| \ge |||x|||$ for all $x \in J$.

Proof. Without loss of generality, we may assume that the given $x \in J$ has a finite expansion, $x = \sum_{1}^{n} \alpha_{j} e_{j}$. Then given $\epsilon > 0$, there exists a finite set of disjoint $\hat{I}_{k}, k = 1, 2, \ldots, m$ such that

$$(\sum_{k=1}^{m} |\sum_{j \in \hat{I}_k} \alpha_j|^2)^{1/2} \ge |||x||| - \epsilon.$$

Since x has a finite expansion, we may assume $\hat{I}_1 = \{1, 2, \ldots, l_1\} \cup \{l_2, l_2 + 1, \ldots\}$ with $l_1 < l_2$ and $\hat{I}_2, \ldots, \hat{I}_m$ are the usual finite intervals. Choose $\beta_k, k = 1, 2, \ldots, m$ such that

$$\sum_{1}^{m} |\beta_{k}|^{2} = 1 \text{ and } \sum_{1}^{m} \beta_{k} (\sum_{j \in \hat{I}_{k}} \alpha_{j}) = (\sum_{1}^{m} |\sum_{j \in \hat{I}_{k}} \alpha_{j}|^{2})^{1/2}$$

and define

$$y = \sum_{2}^{m} \beta_{k} (\sum_{j \in \hat{I}_{k}} e_{j}^{*}) + \beta_{1} (\varphi_{1} - \sum_{l_{1} < j < l_{2}} e_{j}^{*}).$$

Then for any $z = \sum_{1}^{\infty} \gamma_{j} e_{j} \in J$, we have

$$\begin{aligned} |\langle z, y \rangle| &= |\sum_{k=2}^{m} \beta_k (\sum_{j \in \hat{I}_k} \gamma_j) + \beta_1 (\sum_{j=1}^{l_1} \gamma_j + \sum_{l_2}^{\infty} \gamma_j)| \\ &\leq (\sum_{1}^{m} |\beta_k|^2)^{1/2} (\sum_{k=2}^{m} |\sum_{j \in \hat{I}_k} \gamma_j|^2 + |\sum_{j \in \hat{I}_1} \gamma_j|^2)^{1/2} \\ &\leq 1 \cdot |||z|||. \end{aligned}$$

Thus $|||y||| \leq 1$. It is clear that $\langle f - e_1, y \rangle = 0$. Thus we have

$$\begin{aligned} ||x||| &- \epsilon < (\sum_{k=1}^{m} |\sum_{j \in \hat{I}_k} \alpha_j|^2)^{1/2} = \langle x, y \rangle = \langle f_2 - e_1 + x, y \rangle \\ &\leq |||f_2 - e_1 + x||| |||y||| \leq |||f_2 - e_1 + x|||. \end{aligned}$$

Hence we can conclude that $|||x||| \leq |||f_2 - e_1 + x|||$.

Since the annihilator of $f_2 - e_1$ in J^* is clearly the closed linear span $Z = [\varphi_1, e_2^*, e_3^*, \ldots]$, we have

COROLLARY 3. $(J, ||| \cdot |||)$ has an isometric predual, namely, $(Z, ||| \cdot |||)$.

THEOREM 2. $(J, ||| \cdot |||)$ and $(J^*, ||| \cdot |||)$ have unique isometric preduals.

Proof. a) J has a unique isometric predual.

We have observed in Corollary 3 that Z is a predual of J. We shall show that

 $[f_2 - e_1]$ is the only norm 1 complement of J in J^2 . Let $x_0 = \sum_{i=1}^{\infty} \alpha_i e_i \in J$, and assume

(8) $|||f_2 + x||| \ge |||x_0 + x|||$ for all $x \in J$.

We claim $x_0 = e_1$. For n > 1, choose θ so that $\alpha_n = e^{i\theta}|\alpha_n|$. Set $x = -e_1 + ce_n - e_{n+1}$ with c > 0. Then by Lemma 1a),

$$|||e^{-i\theta}f_2 + x||| \leq \underline{\lim}_{k \to \infty} ||| - e_1 + ce_n - e_{n+1} + e^{-i\theta}e_k|||_{\mathcal{H}}$$

However for k > n + 1,

$$\begin{aligned} |||-e_1 + ce_n - e_{n+1} + e^{-i\theta}e_k||| &\leq \sqrt{c^2 + 9} \quad \text{and} \\ |||e^{-i\theta}x_0 + x||| &= |||e^{-i\theta}\sum_{1}^{\infty}\alpha_j e_j - e_1 + ce_n - e_{n+1}||| &\geq ||\alpha_n| + c|. \end{aligned}$$

Thus we have $|\alpha_n| + c \leq \sqrt{c^2 + 9}$ for all c > 0 which implies $\alpha_n = 0$, and we have $x_0 = \alpha_1 e_1$. Thus inequality (8) becomes

(9)
$$|||f_2 + x||| \ge |||\alpha_1 e_1 + x|||$$
 for all $x \in J$.

If
$$y = \beta \varphi_1 + \sum_{1}^{\infty} \beta_j e_j^*$$
 with $|||y||| \leq 1$, then

$$|\beta + \beta_n| = |\langle e_n, y \rangle| \le |||e_n||| |||y||| \le 1$$
 for all $n = 1, 2, ...$

This implies that $|\langle f_2, y \rangle| = |\beta| = \lim_{n \to \infty} |\beta + \beta_n| \le 1$. Since $|||f_2||| \ge ||f_2|| = 1$ (Lemma 2b)), we have $|||f_2||| = 1$. Thus inequality (9) implies $1 = |||f_2||| \ge |||a_1e_1||| = |\alpha_1|$. Set $x = -e_1 + e_2 - ce_3$ with c > 0. Then by Lemma 1a),

$$|||f_2 + x||| \le \underline{\lim}_{k \to \infty} ||| - e_1 + e_2 - ce_3 + e_k||| \le \sqrt{c^2 + 3}, \text{ and} \\ |||\alpha_1 e_1 + x||| = |||(\alpha_1 - 1)e_1 + e_2 - ce_3||| \ge |\alpha_1 - 1 - c|.$$

Hence (9) implies that $|\alpha - 1 - c| \leq \sqrt{c^2 + 3}$ for all c > 0, and we have $\operatorname{Re}(\alpha_1 - 1) \geq 0$. Since $|\alpha_1| \leq 1$, we can conclude that $\alpha_1 = 1$ which completes the proof of a).

b) J* has a unique isometric predual.

We shall show that $[f_3]$ is the only norm 1 complement of J^* in J^3 . Suppose $y_0 = \beta \varphi_1 + \sum_{i=1}^{\infty} \beta_j e_j^* \in J^*$ and

(13)
$$|||f_3 + y||| \ge |||y_0 + y|||$$
 for all $y \in J^*$.

We claim $y_0 = 0$. If $y = ce_n^*$ where c is any complex number, Lemma 1b) implies

$$|||f_3 + ce_n^*||| \leq \underline{\lim}_{k\to\infty} |||ce_n^* + \varphi_k||| \leq \sqrt{|c|^2 + 1}.$$

On the other hand,

$$|||y_0 + ce_n^*||| \ge |\langle e_n, y_0 + ce_n^* \rangle| = |\beta + \beta_n + c|$$

Thus, from (10) we have $|\beta + \beta_n + c| \leq \sqrt{|c|^2 + 1}$ for all complex numbers c which implies $\beta + \beta_n = 0$ for each n. Thus $\beta = \beta_n = 0$ for all n since $\beta_n \to 0$ as $n \to \infty$. This completes the proof of the theorem.

Our norm $||| \cdot |||$ is a slight variant of the norm introduced in James [6]. We present the following proof of his theorem for completeness.

THEOREM 3. (James) If $x = \sum_{1}^{\infty} \alpha_j e_j \in J$ and $Sx = \alpha_1 f_2 + \sum_{1}^{\infty} \alpha_{j+1} e_j \in J^{**}$, then S is an isometry from J onto J^{**} .

Proof. It is sufficient to show that |||Sx||| = |||x||| for any $x = \sum_{1}^{n} \alpha_{j}e_{j}$ with finite expansion. For such an x, set $z_{k} = \alpha_{2}e_{1} + \alpha_{3}e_{2} + \ldots + \alpha_{n}e_{n-1} + \alpha_{1}e_{k}$ for $k \ge n$. Then, we have $|||z_{k}||| = |||x|||$ for all $k \ge n$ and by Lemma 1a) $w^{*} - \lim_{k \to \infty} z_{k} = Sx \text{ in } J^{**}$. Thus $|||Sx||| \le \lim_{k \to \infty} |||z_{k}||| = |||x|||$.

Choose $y_0 = \beta \varphi_1 + \sum_{1}^{\infty} \beta_j e_j^* \in J^*$ with $|||y_0||| = 1$ such that $\langle z_n, y_0 \rangle = |||z_n||| = |||x|||$. If $\hat{y}_0 = \beta \varphi_1 + \sum_{1}^{n-1} \beta_j e_j^* + \beta_n \varphi_n$, we can see that

(11) $\langle z, \, \hat{y}_0 \rangle = \langle \tilde{z}, \, y_0 \rangle$ for all $z = \sum_1^\infty \gamma_j e_j \in J$,

where $\tilde{z} = \sum_{1}^{n-1} \gamma_{j} e_{j} + (\sum_{n}^{\infty} \gamma_{j}) e_{n}$. Thus we have

$$\begin{split} \langle Sx, \, \hat{y}_0 \rangle &= \lim_{k \to \infty} \, \langle z_k, \, \hat{y}_0 \rangle = \lim_{k \to \infty} \, \langle \tilde{z}_k, \, y_0 \rangle = \lim_{k \to \infty} \, \langle z_n, \, y_0 \rangle \\ &= \, \langle z_n, \, y_0 \rangle = \, |||z_n||| = \, |||x|||, \end{split}$$

which implies $|||x||| \leq |||Sx||| |||\mathfrak{f}_0|||$. However, since $|||\tilde{z}||| \leq |||z|||$ for all $z \in J$, identity (11) implies $|||\mathfrak{f}_0||| \leq |||y_0||| = 1$, and we have $|||x||| \leq |||Sx|||$. This completes the proof of theorem.

Note that Corollary 3 can be shown by using Theorem 3.

The following is a consequence of Theorems 2 and 3.

COROLLARY 4. For each positive integer n, the n'th isometric predual of $J = (J, ||| \cdot |||)$ is uniquely defined (denoted by J^{-n}). In fact for each integer n (positive or negative) J^n is isometrically isomorphic fo J (if n is even) or J^* (if n is odd).

Note that R. C. James [7] proved that J and J^* are not even isomorphic.

3. Remarks. 1. If a Banach space X has a unique isometric predual, then it is not necessarily true that X^* has a unique isometric predual. Such an example is l^{∞} . Since $(l^{\infty})^* = l^1 \oplus (c_0)^{\perp}$ (the l^1 -direct sum), the l^1 -direct sum of l^1 and $(l^{\infty})^*$ is isometrically isomorphic to $(l^{\infty})^*$. Therefore $l^{\infty} \oplus c_0$ (the l^{∞} -direct sum) is an isometric predual of $(l^{\infty})^*$. J. Lindenstrauss [8] shows that any infinite dimensional complemented subspace of l^{∞} is isomorphic to l^{∞} . Consequently $l^{\infty} \oplus c_0$ is not even isomorphic to l^{∞} .

2. As we have noticed in the introduction, a Banach space X has an isometric predual if and only if X has a w^* -closed norm 1 complement in X^{**} . Suppose A is such a complement then the annihilator A_{\perp} of A in X^* is an isometric predual of X. Thus, in order to prove that X has a unique isometric predual it is necessary to show that if B is another w^* -closed norm 1 complement of X in X^{**} , then A_{\perp} is isometrically isomorphic to B_{\perp} . Therefore uniqueness of w^* -closed norm 1 complement of X in X^{**} appears to be stronger than unique

JAMES SPACES

ness of isometric preduals of X. Every known proof of uniqueness of isometric preduals, as well as ours, shows this stronger condition.

Addendum. In a recent paper, G. Godefroy (Espaces de Banach: Existence et unicité de certains préduax, Ann. Inst. Fourier, Grenoble, 28, no. 3 (1978), 87–105) showed that if the dual X^* of a Banach space X does not contain isomorphic copy of l^1 then X is the unique isometric predual of X^* . Thus any quasireflexive Banach space X (dim $X^{**}/X < +\infty$) has a unique isometric predual or no isometric predual. Our proofs for J^n in this paper are direct and use elementary properties of the norm of J. They also suggest a new notion of unique predual which will be expanded upon in a subsequent paper.

References

1. T. Ando, Uniqueness of predual of H^{∞} (to appear).

2. M. M. Day, Normed linear spaces (third ed., New York, 1973).

- A. Grothendieck, Une caracterisation vectorielle-metrique de espaces L¹, Can. J. Math. 7 (1955), 552-561.
- 4. T. Ito, On Banach spaces with unique isometric preduals, Mich. Math. J. 24 (1977), 321-324.
- 5. R. C. James, Bases and reflexivity of Banach spaces, Ann. of Math. 52 (1950), 518-527.
- 6. A non-reflexive Banach space isometric with its second conjugate space, Proc. Nat. Acad. Sci. U.S.A. 37 (1951), 174–177.
- 7. ——— Banach spaces quasi-reflexive of order one, Studia Math. 60 (1977), 157-177.
- 8. J. Lindenstrauss, On complemented subspace of m, Israel J. Math. 5 (1967), 153-156.

9. S. Sakai, C*-algebras and W*-algebras (Springer-Verlag, Berlin, 1971).

Wayne State University, Detroit, Michigan