ISOMETRIC PREDUALS OF JAMES SPACES

LEON BROWN AND TAKASHI ITO

A Banach space B is called an isometric predual, or simply a predual, of a Banach space X if the dual B^{*} of B is isometrically isomorphic to X. A Banach space X is said to have a unique (isometric) predual if X has a predual and all preduals are mutually isometrically isomorphic. In general a Banach space does not have a unique predual even if it has a predual. A simple example of this is the space l^{1}, because c_{0} and c are isometric preduals of l^{1} but not isometrically isomorphic. A. Grothendieck [3] first noticed that L^{∞}-spaces have unique preduals, and then S. Sakai generalized this to von Neumann algebras (see p. 30 of [$\mathbf{9}]$). Recently one of the authors [4] has shown that every quotient space of a von Neumann algebra by a σ-weakly closed subspace, as a Banach space with quotient norm, has a unique predual. Also T. Ando [1] has shown that the space H^{∞} has a unique predual and P . Wojtasczcyk has also proved this result independently. Evidently, these are the only known non-reflexive Banach spaces with unique preduals. See the Addendum.

In this paper we prove uniqueness of preduals of James quasi-reflexive spaces. In particular, we are interested in James spaces having norms presented in [5] and [6]. Note that quasi-reflexive spaces have a different character from L^{∞}-spaces and the spaces mentioned previously.

We use the following standard notation. We shall always regard a Banach space X as a subspace of its second dual $X^{* *}$ in the canonical way. A subspace means a closed linear subspace. For a subset A of a Banach space X, A^{\perp} denotes the annihilator of A in the dual X^{*}. If A is a subset of a dual Banach space X^{*}, then A_{\perp} denotes the set of all elements in X annihilated by A. For a subset A of a Banach space $X,[A]$ denotes the closed linear span of A in X, and $X=A \oplus B$ means that X is the direct sum of subspaces A and B.

The proof of our results is based on the following idea: If X is a Banach space, then $X^{* * *}=X^{\perp} \oplus X^{*}$ where X^{*} is norm 1 complemented in $X^{* * *}$. That is, the projection from $X^{* * *}$ onto X^{*} associated with this decomposition has norm 1. Thus a sufficient condition for X^{*} to have a unique predual is that X^{\perp} is the only norm 1 complement of X^{*} in $X^{* * *}$. In order to show this, it is sufficient to show that if $\varphi \in X^{* * *}$ and

$$
\begin{equation*}
\left\|\varphi+x^{*}\right\| \geqq\left\|x^{*}\right\| \text { for all } x^{*} \in X^{*} \tag{1}
\end{equation*}
$$

then $\varphi \in X^{\perp}$.
As an illustration of this method, we present a proof (different from the usual

[^0]proof) that l^{∞} has a unique predual. If $X=l^{1}$, then we have $X^{*}=l^{\infty}$ and $X^{* * *}=X^{\perp} \oplus X^{*}=X^{\perp} \oplus l^{\infty}$. A straightforward argument, using the representation $X^{*}=l^{\infty}=C(\beta N)$ and
$$
X^{* *}=C(\beta N)^{*}=M(\beta N)=M(\beta N \backslash N) \oplus M(N)=M(\beta N \backslash N) \oplus X
$$
where βN is the Stone Cech compactification of the set N of positive integers, yields the fact that if $x^{*} \in c_{0} \subset l^{\infty}$ and $\psi \in X^{\perp}$ then
$$
\left\|\psi+x^{*}\right\|=\operatorname{Max}\left(\|\psi\|,\left\|x^{*}\right\|\right)
$$

If $\varphi \in X^{* * *}$, then $\varphi=\psi-x_{0}{ }^{*}$ where $\psi \in X^{\perp}$ and $x_{0}{ }^{*} \in l^{\infty}=X^{*}$. Proving that inequality (1) implies $\varphi \in X^{\perp}$ is equivalent to showing that

$$
\begin{equation*}
\left\|\psi+x^{*}\right\| \geqq\left\|x_{0}^{*}+x^{*}\right\| \quad \text { for all } x^{*} \in X^{*} \tag{2}
\end{equation*}
$$

implies $x_{0}{ }^{*}=0$. Assume inequality (2), and let n be a positive integer. If $x^{*}=c e_{n}{ }^{*}$, where $e_{n}{ }^{*}$ is the usual basis element of c_{0} and c is a complex number, then we have

$$
\left\|\psi+x^{*}\right\|=\operatorname{Max}(\|\psi\|,|c|) \geqq\left\|x_{0}^{*}+c e_{n}^{*}\right\| \geqq\left|x_{0}^{*}(n)+c\right| .
$$

Since this holds for every complex number $c, x_{0}{ }^{*}(n)$ must be 0 for each n which completes the proof.

The James space $(J,\|\cdot\|)([\mathbf{5}])$ is defined to be the space consisting of all complex sequences $x=(x(n))$ such that

$$
\|x\|=\sup \left(\sum_{j=1}^{k}\left|\sum_{n \in I_{j}} x(n)\right|^{2}\right)^{1 / 2}<+\infty
$$

where the supremum is taken over all choices of disjoint finite intervals $I_{1}, I_{2}, \ldots, I_{k}$ of positive integers.

We are interested in an equivalent norm on this space, first defined by James [6]. The following is a slight modification of his norm.

$$
\left\|\|x\|=\sup \left(\sum_{j=1}^{k}\left|\sum_{n \in \hat{I}_{j}} x(n)\right|^{2}\right)^{1 / 2}\right.
$$

where \hat{I}_{j} are either intervals or complements of intervals in the space of positive integers and the supremum is taken over all choices of disjoint $\hat{I}_{1}, \ldots, \hat{I}_{k}$. One easily sees that for $x \in J$,

$$
\|x\| \leqq\|\mid x\|\|\leqq \sqrt{2}\| x \| .
$$

1. $(J,\|\cdot\|)$. In this section, J will always stand for $(J,\|\cdot\|)$. The space J has the natural normalized basis $\left\{e_{n}\right\}$; for every $x \in J$ we have $x=\sum_{n=1}^{\infty} x(n) e_{n}$, where $e_{n}=\left(e_{n}(j)\right)=\left(\delta_{n, j}\right)$ for $n, j=1,2, \ldots$ Let $\left\{e_{n}^{*}\right\}$ be the biorthogonal sequence with respect to $\left\{e_{n}\right\}$ and let Y be the closed linear span of $\left\{e_{n}^{*}\right\}$. Since $\left\{e_{n}\right\}$ is a boundedly complete monotone basis of J, J is isometrically isomorphic to the dual Y^{*} of Y by the canonical mapping (see p. 91 of [2]). We introduce the linear functionals φ_{n} on J by $\varphi_{n}(x)=\sum_{j=n}^{\infty} x(j)$ for $x \in J$ and $n=1,2, \ldots$.

As proved in [5], $\left\{\varphi_{n}\right\}$ forms a normalized basis of J^{*} and we have

$$
J^{*}=\left[\varphi_{1}\right] \oplus Y .
$$

We define $f_{2} \in J^{* *}$ as follows: $f_{2}\left(\varphi_{1}\right)=1$ and f_{2} annihilates Y. Then we have $J^{* *}=\left[f_{2}\right] \oplus J$. More generally, denote $J^{n}(n=0,1,2, \ldots)$ as the n^{\prime} th dual of J, then we have

$$
\begin{aligned}
J & =J^{0} \subset J^{2} \subset \ldots \subset J^{2 n} \subset \ldots, \text { and } \\
J^{*} & =J^{1} \subset J^{3} \subset \ldots \subset J^{2 n+1} \subset \ldots .
\end{aligned}
$$

For $n \geqq 3, f_{n} \in J^{n}$ is defined as follows: $f_{n}\left(f_{n-1}\right)=1$ and f_{n} annihilates J^{n-1}. Thus the one dimensional space $\left[f_{n}\right]$ is a norm 1 complement of J^{n-2} in J^{n} and we have

$$
J^{n}=\left[f_{n}\right] \oplus J^{n-2} \quad \text { for } \quad n=2,3, \ldots
$$

For even $n \geqq 2,\left\{f_{n}, f_{n-2}, \ldots, f_{4}, f_{2}, e_{1}, e_{2}, \ldots\right\}$ forms a basis of J^{n} and for odd $n \geqq 3,\left\{f_{n}, f_{n-2}, \ldots, f_{5}, f_{3}, \varphi_{1}, e_{1}{ }^{*}, e_{2}{ }^{*}, \ldots\right\}$ forms a basis of J^{n}. The canonical bilinear functional defined on the product of $\bigcup_{n=0}^{\infty} J^{2 n}$ and $\cup_{n=0}^{\infty} J^{2 n+1}$ will be denoted by $\langle x, y\rangle$ for $x \in \bigcup_{n=0}^{\infty} J^{2 n}$ and $y \in \cup_{n=0}^{\infty} J^{2 n+1}$.

The following lemma will be used many times.
Lemma 1. For each $n=1,2, \ldots$,
a) $\quad f_{2 n}=w^{*}-\lim _{k \rightarrow \infty} \sum_{j=1}^{n-1}(-1)^{j+1} f_{2 n-2 j}+(-1)^{n+1} e_{k}$ in $J^{2 n}$,
b) $f_{2 n+1}=w^{*}-\lim _{k \rightarrow \infty} \sum_{j=1}^{n-1}(-1)^{j+1} f_{2 n-2 j+1}+(-1)^{n+1} \varphi_{k}$ in $J^{2 n+1}$.

For each $k=1,2, \ldots$ and $n=2,3, \ldots$,
c) $\quad\left\|f_{2 n}+x\right\| \leqq \sup _{k<k_{1}<k_{2}}\left\|(-1)^{n+1} e_{k_{1}}+(-1)^{n} e_{k_{2}}+x\right\| \quad\left(x \in J^{2 n-2}\right)$,
d) $\quad\left\|f_{2 n+1}+y\right\| \leqq \sup _{k_{<k_{1}<k_{2}}}\left\|(-1)^{n+1} \varphi_{k_{1}}+(-1)^{n} \varphi_{k_{2}}+y\right\| \quad\left(y \in J^{2 n-1}\right)$.

Proof. For a) and b) simply evaluate both sides of the equation on basis elements of $J^{2 n-1}$ and $J^{2 n}$ respectively.
c) Applying a) we have for $x \in J^{2 n}$,

$$
\begin{aligned}
\left\|f_{2 n}+x\right\| & \leqq \varliminf_{\lim _{k 1 \rightarrow \infty}}\left\|\sum_{j=1}^{n-1}(-1)^{j+1} f_{2 n-2 j}+(-1)^{n+1} e_{k_{1}}+x\right\| \\
& =\underline{\lim }_{k_{1 \rightarrow \infty}}\left\|f_{2 n-2}+\sum_{j=2}^{n-1}(-1)^{j+1} f_{2 n-2 j}+(-1)^{n+1} e_{k_{1}}+x\right\| .
\end{aligned}
$$

If $x \in J^{2 n-2}$ we may apply a) again and we have

$$
\begin{aligned}
\left\|f_{2 n}+x\right\| & \leqq \underline{\lim }_{k_{1 \rightarrow \infty}} \underline{\lim }_{k_{2 \rightarrow \infty}}\left\|(-1)^{n+1} e_{k_{1}}+(-1)^{n} e_{k_{2}}+x\right\| \\
& \leqq \sup _{k<k_{1}<k_{2}}\left\|(-1)^{n+1} e_{k_{1}}+(-1)^{n} e_{k_{2}}+x\right\| .
\end{aligned}
$$

d) is proven in a similar fashion to c) and we shall omit the proof.

Lemma 2. a) $\left\|f_{2_{n+1}}\right\|=1$ for $n=1,2,3, \ldots$,
b) $\left\|f_{2}\right\|=1$ and $\left\|f_{2_{n}}\right\|=\sqrt{2}$ for $n=2,3, \ldots$.

Proof. a) From Lemma 1d)

$$
\left\|f_{2_{n+1}}\right\| \leqq \sup _{k_{1}<k_{2}}\left\|\varphi_{k_{1}}-\varphi_{k_{2}}\right\|=1
$$

On the other hand from standard duality arguments,

$$
\left\|f_{2 n+1}\right\|^{-1}=\inf _{x \in J^{2 n-2}}\left\|f_{2 n}+x\right\|
$$

Applying Lemma 1a), for all $x \in J^{2 n-2}$

$$
\left\|f_{2 n}+x\right\| \leqq \underline{\lim }_{k \rightarrow \infty}\left\|\sum_{j=1}^{n-1}(-1)^{j+1} f_{2 n-2 j}+(-1)^{n+1} e_{k}+x\right\|
$$

Setting $x=-\sum_{j=1}^{n-1}(-1)^{j+1} f_{2 n-2 j}$, we have

$$
\left\|f_{2 n}+x\right\| \leqq \underline{\lim }_{k \rightarrow \infty}\left\|(-1)^{n+1} e_{k}\right\|=1
$$

Thus $\left\|f_{2 n+1}\right\|^{-1} \leqq 1$ and the proof of a) is complete.
b) We have $\left\|f_{2}\right\|^{-1}=\inf _{y \in Y}\left\|\varphi_{1}+y\right\|$, where $Y=\left[e_{1}{ }^{*}, e_{2}{ }^{*}, \ldots\right] \subset J^{*}$. For $y \in Y$,

$$
\left\|\varphi_{1}+y\right\| \geqq\left|\left\langle e_{n}, \varphi_{1}+y\right\rangle\right|=\left|1+\left\langle e_{n}, y\right\rangle\right| \rightarrow 1 \quad \text { as } n \rightarrow \infty
$$

Thus we have $\left\|f_{2}\right\|^{-1}=\inf _{y \in Y}\left\|\varphi_{1}+y\right\|=1$.
Applying Lemma 1c), we have

$$
\left\|f_{2 n}\right\| \leqq \sup _{k_{1}<k_{2}}\left\|e_{k_{1}}-e_{k_{2}}\right\|=\sqrt{2}
$$

From standard duality arguments, we have

$$
\left\|f_{2_{n}}\right\|^{-1}=\inf _{y \in J^{2 n-3}}\left\|f_{2_{n-1}}+y\right\|
$$

Applying Lemma 1 b), for $y \in J^{2 n-3}$

$$
\left\|f_{2_{n-1}}+y\right\| \leqq \underline{\lim }_{k_{1 \rightarrow \infty}}\left\|\sum_{j=1}^{n-2}(-1)^{j+1} f_{2_{n-2} j-1}+(-1)^{n} \varphi_{k_{1}}+y\right\|
$$

Setting $y=-\frac{1}{2}\left(\sum_{j=1}^{n-2}(-1)^{j+1} f_{2 n-2 j-1}+(-1)^{n} \varphi_{1}\right)$ and applying Lemma 1 b) again, we have

$$
\begin{aligned}
& \left\|f_{2 n-1}+y\right\| \leqq \underline{\lim }_{k_{1} \rightarrow \infty}\left\|\frac{1}{2} \sum_{j=1}^{n-2}(-1)^{j+1} f_{2 n-2 j-1}+(-1)^{n} \varphi_{k 1}-\frac{1}{2}(-1)^{n} \varphi_{1}\right\| \\
& \leqq \underline{\lim }_{k_{1} \rightarrow \infty} \underline{\lim }_{k 2 \rightarrow \infty}\left\|-\frac{1}{2}(-1)^{n} \varphi_{1}+(-1)^{n} \varphi_{k_{1}}+\frac{1}{2}(-1)^{n-1} \varphi_{k_{2}}\right\| \\
& \leqq \sup _{1<k_{1}<k_{2}} \frac{1}{2}\left\|\left(-\varphi_{1}+\varphi_{k_{1}}\right)+\left(\varphi_{k_{1}}-\varphi_{k_{2}}\right)\right\| \leqq \sqrt{2} / 2 .
\end{aligned}
$$

The last inequality is true because for $x \in J$,

$$
\begin{aligned}
& \left|\left\langle x,-\varphi_{1}+\varphi_{k_{1}}+\varphi_{k_{1}}-\varphi_{k_{2}}\right\rangle\right|=\left|-\sum_{1}^{k_{1}-1} x(j)+\sum_{k_{1}}^{k_{2}-1} x(j)\right| \\
& \leqq \sqrt{2}\left(\left|\sum_{1}^{k_{1}-1} x(j)\right|^{2}+\left|\sum_{k_{1}}^{k_{2}-1} x(j)\right|^{2}\right)^{1 / 2} \leqq \sqrt{2}|x| \mid
\end{aligned}
$$

This completes the proof of the Lemma.
As a consequence of Lemma 2a), we have $\left\|f_{2 n}+x\right\| \geqq 1$ for all $x \in J^{2 n-2}$ and $n=1,2, \ldots$ which implies the following:

Corollary 1.

$$
\| \sum_{k=1}^{n} \beta_{k} f_{2 k}+\sum_{j=1}^{\infty} \alpha_{j} e_{j}| | \geqq \sup _{k, j}\left\{\left|\beta_{k}\right|,\left|\alpha_{j}\right|\right\}
$$

Theorem 1.1) $\left(J^{n},\|\cdot\|\right)$ has a unique isometric predual for all $n=0,1,2, \ldots$
2) Y, the unique predual of J, does not have any isometric predual.

Proof. 1a). $J^{2 n-1}$ has a unique isometric predual for all $n=1,2, \ldots$.
To show this it suffices to show that $\left[f_{2 n+1}\right]$ is the unique norm 1 complement of $J^{2 n-1}$ in $J^{2 n+1}$. In this case, this is equivalent to showing that if $y_{0} \in J^{2 n-1}$ and
(3) $\quad\left\|f_{2_{n+1}}+y\right\| \geqq\left\|y_{0}+y\right\|$ for all $y \in J^{2 n-1}$ then $y_{0}=0$. Let $y_{0}=\sum_{1}^{n-1} \beta_{k} f_{2 k+1}+\beta \varphi_{1}+\sum_{1}^{\infty} \alpha_{j} e_{j}^{*}$ and assume inequality (3). Given c, a complex number and l, a positive integer, set $y=c e_{l}{ }^{*}$. Then by Lemma 1d), we have

$$
\begin{aligned}
\left\|f_{2 n+1}+c e_{l}^{*}\right\| & \leqq \sup _{l<k_{1}<k_{2}}\left\|c e_{l}^{*}+(-1)^{n+1} \varphi_{k_{1}}+(-1)^{n} \varphi_{k_{2}}\right\| \\
& \leqq \sqrt{|c|^{2}+1}
\end{aligned}
$$

(use Schwartz's inequality as in the end of the proof of Lemma 2 b)).
On the other hand

$$
\left\|y_{0}+c e_{l}^{*}\right\| \geqq\left|\left\langle e_{l}, y_{0}+c e_{l}^{*}\right\rangle\right|=\left|\beta+\alpha_{l}+c\right| .
$$

Thus $\left|\beta+\alpha_{l}+c\right| \leqq \sqrt{|c|^{2}+1}$ for all complex numbers c which implies $\beta+\alpha_{l}=0$ for all l and we have $\beta=\alpha_{l}=0$ for all l. Suppose $\beta_{k}=0$ for $1 \leqq k<l \leqq n-1$. Applying Lemma 1d) two times, we have for each complex number c

$$
\begin{aligned}
& \left\|f_{2_{n+1}}+c f_{2 l+1}\right\| \leqq \sup _{k_{1}<k_{2}}\left\|(-1)^{n+1} \varphi_{k_{1}}+(-1)^{n} \varphi_{k_{2}}+c f_{2 l+1}\right\| \\
& \leqq \sup _{k_{1}<k_{2}<k_{3}<k_{4}} \|(-1)^{n+1} \varphi_{k_{1}}+(-1)^{n} \varphi_{k_{2}}+c\left((-1)^{l+1} \varphi_{k_{3}}\right. \\
& \left.+(-1)^{l} \varphi_{k_{4}}\right) \| \\
& \leqq \sqrt{|c|^{2}+1} .
\end{aligned}
$$

On the other hand, since $\left[f_{2 j+1}\right]$ is a norm 1 complement of $J^{2 j-1}$ in $J^{2 j+1}$ for all $j=1,2, \ldots$, we have

$$
\begin{aligned}
\left\|y_{0}+c f_{2 l+1}\right\| & =\left\|\sum_{k=l}^{n-1} \beta_{k} f_{2 k+1}+c f_{2 l+1}\right\| \geqq\left\|\left(\beta_{l}+c\right) f_{2 l+1}\right\| \\
& =\left|\beta_{l}+c\right|\left\|f_{2 l+1}\right\|=\left|\beta_{l}+c\right| \quad(\text { Lemma 2a) })
\end{aligned}
$$

Thus $\left|\beta_{l}+c\right| \leqq \sqrt{|c|^{2}+1}$ for all complex numbers c which implies that $\beta_{l}=0$. This completes the proof that $y_{0}=0$.

1b) J has a unique isometric predual.
In the beginning of this section, we noticed that J has an isometric predual Y (this fact can be proven directly by showing that $\left\|f_{2}+x\right\| \geqq\|x\|$ for all $x \in J$ in a manner similar to the proof of Lemma 3 in Section 2). Let $x_{0}=\sum_{1}^{\infty} \alpha_{j} e_{j}$ and assume

$$
\left\|f_{2}+x\right\| \geqq\left\|x_{0}+x\right\| \quad \text { for all } x \in J
$$

Given l, then $\alpha_{l}=e^{i \theta}\left|\alpha_{l}\right|$ and we set $x=c e_{l}-e_{l+1}$ with $c>0$. Then applying Lemma 1a) we have

$$
\begin{aligned}
\left\|e^{-i \theta} f_{2}+c e_{l}-e_{l+1}\right\| & \leqq \lim _{k \rightarrow \infty}\left\|c e_{l}-e_{l+1}+e^{-i \theta} e_{k}\right\| \\
& \left.\leqq \sqrt{c^{2}+2} \text { (Definition of the norm in } J\right)
\end{aligned}
$$

On the other hand, we have

$$
\left\|e^{-i \theta} x_{0}+c e_{l}-e_{l+1}\right\| \geqq\left|\left\langle e^{-i \theta} x_{0}+c e_{1}-e_{l+1}, e_{l}^{*}\right\rangle\right|=\left|\alpha_{l}\right|+c .
$$

Thus $\left|\alpha_{l}\right|+c \leqq \sqrt{c^{2}+2}$ for all $c>0$ which implies that $\alpha_{l}=0$.
1c) $J^{2 n}$ has a unique isometric predual for all $n=1,2, \ldots$
Let $x_{0}=\sum_{k=1}^{n} \beta_{k} f_{2 k}+\sum_{j=1}^{\infty} \alpha_{j} e_{j}$ and assume

$$
\left\|f_{2 n+2}+x\right\| \geqq\left\|x_{0}+x\right\| \quad \text { for all } x \text { in } J^{2 n}
$$

i) We claim $\alpha_{j}=0$ for all $j=1,2, \ldots$

As in 1b), we set $\alpha_{l}=e^{i \theta}\left|\alpha_{l}\right|$ and $x=c e_{l}-e_{l+1}$ with $c>0$. Lemma 1c) implies that

$$
\begin{aligned}
\| e^{-i \theta} f_{2 n+2}+ & c e_{l}-e_{l+1}\left\|\leqq \sup _{l+1<k_{1}<k_{2}}\right\| c e_{l}-e_{l+1}+e^{-i \theta}\left((-1)^{n+2} e_{k_{1}}\right. \\
& \left.\left.+(-1)^{n+1} e_{k_{2} 2}\right) \| \leqq \sqrt{c^{2}+5} \quad \text { (Definition of the norm in } J\right) .
\end{aligned}
$$

On the other hand, we have

$$
\left\|e^{-i \theta} x_{0}+c e_{l}-e_{l+1}\right\| \geqq\left|\alpha_{l}\right|+c .
$$

Thus $\left|\alpha_{l}\right|+c \leqq \sqrt{c^{2}+5}$ for all $c>0$ which implies that $\alpha_{l}=0$.
ii) We claim $\beta_{k}=0$ for all $k=1,2, \ldots, n$.

Suppose $\beta_{1}=\beta_{2}=\ldots=\beta_{l-1}=0$ for $1 \leqq l \leqq n$. Set

$$
x=-\sum_{j=1}^{n}(-1)^{j+1} f_{2 n-2 j+2} .
$$

Then by Lemma 1a)

$$
\left\|f_{2 n+2}+x\right\| \leqq \lim _{k \rightarrow \infty}\left\|(-1)^{n+2} e_{k}\right\|=1
$$

On the other hand the corollary to Lemma 2 implies that

$$
\left\|x_{0}+x\right\| \geqq\left|\beta_{l}+(-1)^{n-l+1}\right| .
$$

Consequently, we have

$$
\begin{equation*}
\left|\beta_{l}+(-1)^{n-l+1}\right| \leqq 1 \tag{4}
\end{equation*}
$$

If $l=1$, set $x=(-1)^{n+1} c e_{1}$ with $c>0$. Then by Lemma 1c), we have

$$
\begin{aligned}
& \left\|f_{2 n+2}+(-1)^{n+1} c e_{1}\right\| \leqq \sup _{1<k_{1}<k_{2}} \|(-1)^{n+1} c e_{1}+(-1)^{n+2} e_{k_{1}} \\
& =\sup _{1<k_{1}<k_{2}}\left\|c e_{1}-e_{k_{1}}+e_{k_{2}}\right\| \leqq \sqrt{c^{2}+2},
\end{aligned}
$$

and we have

$$
\begin{aligned}
\left\|\sum_{k=1}^{n} \beta_{k} f_{2 k}+(-1)^{n+1} c e_{1}\right\| & \geqq\left|\left\langle\sum_{k=1}^{n} \beta_{k} f_{2 k}+(-1)^{n+1} c e_{1}, \varphi_{1}\right\rangle\right| \\
& =\left|\beta_{1}+(-1)^{n+1} c\right|
\end{aligned}
$$

Thus we have

$$
\begin{equation*}
\left|\beta_{1}+(-1)^{n+1} c\right| \leqq \sqrt{c^{2}+2} \quad \text { for all } c>0 \tag{5}
\end{equation*}
$$

If $l>1$, we set $x=(-1)^{n-l} c \sum_{j=1}^{l-1}(-1)^{j+1} f_{2 l-2 j}$ with $c>0$. Then by Lemma 1c), we have

$$
\begin{aligned}
& \left\|f_{2_{n+2}}+x\right\| \leqq \sup _{k_{1}<k_{2}}\left\|(-1)^{n+2} e_{k_{1}}+(-1)^{n+1} e_{k 2}+x\right\| \\
& =\sup _{k_{1}<k_{2}} \|(-1)^{n-l} c f_{2 l-2}+(-1)^{n-l} c \sum_{j=2}^{l-1}(-1)^{j+1} f_{2 l-2 j} \\
& +(-1)^{n+2} e_{k_{1}}+(-1)^{n+1} e_{k_{2}} \| .
\end{aligned}
$$

Applying Lemma 1a), we have

$$
\begin{aligned}
& \left\|f_{2 n+2}+x\right\| \leqq \sup _{k_{1}<k 2<k_{3}}\left\|(-1)^{n+2} e_{k_{1}}+(-1)^{n+1} e_{k_{2}}+(-1)^{n-l+l} c e_{k_{3}}\right\| \\
& =\sup _{k_{1}<k_{2}<k_{3}}\left\|e_{k_{1}}-e_{k_{2}}+c e_{k_{3}}\right\| \leqq \sqrt{c^{2}+2}
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
& \left\|x_{0}+x\right\|=\left\|\sum_{k=l}^{n} \beta_{k} f_{2 k}+(-1)^{n-l} c \sum_{j=1}^{l-1}(-1)^{j+1} f_{2 l-2 j}\right\| \\
& \geqq\left|\left\langle x_{0}+x, f_{2 l-1}\right\rangle\right|=\left|\beta_{l}+(-1)^{n-l} c\right| .
\end{aligned}
$$

Note that we used the fact that $\left\|f_{2 l-1}\right\|=1$, which was proved in Lemma 2a). Thus we have

$$
\begin{equation*}
\left|\beta_{l}+(-1)^{n-1} c\right| \leqq \sqrt{c^{2}+2} \text { for all } c>0 \tag{6}
\end{equation*}
$$

The inequalities (4), (5) and (6) say that for all l with $1 \leqq l \leqq n$, we have

$$
\left|\beta_{l}+(-1)^{n-l+1}\right| \leqq 1 \quad \text { and } \quad\left|\beta_{l}+(-1)^{n-l} c\right| \leqq \sqrt{c^{2}+2} \text { for all } c>0
$$

Therefore if $n-l$ is even, then $\left|\beta_{l}-1\right| \leqq 1$ and $\left|\beta_{l}+c\right| \leqq \sqrt{c^{2}+2}$ for all $c>0$ which implies $\left|\beta_{l}-1\right| \leqq 1$ and $\operatorname{Re} \beta_{l} \leqq 0$. Thus we have $\beta_{l}=0$. A similar argument shows that when $n-l$ is odd, $\beta_{l}=0$. This completes the proof of 1).
2) To prove that Y has no isometric predual, we show that Y is not norm 1 complemented in J^{*}. That is, if $y_{0}=\sum_{j=1}^{\infty} \alpha_{j} e_{j}^{*} \in Y$, then the condition
(7) $\left\|\varphi_{1}+y_{0}+y\right\| \geqq\|y\|$ for all $y \in Y$
leads to a contradiction. Assuming (7) and setting $y=-y_{0}-2 e_{n}{ }^{*}$, we have $\left\|\varphi_{1}-2 e_{n}^{*}\right\| \geqq\left\|-y_{0}-2 e_{n}^{*}\right\|$ for each n.
If $x=\sum_{j=1}^{\infty} \beta_{j} e_{j} \in J$, then

$$
\begin{aligned}
& \left|\left\langle x, \varphi_{1}-2 e_{n}^{*}\right\rangle\right|=\left|\sum_{1}^{n-1} \beta_{j}-\beta_{n}+\sum_{n+1}^{\infty} \beta_{j}\right| \\
& \leqq \sqrt{3}\left(\left|\sum_{1}^{n-1} \beta_{j}\right|^{2}+\left|\beta_{n}\right|^{2}+\left|\sum_{n+1}^{\infty} \beta_{j}\right|^{2}\right)^{1 / 2} \leqq \sqrt{3}\|x\| .
\end{aligned}
$$

Thus $\left\|\varphi_{1}-2 e_{n}^{*}\right\| \leqq \sqrt{3}$ for each n. On the other hand, we have

$$
\left\|-y_{0}-2 e_{n}^{*}\right\| \geqq\left|\left\langle e_{n},-y_{0}-2 e_{n}^{*}\right\rangle\right|=\left|-\alpha_{n}-2\right|
$$

Thus we have $\sqrt{3} \geqq\left|\alpha_{n}+2\right|$ for each n which is a contradiction since α_{n} approaches 0 as $n \rightarrow \infty$. This completes the proof of Theorem 1 .

Corollary 2. If $n \neq m \geqq-1$, then J^{n} is not isometrically isomorphic to J^{m} where $J^{-1}=Y$, the unique predual of J. Furthermore, J is not isometrically isomorphic to the second dual $X^{* *}$ of any Banach space X.
2. $(J,\| \| \cdot \| \mid)$. In this section, J^{n} will always stand for the n 'th dual of $(J, \mid\|\cdot\| \|)$ and we use the same basis as introduced in Section 1 for J^{n}.

Lemma 3. $\left|\left\|f_{2}-e_{1}+x\right\|\|\geqq\|\right| x \|$ for all $x \in J$.
Proof. Without loss of generality, we may assume that the given $x \in J$ has a finite expansion, $x=\sum_{1}{ }^{n} \alpha_{j} e_{j}$. Then given $\epsilon>0$, there exists a finite set of disjoint $\hat{I}_{k}, k=1,2, \ldots, m$ such that

$$
\left(\sum_{k=1}^{m}\left|\sum_{j \epsilon \hat{I}_{k}} \alpha_{j}\right|^{2}\right)^{1 / 2} \geqq\| \| x \mid \|-\epsilon .
$$

Since x has a finite expansion, we may assume $\hat{I}_{1}=\left\{1,2, \ldots, l_{1}\right\} \cup\left\{l_{2}\right.$, $\left.l_{2}+1, \ldots\right\}$ with $l_{1}<l_{2}$ and $\hat{I}_{2}, \ldots, \hat{I}_{m}$ are the usual finite intervals. Choose $\beta_{k}, k=1,2, \ldots, m$ such that

$$
\sum_{1}^{m}\left|\beta_{k}\right|^{2}=1 \quad \text { and } \quad \sum_{1}^{m} \beta_{k}\left(\sum_{j \in \hat{i}_{k}} \alpha_{j}\right)=\left(\sum_{1}^{m}\left|\sum_{j \in \hat{I}_{k}} \alpha_{j}\right|^{2}\right)^{1 / 2}
$$

and define

$$
y=\sum_{2}^{m} \beta_{k}\left(\sum_{j \in \hat{I}_{k}} e_{j}^{*}\right)+\beta_{1}\left(\varphi_{1}-\sum_{l_{1}<j<l_{2}} e_{j}^{*}\right) .
$$

Then for any $z=\sum_{1}^{\infty} \gamma_{j} e_{j} \in J$, we have

$$
\begin{aligned}
& |\langle z, y\rangle|=\left|\sum_{k=2}^{m} \beta_{k}\left(\sum_{j \in \hat{I}_{k}} \gamma_{j}\right)+\beta_{1}\left(\sum_{1}^{l_{1}} \gamma_{j}+\sum_{l_{2}}^{\infty} \gamma_{j}\right)\right| \\
& \leqq\left(\sum_{1}^{m}\left|\beta_{k}\right|^{2}\right)^{1 / 2}\left(\sum_{k=2}^{m}\left|\sum_{j \in \hat{I}_{k}} \gamma_{j}\right|^{2}+\left|\sum_{j \in \hat{I}_{1}} \gamma_{j}\right|^{2}\right)^{1 / 2} \\
& \leqq 1 \cdot| ||z|| | .
\end{aligned}
$$

Thus $\|\|y\|\| 1$. It is clear that $\left\langle f-e_{1}, y\right\rangle=0$. Thus we have

$$
\begin{aligned}
& \|\mid x\| \|-\epsilon<\left(\sum_{k=1}^{m}\left|\sum_{j \in \hat{I}_{k}} \alpha_{j}\right|^{2}\right)^{1 / 2}=\langle x, y\rangle=\left\langle f_{2}-e_{1}+x, y\right\rangle \\
& \leqq\left\|\left|f_{2}-e_{1}+x\| \|\|y\|\right| \leqq \mid\right\| f_{2}-e_{1}+x\| \| .
\end{aligned}
$$

Hence we can conclude that $\||x|\| \leqq\left\|\left|\left|f_{2}-e_{1}+x\right| \|\right.\right.$.
Since the annihilator of $f_{2}-e_{1}$ in J^{*} is clearly the closed linear span $Z=\left[\varphi_{1}, e_{2}{ }^{*}, e_{3}{ }^{*}, \ldots\right]$, we have

Corollary 3. $(J,|\||\||)$ has an isometric predual, namely, $(Z, \|||| |)$.
Theorem 2. $(J,|||\cdot|||)$ and $\left(J^{*},|||\cdot|||\right)$ have unique isometric preduals.
Proof. a) J has a unique isometric predual.
We have observed in Corollary 3 that Z is a predual of J. We shall show that
$\left[f_{2}-e_{1}\right]$ is the only norm 1 complement of J in J^{2}. Let $x_{0}=\sum_{1}^{\infty} \alpha_{j} e_{j} \in J$, and assume

$$
\begin{equation*}
\left\|\mid f_{2}+x\right\|\|\geqq\|\left\|x_{0}+x\right\| \| \quad \text { for all } x \in J \tag{8}
\end{equation*}
$$

We claim $x_{0}=e_{1}$. For $n>1$, choose θ so that $\alpha_{n}=e^{i \theta}\left|\alpha_{n}\right|$. Set $x=-e_{1}+c e_{n}$ $-e_{n+1}$ with $c>0$. Then by Lemma 1a),

$$
\left\|\left|\left|e^{-i \theta} f_{2}+x\| \| \leqq \underline{\lim }_{k \rightarrow \infty}\right|\left\|-e_{1}+c e_{n}-e_{n+1}+e^{-i \theta} e_{k} \mid\right\|\right.\right.
$$

However for $k>n+1$,

$$
\begin{aligned}
& \left\|\left\|-e_{1}+c e_{n}-e_{n+1}+e^{-i \theta} e_{k} \mid\right\| \leqq \sqrt{c^{2}+9}\right. \text { and } \\
& \left\|\left|\| e ^ { - i \theta } x _ { 0 } + x \| \left\|=\left|\left|\left|e^{-i \theta} \sum_{1}^{\infty} \alpha_{j} e_{j}-e_{1}+c e_{n}-e_{n+1}\right| \|\left|\geqq\left|\left|\alpha_{n}\right|+c\right|\right.\right.\right.\right.\right.\right.
\end{aligned}
$$

Thus we have $\left|\alpha_{n}\right|+c \leqq \sqrt{c^{2}+9}$ for all $c>0$ which implies $\alpha_{n}=0$, and we have $x_{0}=\alpha_{1} e_{1}$. Thus inequality (8) becomes
(9) $\quad\left|\left|\left|f_{2}+x\right|\|\geqq\|\left\|\alpha_{1} e_{1}+x\right\| \| \quad\right.\right.$ for all $x \in J$.

If $y=\beta \varphi_{1}+\sum_{1}^{\infty} \beta_{j} e_{j}^{*}$ with $\|||y| \| \leqq 1$, then

$$
\left|\beta+\beta_{n}\right|=\left|\left\langle e_{n}, y\right\rangle\right| \leqq\left|\left\|e_{n}|\||\|y \mid\| \leqq \text { for all } n=1,2, \ldots\right.\right.
$$

This implies that $\left|\left\langle f_{2}, y\right\rangle\right|=|\beta|=\lim _{n \rightarrow \infty}\left|\beta+\beta_{n}\right| \leqq 1$. Since $\left|\left|\left|f_{2}\right| \|\left|\geqq\left|\left|f_{2}\right|\right|=1\right.\right.\right.$ (Lemma 2b)), we have $\left\|\mid f_{2}\right\| \|=1$. Thus inequality (9) implies $1=\| \| f_{2}\| \| \geqq$ $\left|\left|\left|\alpha_{1} e_{1}\right| \|\left|=\left|\alpha_{1}\right|\right.\right.\right.$. Set $x=-e_{1}+e_{2}-c e_{3}$ with $c>0$. Then by Lemma 1a),

$$
\begin{aligned}
& \left\|\left\|f_{2}+x\right\|\right\| \leqq \underline{\lim }_{k \rightarrow \infty}\| \|-e_{1}+e_{2}-c e_{3}+e_{k} \mid \| \leqq \sqrt{c^{2}+3}, \quad \text { and } \\
& \left\|\left|\alpha_{1} e_{1}+x\| \|=\left\|\left(\alpha_{1}-1\right) e_{1}+e_{2}-c e_{3}\left|\|\left|\leqq\left|\alpha_{1}-1-c\right| .\right.\right.\right.\right.\right.
\end{aligned}
$$

Hence (9) implies that $|\alpha-1-c| \leqq \sqrt{c^{2}+3}$ for all $c>0$, and we have $\operatorname{Re}\left(\alpha_{1}-1\right) \geqq 0$. Since $\left|\alpha_{1}\right| \leqq 1$, we can conclude that $\alpha_{1}=1$ which completes the proof of a).
b) J^{*} has a unique isometric predual.

We shall show that $\left[f_{3}\right]$ is the only norm 1 complement of J^{*} in J^{3}. Suppose $y_{0}=\beta \varphi_{1}+\sum_{1}^{\infty} \beta_{j} e_{j}^{*} \in J^{*}$ and

$$
\begin{equation*}
\left\|\left\|f_{3}+y\right\|\right\| \geqq\| \| y_{0}+y\| \| \text { for all } y \in J^{*} \tag{13}
\end{equation*}
$$

We claim $y_{0}=0$. If $y=c e_{n}{ }^{*}$ where c is any complex number, Lemma 1 b) implies

$$
\left|\| f _ { 3 } + c e _ { n } ^ { * } \| \left\|\leqq \underline{\lim }_{k \rightarrow \infty}\left|\left\|c e_{n}^{*}+\varphi_{k} \mid\right\| \leqq \sqrt{|c|^{2}+1}\right.\right.\right.
$$

On the other hand,

$$
\left|\left\|y_{0}+c e_{n}^{*}\left|\|\left|\geqq\left|\left\langle e_{n}, y_{0}+c e_{n}^{*}\right\rangle\right|=\left|\beta+\beta_{n}+c\right| .\right.\right.\right.\right.
$$

Thus, from (10) we have $\left|\beta+\beta_{n}+c\right| \leqq \sqrt{|c|^{2}+1}$ for all complex numbers c which implies $\beta+\beta_{n}=0$ for each n. Thus $\beta=\beta_{n}=0$ for all n since $\beta_{n} \rightarrow 0$ as $n \rightarrow \infty$. This completes the proof of the theorem.

Our norm $\||\cdot \||$ is a slight variant of the norm introduced in James [6]. We present the following proof of his theorem for completeness.

Theorem 3. (James) If $x=\sum_{1}^{\infty} \alpha_{j} e_{j} \in J$ and $S x=\alpha_{1} f_{2}+\sum_{1}^{\infty} \alpha_{j+1} e_{j} \in J^{* *}$, then S is an isometry from J onto $J^{* *}$.

Proof. It is sufficient to show that $\|\|S x\|\|=\|\mid x\| \|$ for any $x=\sum_{1}^{n} \alpha_{j} e_{j}$ with finite expansion. For such an x, set $z_{k}=\alpha_{2} e_{1}+\alpha_{3} e_{2}+\ldots+\alpha_{n} e_{n-1}+\alpha_{1} e_{k}$ for $k \geqq n$. Then, we have $\left\|\mid z_{k}\right\|\|=\|\|x\| \|$ for all $k \geqq n$ and by Lemma 1a) $w^{*}-\lim _{k \rightarrow \infty} z_{k}=S x$ in $J^{* *}$. Thus $\left\|\left|\left|S x\left\|\left\|\leqq \underline{\lim }_{k \rightarrow \infty}\left|\left\|z_{k}\right\|\|=\|\right|\right\| x\right\|\right|\right.\right.$.

Choose $y_{0}=\beta \varphi_{1}+\sum_{1}^{\infty} \beta_{j} e_{j}^{*} \in J^{*}$ with $\left\|\mid y_{0}\right\| \|=1$ such that $\left\langle z_{n}, y_{0}\right\rangle=$ $\left\|\left|\left|z_{n}\| \|=\|| | x\| \|\right.\right.\right.$. If $\hat{y}_{0}=\beta \varphi_{1}+\sum_{1}^{n-1} \beta_{j} e_{j}^{*}+\beta_{n} \varphi_{n}$, we can see that

$$
\begin{equation*}
\left\langle z, \hat{y}_{0}\right\rangle=\left\langle\tilde{z}, y_{0}\right\rangle \quad \text { for all } z=\sum_{1}^{\infty} \gamma_{j} e_{j} \in J, \tag{11}
\end{equation*}
$$

where $\tilde{\Xi}=\sum_{1}^{n-1} \gamma_{j} e_{j}+\left(\sum_{n}^{\infty} \gamma_{j}\right) e_{n}$. Thus we have

$$
\begin{aligned}
\left\langle S x, \hat{y}_{0}\right\rangle & =\lim _{k \rightarrow \infty}\left\langle z_{k}, \hat{y}_{0}\right\rangle=\lim _{k \rightarrow \infty}\left\langle\tilde{z}_{k}, y_{0}\right\rangle=\lim _{k \rightarrow \infty}\left\langle z_{n}, y_{0}\right\rangle \\
& =\left\langle z_{n}, y_{0}\right\rangle=\| \| z_{n}\| \|=\|x\| \mid
\end{aligned}
$$

which implies $\left|\left||x|\left\|\leqq\left|\left||S x|\left\|\left|\left\|\left|\hat{y}_{0}\right|\right\|\right.\right.\right.\right.\right.\right.\right.$. However, since $\|\mid \tilde{z}\|\|\leqq\| z\| \|$ for all $z \in J$, identity (11) implies $\left\|\left\|\hat{y}_{0}\right\|\right\| \leqq\left\|y_{0}\right\| \|=1$, and we have $\|\mid x\|\|\leqq\| S x\|\|$. This completes the proof of theorem.

Note that Corollary 3 can be shown by using Theorem 3 .
The following is a consequence of Theorems 2 and 3 .
Corollary 4. For each positive integer n, the n 'th isometric predual of $J=\left(J,\||\cdot \||)\right.$ is uniquely defined (denoted by $\left.J^{-n}\right)$. In fact for each integer n (positive or negative) J^{n} is isometrically isomorphic fo J (if n is even) or J^{*} (if n is odd).

Note that R. C. James [7] proved that J and J^{*} are not even isomorphic.
3. Remarks. 1. If a Banach space X has a unique isometric predual, then it is not necessarily true that X^{*} has a unique isometric predual. Such an example is l^{∞}. Since $\left(l^{\infty}\right)^{*}=l^{1} \oplus\left(c_{0}\right)^{\perp}$ (the l^{1}-direct sum), the l^{1}-direct sum of l^{1} and $\left(l^{\infty}\right)^{*}$ is isometrically isomorphic to $\left(l^{\infty}\right)^{*}$. Therefore $l^{\infty} \oplus c_{0}$ (the l^{∞}-direct sum) is an isometric predual of $\left(l^{\infty}\right)^{*}$. J. Lindenstrauss [8] shows that any infinite dimensional complemented subspace of l^{∞} is isomorphic to l^{∞}. Consequently $l^{\infty} \oplus c_{0}$ is not even isomorphic to l^{∞}.
2. As we have noticed in the introduction, a Banach space X has an isometric predual if and only if X has a w^{*}-closed norm 1 complement in $X^{* *}$. Suppose A is such a complement then the annihilator A_{\perp} of A in X^{*} is an isometric predual of X. Thus, in order to prove that X has a unique isometric predual it is necessary to show that if B is another w^{*}-closed norm 1 complement of X in $X^{* *}$, then A_{\perp} is isometrically isomorphic to B_{\perp}. Therefore uniqueness of w^{*}-closed norm 1 complement of X in $X^{* *}$ appears to be stronger than unique-
ness of isometric preduals of X. Every known proof of uniqueness of isometric preduals, as well as ours, shows this stronger condition.

Addendum. In a recent paper, G. Godefroy (Espaces de Banach: Existence et unicité de certains préduax, Ann. Inst. Fourier, Grenoble, 28, no. 3 (1978), $87-105$) showed that if the dual X^{*} of a Banach space X does not contain isomorphic copy of l^{1} then X is the unique isometric predual of X^{*}. Thus any quasireflexive Banach space $X\left(\operatorname{dim} X^{* *} / X<+\infty\right)$ has a unique isometric predual or no isometric predual. Our proofs for J^{n} in this paper are direct and use elementary properties of the norm of J. They also suggest a new notion of unique predual which will be expanded upon in a subsequent paper.

References

1. T. Ando, Uniqueness of predual of H^{∞} (to appear).
2. M. M. Day, Normed linear spaces (third ed., New York, 1973).
3. A. Grothendieck, Une caracterisation vectorielle-metrique de espaces L^{1}, Can. J. Math. 7 (1955), 552-561.
4. T. Ito, On Banach spaces with unique isometric preduals, Mich. Math. J. 24 (1977), 321-324.
5. R. C. James, Bases and reflexivity of Banach spaces, Ann. of Math. 52 (1950), 518-527.
6. - A non-reflexive Banach space isometric with its second conjugate space, Proc. Nat. Acad. Sci. U.S.A. 37 (1951), 174-177.
7. -_Banach spaces quasi-reflexive of order one, Studia Math. 60 (1977), 157-177.
8. J. Lindenstrauss, On complemented subspace of m, Israel J. Math. 5 (1967), 153-156.
9. S. Sakai, C^{*}-algebras and W^{*}-algebras (Springer-Verlag, Berlin, 1971).

Wayne State University, Detroit, Michigan

[^0]: Received January 20, 1978. This research was partially supported by N.S.F. Grant No. MCS 76-04408.

