Isomorphisms of some convolution algebras and their multiplier algebras

U.B. Tewari

Let G_{1} and G_{2} be two locally compact abelian groups and let $1 \leq p<\infty$. We prove that G_{1} and G_{2} are isomorphic as topological groups provided there exists a bipositive or isometric algebra isomorphism of $M\left(A_{p}\left(G_{1}\right)\right)$ onto $M\left(A_{p}\left(G_{2}\right)\right)$. As a consequence of this, we prove that G_{1} and G_{2} are isomorphic as topological groups provided there exists a bipositive or isometric algebra isomorphism of $A_{p}\left(G_{1}\right)$ onto $A_{p}\left(G_{2}\right)$. Similar results about the algebras $L_{1} \cap L_{p}$ and $L_{1} \cap C_{0}$ are also established.

1. Introduction

Let G be a locally compact abelian group and let $1 \leq p<\infty$. $\left(i_{1} \cap L_{p}\right)(G)$ is the Banach algebra $L_{1}(G) \cap L_{p}(G)$ with the norm

$$
\|f\|_{1, p}=\|f\|_{1}+\|f\|_{p} \quad\left(f \in L_{1}(G) \sim L_{p}(G)\right)
$$

and the convolution as multiplication. Similarly, $\left(L_{1} \cap C_{0}\right)(G)$ is the Banach algebra $L_{1}(G) \cap C_{0}(G)$ with the norm

$$
\|f\|_{1, \infty}=\|f\|_{1}+\|f\|_{\infty} \quad\left(f \in L_{1}(c) C_{0}(G)\right)
$$

Received 20 May 1972. Communcated by G.I. Gaudry.
and the convolution as multiplication. $A_{p}(G)$ is the Banach algebra consisting of all those functions $f \in L_{1}(G)$ such that $\hat{f} \in L_{p}(\hat{G})$ where \hat{G} denotes the dual group of G. The multiplication in $A_{p}(G)$ is the convolution and the norm is given by

$$
\|f\|^{p}=\|f\|_{1}+\|\hat{f}\|_{p} \quad\left(f \in A_{p}(G)\right)
$$

A multiplier T on a commutative semi-simple Banach algebra A is a function on A to A such that $(T x) y=T(x y)=x(T y)$ for all $x, y \in A$. It is well known that a multiplier T of A is a continuous linear operator on A and the set $M(A)$ of all multipliers of A forms a commutative Banach algebra with multiplication as composition and the norm as operator norm. The properties of multipliers are discussed in Larsen [5] and for any definitions and results not mentioned in this paper we refer the reader to [5].

In this paper we are concerned with some subalgebras A of $L_{1}(G)$. For such an algebra A, a multiplier T of A is said to be positive if $T f \geq 0$ almost everywhere whenever $f \geq 0$ almost everywhere and $f \in A$. Let G_{1} and G_{2} be two locally compact abelian groups and let A_{1} and A_{2} be linear subspaces of $L_{1}\left(G_{1}\right)$ and $L_{1}\left(G_{2}\right)$ respectively. A linear transformation $S: A_{1} \rightarrow A_{2}$ is called bipositive whenever $S f \geq 0$ almost everywhere if and only if $f \geq 0$ almost everywhere. The bipositive mappings between spaces of multipliers are defined analogously.

The main theorem of this paper is the following:
THEOREM 1. Let G_{1}, G_{2} be locally compact abelion groups and $1 \leq p<\infty . G_{1}$ and G_{2} are isomorphic as topological groups provided there exists a bipositive or isometric algebra isomorphism of $M\left(A_{p}\left(G_{1}\right)\right)$ onto $M\left(A_{p}\left(G_{2}\right)\right)$.

As a consequence of Theorem 1 we shall prove that G_{1} and G_{2} are isomorphic as topological groups provided there exists a bipositive or isometric algebra isomorphism of $A_{p}\left(G_{1}\right)$ onto $A_{p}\left(G_{2}\right)$.

Similar results about the algebras $L_{1} \cap L_{p}$ and $L_{1} \cap C_{0}$ are also established.

The proof of our Theorem 1 heavily depends on the techniques of Gaudry in proving his Theorems 1 and 2 in [1].

2. Multipliers of $A_{p}(G)$

In this section we characterize norm preserving and positive multipliers of $A_{p}(G)$. We prove two other propositions which are used in proving Theorem 1.

PROPOSITION 1. Let G be a compact abelian group and let I be a norm preserving multiplier of $A_{p}(G)$. Then there exists $a \in G$ and a complex number λ of abs=iute value 1 such that $T=\lambda \tau_{a}$ where τ_{a} denotes the operator of translation by comount a.

Proof. Let $\gamma \in \hat{G}$. Then $\gamma * \gamma=\gamma$ and hence $T(\gamma)=T(\gamma * \gamma)=P_{\gamma} * \gamma$. Therefore $T(\gamma)=\phi(\gamma) \gamma$ where $\phi(\gamma)$ is a complex number. Since T is norm preserving it follows that $|\phi(\gamma)|=1$.

Now, for any trigonometric polynomial $\sum_{1}^{n} a_{i} \gamma_{i}$, we have

$$
\begin{aligned}
\left\|T\left(\sum_{l}^{n} a_{i} \gamma_{i}\right)\right\|^{p} & =\left\|\sum_{1}^{n} a_{i} T\left(\gamma_{i}\right)\right\|_{I}+\left(\sum_{1}^{n}\left|a_{i} \phi\left(\gamma_{i}\right)\right|^{p}\right)^{1 / F} \\
& =\left\|T\left(\sum_{1}^{n} a_{i} \gamma_{i}\right)\right\|_{1}+\left(\sum_{1}^{n}\left|a_{i}\right|^{p}\right)^{1 / p}
\end{aligned}
$$

On the other hand, since T is norm preserving

$$
\begin{aligned}
\left\|T\left(\sum_{1}^{n} a_{i} \gamma_{i}\right)\right\|^{p} & =\left\|\sum_{1}^{n} a_{i} \gamma_{i}\right\|^{p} \\
& =\left\|\sum_{1}^{n} a_{i} \gamma_{i}\right\|_{1}+\left(\sum_{1}^{n}\left|a_{i}\right|^{p}\right)^{1 / p}
\end{aligned}
$$

Therefore

$$
\left\|T\left(\sum_{1}^{n} a_{i} \gamma_{i}\right)\right\|_{1}=\left\|\sum_{1}^{n} a_{i} \gamma_{i}\right\|_{1}
$$

Since trigonometric polynomials are norm dense in $L_{1}(G)$ we conclude that there exists a unique norm preserving multiplier T^{\prime} of $L_{1}(G)$ such that $T^{\prime} \cdot f=T f$ for each $f \in A_{p}(G)$. Hence by Theorem 3 of Wendel [7] it follows that there exist λ and a as desired such that

$$
T f=\lambda \tau_{\alpha} f \quad\left(f \in A_{p}(G)\right)
$$

REMARK. It can be easily seen that Proposition 1 is true for arbitrary locally compact abelian groups G. The analogues of the proposition for the algebras $L_{1} \cap L_{p}$ and $L_{1} \cap C_{0}$ are also valid.

The case of $A_{p}(G)$ for noncompact G is exactly similar to that of $L_{1} \cap L_{p}$ and $L_{1} \cap C_{0}$. We give a proof for the case $L_{1} \cap L_{p}$. The crux of the matter is that in each of these cases the multiplier algebra is isomorphic to the measure algebra $M(G)$ (see Larsen [5]).

Let T be a norm preserving multiplier of $\left(L_{1} \cap L_{p}\right)(G)$. Then there exists a measure $\mu \in M(G)$ such that

$$
T f=\mu * f \quad\left(f \in\left(L_{1} \cap L_{p}\right)(G)\right)
$$

and $\quad\|\mu\|=1$. Now

$$
\|\mu * f\|_{1, p}=\|\mu * f\|_{1}+\|\mu * f\|_{p}
$$

Also $\|\mu * f\|_{1, p}=\|f\|_{1, p}$. Therefore
$\|\mu \star f\|_{1}+\|\mu \star f\|_{p}=\|f\|_{1}+\|f\|_{p}$.
Since $\|\mu\| \leq 1$, (1) implies

$$
\|\mu * f\|_{1}=\|f\|_{1} \quad\left(f \in\left(L_{1} \sim L_{p}\right)(G)\right)
$$

Since $\left(L_{1} \cap L_{p}\right)(G)$ is norm dense in $L_{1}(G)$ we get the desired result, once again by Wendel's Theorem 3 in [7].

PROPOSITION 2. Let G be a compact abelian group and let T be a positive multiplier of $A_{p}(G)$. Then there exists a unique positive measure $\mu \in M(G)$ such that $T f=\mu \star f$ for every $f \in A_{p}(G)$.

Proof. From Theorem 6.2.2 of [5] it follows that there exists a unique pseudomeasure σ such that $T f=\sigma * f$ for each f in $A_{1}(G)$. To show that σ is actually a positive measure we shall show that σ defines a positive multiplier of $L_{2}(G)$, that is $\sigma * f \geq 0$ almost everywhere for every $f \in L_{2}(G)$ such that $f \geq 0$ almost everywhere, and then an application of Theorem 3.6.1 of [5] will imply that σ is a positive measure.

Let now $f \in L_{2}(G)$ such that $f \geq 0$ almost everywhere. From Theorem 33.12 of [4] it follows that $L_{1}(G)$ admits an approximate unit $\left\{u_{\alpha}\right\}{ }_{\alpha \in I}$ such that $u_{\alpha} \geq 0$ almost everywhere and \hat{u}_{α} has compact support. Clearly $u_{\alpha} \in A_{1}(G)$ for each $\alpha \in I$. Since $L_{2}(G) \subset L_{1}(G)$ therefore $u_{\alpha} * f \in A_{1}(G)$ and $u_{\alpha} * f \geq 0$ almost everywhere. Therefore $\sigma * u_{\alpha} * f \geq 0$ almost everywhere for each $\gamma \in I$. Since $\sigma * f \in L_{2}(G) \subset L_{1}(G)$ it follows that $\sigma * u_{\alpha} * f$ converges to $\sigma * f$ in the norm of L_{1}. Therefore there exists a sequence $\left\{u_{\alpha_{n}}\right\}_{\alpha_{n} \epsilon I}$ such that $\sigma * u_{\alpha_{n}} * f$ converges to $\sigma * f$ almost everywhere. Hence $\sigma * f \geq 0$ almost everywhere and σ is a positive measure. Since $\sigma * f=T f$ for each f in $A_{1}(G)$ and $A_{1}(G)$ is norm dense in $A_{p}(G)$ it follows that $\sigma * f=I_{f}$ for each $f \in A_{p}(G)$. This completes the proof of the proposition.

REMARK. It can be easily seen that Proposition 2 is true for arbitrary locally compact abelian groups G. The analogues of the proposition for the algebras $L_{1} \cap L_{p}$ and $L_{1} \cap C_{0}$ are also valid. Once again the case of $A_{p}(G)$ for noncompact G is exactly similar to that of $L_{1} \cap L_{p}$ and $L_{1} \cap C_{0}$ and the crux of the matter lies in the fact that in each of these cases the multiplier algebra is isomorphic to the measure algebra $M(G)$. The proof is easy and hence omitted.

PROPOSITION 3. Let G be an infinite compact abelion group and
$1 \leq p<\infty$. Let $\left\{m_{i}\right\}_{i \in I}$ be a net in $M\left(A_{p}(G)\right)$ such that $\left\{m_{i}\right\}_{i \in I}$ is bounded in the norm of $M\left(A_{p}(G)\right)$. Then there exists a subnet $\left\{m_{k_{i}}\right\}$ of $\left\{m_{i}\right\}$ such that

$$
\lim _{i} \int\left(m_{k_{i}}(f)\right)^{\wedge}(\gamma) d_{\gamma}=\int(m(f))^{\wedge}(\gamma) d_{\gamma}
$$

for each $f \in A_{1}(G)$. dy denotes the Haar measure on \hat{G}.
Proof, Case 1. $1 \leq p \leq 2$. In this case there exists a continuous algebra isomorphism of $M\left(A_{p}(G)\right)$ onto $P(G)$, where $P(G)$ denotes the set of all pseudomeasures on G (see Corollary 6.4.1 of [5]). If $m \in A_{p}(G)$, then σ is the unique pseudomeasure such that

$$
\int(m(f))^{\wedge}(\gamma) d^{\not} \gamma=\langle f, \sigma\rangle \text { for every } f \in A_{1}(G)
$$

and

$$
\|\sigma\|_{P(G)} \leq\|m\|^{p},
$$

where $\left\|\|^{p}\right.$ denotes the multiplier norm of m. Let σ_{i} correspond to m_{i}. Then $\left\{\sigma_{i}\right\}$ is a net of pseudomeasures bounded in the norm of pseudomeasures. Therefore, since $A_{1}(G)^{*}=P(G)$, there exists a subnet $\left\{\sigma_{k_{i}}\right\}$ of $\left\{\sigma_{i}\right\}$ and $\sigma \in P(G)$ such that

$$
\begin{equation*}
\lim _{i}\left\langle f, \sigma_{k_{i}}\right\rangle=(f, \sigma) \quad\left(f \in A_{1}(G)\right) \tag{2}
\end{equation*}
$$

Let σ be the pseudomeasure corresponding to the multiplier m of $A_{p}(G)$. Then (2) implies

$$
\lim _{i} \int\left(m_{k_{i}}(f)\right)^{\wedge}(\gamma) \not d^{\wedge}=\int(m(f))^{\wedge}(\gamma) d^{\gamma} \gamma
$$

for every $f \in A_{1}(G)$.

Case 2. $2<p<\infty$. In this case, by Theorem 6.4.2 of [5] there
exists a continuous linear isomorphism β of $M\left(A_{p}(G)\right)$ onto $B_{p}(G)^{*}$, defined by

$$
B(T)(f)=\int_{G}(T f)^{\wedge}(\gamma) d^{\lambda} \gamma \quad\left(f \in B_{p}(G)\right)
$$

$B_{p}(G)$ is the normed linear space whose elements are those of $A_{1}(G)$ and the norm is defined by

$$
\|f\|_{B}=\sup _{T}\left\{|B(T)(f)|: T \in M\left(A_{p}(G)\right),\|T\|^{p} \leq 1\right\}
$$

Thus $\left\{m_{i}\right\}$ can be considered as a net in $B_{p}(G)^{*}$ and the boundedness of $\left\{m_{i}\right\}$ in the norm of $M\left(A_{p}(G)\right)$ implies that it is also bounded in the norm of $B_{p}(G)^{*}$. Therefore there exists a subnet $\left\{m_{k_{i}}\right\}$ of $\left\{m_{i}\right\}$ and $m \in M\left(A_{p}(G)\right)$ such that

$$
\lim _{i} \int\left(m_{k_{i}}(f)\right)^{\wedge}(\gamma) d \gamma=\int(m(f))^{\wedge}(\gamma) d \gamma
$$

for every $f \in A_{1}(G)$.
PROPOSITION 4. Let G_{1}, G_{2} be locally compact abelian groups and Let $1 \leq p<\infty$. If there exists an algebra isomorphism Ψ of $M\left(A_{p}\left(G_{1}\right)\right)$ onto $M\left(A_{p}\left(G_{2}\right)\right)$ then either both of the groups G_{1} and G_{2} are compact or both of them are noncompact.

Proof. To prove the proposition we shall show that if one of the groups, say G_{1}, is compact then G_{2} is also compact. Suppose G_{2} is noncompact. Then $M\left(A_{p}\left(G_{2}\right)\right)$ is isomorphic to $M\left(G_{2}\right)$. Thus Ψ can be considered as an algebra isomorphism of $M\left(A_{p}\left(G_{1}\right)\right)$ into $M\left(G_{2}\right)$. Identifying the pseudomeasures on G_{1} which define multipliers of $A_{p}\left(G_{1}\right)$ with the corresponding multipliers of $A_{p}\left(G_{1}\right)$ we see that the restriction of Ψ to $L_{1}\left(G_{1}\right)$ is an algebra isomorphism of $L_{1}\left(G_{1}\right)$ onto $M\left(G_{2}\right)$. By Theorem 4.1.3 of [6] it follows that there exists a subset Y of \hat{G}_{2} and
a piecewise affine map α of Y into \hat{G}_{1} such that for every $f \in L_{1}\left(G_{1}\right)$,

$$
(\Psi f)^{\wedge}(\gamma)= \begin{cases}\hat{f}(\alpha(\gamma)) & \text { if } \gamma \in Y \\ 0 & \text { if } \gamma k Y\end{cases}
$$

Let $\sigma \in M\left(A_{p}\left(G_{1}\right)\right)$ and $f \in A_{1}\left(G_{1}\right)$. Then $\sigma * f \in A_{1}\left(G_{1}\right)$ and we have

$$
\begin{aligned}
(\Psi(\sigma \star f))^{\wedge}(\gamma) & =(\sigma * f)^{\wedge}(\alpha(\gamma)) \\
& =\theta(\alpha(\gamma)) \hat{f}(\alpha(\gamma))
\end{aligned}
$$

for every $\quad Y \in Y$. On the other hand $\Psi(\sigma * f)=\psi(\sigma) * \psi(f)$. Therefore

$$
\begin{aligned}
(\psi(\sigma * f))^{\wedge}(\gamma) & =(\psi(\sigma))^{\wedge}(\gamma)(\Psi(f))^{\wedge}(\gamma) \\
& =(\psi(\sigma))^{\wedge}(\gamma) \hat{f}(\alpha(\gamma))
\end{aligned}
$$

for every $\gamma \in Y$. Hence

$$
\begin{equation*}
\hat{\sigma}(\alpha(\gamma)) \hat{f}(\alpha(\gamma))=(\psi(\sigma))^{\wedge}(\gamma) \hat{f}(\alpha(\gamma)) \quad \text { for } \quad \gamma \in Y \tag{3}
\end{equation*}
$$

Since (3) holds for every $f \in A_{1}\left(G_{1}\right)$ we obtain

$$
\begin{equation*}
(\psi(\sigma))^{\wedge}(\gamma)=\hat{\sigma}(\alpha(\gamma)) \quad \text { for } \quad \gamma \in Y \tag{4}
\end{equation*}
$$

Now we prove that α is one to one on Y. Let $\gamma_{1}, \gamma_{2} \in Y$ such that $\gamma_{1} \neq \gamma_{2}$. Choose $\mu \in M\left(G_{2}\right)$ such that $\hat{\mu}\left(\gamma_{1}\right) \neq \hat{\mu}\left(\gamma_{2}\right)$. Next, choose $\sigma \in M\left(A_{p}\left(G_{1}\right)\right)$ such that $\Psi(\sigma)=\mu$. Then $\hat{\mu}\left(\gamma_{1}\right)=\theta\left(\alpha\left(\gamma_{1}\right)\right)$ and $\hat{\mu}\left(\gamma_{2}\right)=\hat{\sigma}\left(\alpha\left(\gamma_{2}\right)\right)$. Hence $\hat{\sigma}\left(\alpha\left(\gamma_{2}\right)\right) \neq \hat{\sigma}\left(\alpha\left(\gamma_{2}\right)\right)$ and therefore $\alpha\left(\gamma_{1}\right) \neq \alpha\left(\gamma_{2}\right)$.

Next we show that $\alpha(Y)=\hat{G}_{1}$. Since \hat{G}_{1} is discrete, $\alpha(Y)$ is closed in \hat{G}_{1}. If $\alpha(Y) \neq \hat{G}_{1}$, there exists $f \in A_{1}\left(G_{1}\right)$ such that $\hat{f}=0$ on $\alpha(Y)$, but \hat{f} is not identically zero. Since $\hat{f} \circ \alpha=0$ we have $\Psi(f)=0$; but this contradicts that Ψ is one to one.

Finally we prove that $Y=\hat{G}_{2}$. If $Y \neq \hat{G}_{2}$, since Y is a closed subset of \hat{G}_{2} there exists $\mu \in M\left(G_{2}\right), \mu \neq 0$, such that $\hat{\mu}=0$ on Y. Choose $\sigma \in M\left(A_{p}\left(G_{1}\right)\right)$ such that $\Psi(\sigma)=\mu$. By (4), $\hat{\sigma}=0$ on \hat{G}_{1} and
therefore $\sigma=0$; but $\Psi(\sigma)=\mu \neq 0$, a contradiction.
Thus we have shown that α is a piecewise affine homeomorphism of \hat{G}_{2} onto \hat{G}_{1}. Since \hat{G}_{1} is discrete it follows that \hat{G}_{2} is discrete and hence G_{2} is compact. This completes the proof of the proposition.

REMARK. The proof of Proposition 4 is based on the idea of the proof of Theorem 4.6.4 of [6].

3. Proof of Theorem 1

If G_{1} and G_{2} are noncompact then $M\left(A_{p}\left(G_{i}\right)\right)$ is isometrically isomorphic to $M\left(G_{i}\right)$ (see Theorem 6.3.1 [5]); therefore the result follows immediately from Theorem 1 and 2 of [1].

We shall now assume that G_{1} and G_{2} are compact.

Case 1. Suppose there exists an isometric algebra isomorphism T of $M\left(A_{p}\left(G_{1}\right)\right)$ onto $M\left(A_{p}\left(G_{2}\right)\right)$.

For each $a \in G_{1}$ consider the translation operator τ_{a}. This multiplier is norm preserving and has norm preserving inverse τ_{-a}. Thus $T \tau_{a}$ has norm one and so does its inverse. It follows that $T \tau_{a}$ is, in fact, norm preserving. It follows from Proposition 1 that $T \tau_{a}$ is of the form

$$
T \tau_{a}=\lambda(a) \tau_{a}
$$

where $|\lambda(a)|=1$ and $a^{\prime} \in G_{2}$. It is easy to see that a^{\prime} is uniquely determined by α. From the fact that T is an isomorphism it is easily seen that the mapping $\phi: a+a^{\prime}$ is an algebraic isomorphism of G_{1} onto G_{2}. Since G_{1} and G_{2} are compact and Hausdorff, to prove that ϕ is a homeomorphism we need only show that ϕ is continuous. Let e and e^{\prime} denote the identities of the groups G_{1} and G_{2} respectively. To prove the continuity of ϕ it is enough to show that if $\left\{a_{i}\right\}$ is a net in G_{1} such that $a_{i} \rightarrow e$, then $\Phi\left(a_{i}\right) \rightarrow e^{\prime}$ in G_{2}.

Suppose $\left\{\phi\left(a_{i}\right)\right\}$ does not converge to e^{\prime}. Then there exists a neighbourhood U of e^{\prime} and a subnet of $\left\{\phi\left(a_{i}\right)\right\}$ whose elements remain outside U for large i. Without loss of generality we shall assume that $\phi\left(a_{i}\right) \in C U$ (the complement of U) for all i. Consider then the net $\left\{T \tau_{a_{i}}\right\}$. This net is bounded in the norm of $M\left(A_{p}\left(G_{2}\right)\right)$. By Proposition 3 it follows that there exists a subnet of $\left\{T \tau a_{i}\right\}$ which, for the simplicity of notations, we again denote by $\left\{T \tau_{a_{i}}\right\}$, and a multiplier $m \in M\left(A_{p}\left(G_{2}\right)\right)$ such that

$$
\begin{equation*}
\lim _{i} \int\left(T \tau_{a_{i}}\right)(f)^{\wedge}(\gamma) d \gamma=\int(m(f))^{\wedge}(\gamma) d \gamma \tag{5}
\end{equation*}
$$

for every $f \in A_{1}\left(G_{2}\right)$; dr denotes the Haar measure on \hat{G}_{2}.
For $h \in A_{1}\left(G_{1}\right)$ let m_{h} be the multiplier defined by the convolution by h. Then $\tau_{a_{i}} h \rightarrow h$ in $M\left(G_{1}\right)$, and since the topology of $M\left(G_{1}\right)$ is stronger than that induced by $M\left(A_{p}\left(G_{1}\right)\right)$, we have $m_{\tau} a_{i} h \rightarrow m_{h}$ in $M\left(A_{p}\left(G_{1}\right)\right)$. Since T is continuous, we get

$$
T\left(m_{a_{i}} h\right) \rightarrow T\left(m_{h}\right)
$$

But $m_{\tau_{a_{i}}} h=\tau_{a_{i}} \cdot m_{h}$. Therefore

$$
T\left(\tau_{a_{i}}\right) \cdot T\left(m_{h}\right) \rightarrow T\left(m_{h}\right) \text { in } M\left(A_{p}\left(G_{2}\right)\right)
$$

Hence for each $f \in A_{1}\left(G_{2}\right)$ we have

$$
\begin{equation*}
\int\left[T\left(\tau_{a_{i}}\right) \cdot T\left(m_{h}\right)(f)\right]^{\wedge}(\gamma) d \gamma \rightarrow \int\left(T\left(m_{h}\right)(f)\right)^{\wedge}(\gamma) d \gamma \tag{6}
\end{equation*}
$$

From (5) the left hand side of (6) tends to

$$
\int\left(m \cdot T\left(m_{h}\right)(f)\right)^{\wedge}(\gamma) d \gamma .
$$

Therefore

$$
\begin{equation*}
\int\left(T\left(m_{h}\right)(f)\right)^{\wedge}(\gamma) d \gamma=\int\left(m \cdot T\left(m_{h}(f)\right)^{\wedge}\right)(\gamma) d \gamma \tag{7}
\end{equation*}
$$

for every $f \in A_{1}\left(G_{2}\right)$.
From (7) it follows that $T\left(m_{h}\right)$ and $m \cdot T\left(m_{h}\right)$, considered as elements of $B_{p}\left(G_{2}\right) *$, are identical. Therefore

$$
\begin{equation*}
T\left(m_{h}\right)=m \cdot T\left(m_{h}\right) \tag{8}
\end{equation*}
$$

Applying T^{-1} to (8), we get

$$
\begin{equation*}
m_{h}=T^{-1}(m) \cdot m_{h} . \tag{9}
\end{equation*}
$$

From (9) it follows that $T^{-1}(m)(h * g)=h * g$ for all
$h, g \in A_{1}\left(G_{1}\right)$. Since $A_{1}\left(G_{1}\right) * A_{1}\left(G_{1}\right)$ is dense in $A_{1}\left(G_{1}\right)$ it follows that

$$
T^{-1}(m)(g)=g \text { for all } g \in A_{1}\left(G_{1}\right)
$$

Therefore $T^{-1}(m)=$ identity . Hence $m=$ identity . Thus we have shown that $\left\{T \tau a_{i}\right\}$ considered as a net in $B_{p}\left(G_{2}\right) *$ converges to τe^{\prime} in the weak-star topology.

Also $\left\{\lambda\left(a_{i}\right)\right\}$ has a subnet converging to a complex number λ since $\left|\lambda\left(a_{i}\right)\right|=1$ for all i. Further, since G_{2} is compact, $\left\{\phi\left(a_{i}\right)\right\}$ has a subnet converging to some element a^{\prime} of G_{2}. Obviously $a^{\prime} \neq e^{\prime}$. To save renaming, suppose, without loss of generality, that $\lambda\left(a_{i}\right) \rightarrow \lambda$ and $\phi\left(a_{i}\right) \rightarrow a^{\prime}$. Then $\lambda\left(a_{i}\right) \tau_{\phi\left(a_{i}\right)} \rightarrow \lambda \tau_{a^{\prime}}$ in the weak-star topology of $B_{p}\left(G_{2}\right) *$. Since $\lambda\left(a_{i}\right) \tau_{\phi\left(a_{i}\right)}=T \tau_{a_{i}}$ it follows that $\lambda \tau_{a^{\prime}}=\tau_{e^{\prime}}$. This is possible only if $a^{\prime}=e^{\prime}$ and $\lambda=1$. Since $a^{\prime} \neq e^{\prime}$, we have reached a contradiction.

Case 2. Suppose there exists a bipositive isomorphism of $M\left(A_{p}\left(G_{1}\right)\right)$ onto $M\left(A_{p}\left(G_{2}\right)\right)$.

We begin with $a \in G_{1}$ and the multipliers τ_{a} and τ_{-a} : Then $T \tau_{a}$ and $T \tau_{-\alpha}$ are both positive multipliers. From Proposition 2 it follows that there exist positive measures μ and ν such that

$$
\left(T \tau_{a}\right)(f)=\mu * f
$$

and

$$
\left(T \tau_{-a}\right)(f)=v * f
$$

for $f \in A_{1}\left(G_{2}\right)$. Now it can be established, along the lines of the argument used in the proof of Case 1 of Theorem 2 of [1], that μ and ν are both Dirac measures and that $T \tau_{a}=\tau_{a},{ }^{\prime} \tau_{-a}=\tau_{b}$, say, where $b^{\prime}=-a^{\prime}$. Further it can be easily seen that the mapping $\phi: a \rightarrow a^{\prime}$ is an algebraic isomorphism of G_{1} onto G_{2}.

To complete the proof of the Theorem it remains only to show that ϕ is continuous. To this end we observe that we can copy the argument used in Case l once we observe that T is continuous and $\left\{T \tau_{a_{i}}\right\}$ is a net bounded in the norm of $M\left(A_{p}\left(G_{2}\right)\right)$. The continuity of T follows from the fact that it is an algebra isomorphism of the commatative Banach algebra $M\left(A_{p}\left(G_{1}\right)\right)$ onto the commutative semisimple Banach algebra $M\left(A_{p}\left(G_{2}\right)\right)$. The boundedness of the net $\left\{T \tau_{a_{i}}\right\}$ follows from the continuity of T.

REMARK. It is easily seen that G_{1} and G_{2} are topologically isomorphic if there exists a bipositive or norm decreasing algebra isomorphism of $M\left(\left(L_{1} \sim L_{p}\right)\left(G_{1}\right)\right)$ onto $M\left(\left(L_{1} \cap L_{p}\right)\left(G_{2}\right)\right)$ or of $M\left(\left(L_{1} \cap C_{0}\right)\left(G_{1}\right)\right)$ onto $M\left(\left(L_{1} \cap C_{0}\right)\left(G_{2}\right)\right)$. Also if G_{1} and G_{2} are noncompact, "isometric" can be replaced by "norm decreasing" in Theorem 1. All these results follow from Theorem 3.1 of [2] and the fact that the multiplier algebras involved are all isometrically isomorphic to $M\left(G_{i}\right)$ as Banach algebras.

We need the following proposition in order to derive some consequences of Theorem 1 and the above remark.

PROPOSITION 5. Let $F\left(G_{1}\right)$ and $F\left(G_{2}\right)$ be ideals of $L_{1}\left(G_{1}\right)$ and $L_{1}\left(G_{2}\right)$, respectively, which are Banach algebras in their own norm and let $M\left(F\left(G_{i}\right)\right)$ denote the multiplier algebra of $F\left(G_{i}\right)$. If S is a bipositive or isometric algebra isomorphism of $F\left(G_{1}\right)$ onto $F\left(G_{2}\right)$ then S induces a bipositive or isometric algebra isomorphism of $M\left(F\left(G_{1}\right)\right)$ onto $M\left(F\left(G_{2}\right)\right)$.

Proof. The induced isomorphism $\phi: M\left(F\left(G_{1}\right)\right) \rightarrow M\left(F\left(G_{2}\right)\right)$ is given by $\phi: T \rightarrow S T S^{-1}$. It is routine to check that ϕ is bipositive or isometric depending on whether S is bipositive or isometric.

REMARK. The assumption that $F\left(G_{i}\right)$ is an ideal in $L_{1}\left(G_{i}\right)$ is made to ensure that $F\left(G_{i}\right)$ is a semi-simple algebra, so that it is meaningful to talk about the multiplier algebra of $F\left(G_{i}\right)$.

COROLLARY 1. Let G_{1} and G_{2} be locally compact abelian groups and let $1 \leq p<\infty$. Then G_{1} and G_{2} are isomorphic as topological groups provided there exists a bipositive or isometric algebra isomorphism of $A_{p}\left(G_{1}\right)$ onto $A_{p}\left(G_{2}\right)$.

Proof. The result follows immediately from Proposition 5 and Theorem 1.

COROLLARY 2. Let G_{1}, G_{2} and p be as above. Then G_{1} and G_{2} are isomorphic as topological groups provided there exists a bipositive or isometric algebra isomorphism of $\left(L_{1} \cap L_{p}\right)\left(G_{1}\right)$ onto $\left(L_{1} \cap L_{p}\right)\left(G_{2}\right)$ or of $\left(L_{1} \cap C_{0}\right)\left(G_{1}\right)$ onto $\left(L_{1} \cap_{0}\right)\left(G_{2}\right)$.

Proof. The result follows immediately from Proposition 5 and the remark following the proof of Theorem 1.

REMARK. If G_{1} and G_{2} are compact then "isometric" can be replaced by "norm decreasing" in Corollary 1.

Proof of the Remark. Suppose G_{1} and G_{2} are compact and T is a norm decreasing algebra isomorphism of $A_{p}\left(G_{1}\right)$ onto $A_{p}\left(G_{2}\right)$. If $\gamma \in \hat{G}_{1}$, we shall show that $T \gamma \in \hat{G}_{2}$. Since T is an isomorphism we get

$$
T(\gamma) * T(\gamma)=T(\gamma * \gamma)=T(\gamma) .
$$

Now $(T \gamma)^{\wedge}=1$ or 0 . If $(T \gamma)^{\wedge}$ takes value 1 at two distinct characters then

$$
\left\|T_{\gamma}\right\|^{p} \geq 1+2^{1 / p}>2 .
$$

This contradicts the fact that T is norm decreasing. Therefore $(T \gamma)^{\wedge}$ takes value l at one and only one character because T is a norm decreasing isomorphism. This implies that $T_{Y} \in \hat{G}_{2}$.

Consider now an arbitrary trigonometric polynomial $\sum_{1}^{n} a_{i} \gamma_{i}$ on G_{1}. Then

$$
\begin{align*}
\left\|T\left(\sum_{1}^{n} a_{i} \gamma_{i}\right)\right\|^{p} & =\left\|\sum_{1}^{n} a_{i} T^{T \gamma_{i}}\right\|_{1}+\left(\sum_{1}^{n}\left|a_{i}\right|^{p}\right)^{1 / p} \tag{10}\\
& \leq\left\|\sum_{1}^{n} a_{i} \gamma_{i}\right\|_{1}+\left(\sum_{1}^{n}\left|a_{i}\right|^{p}\right)^{1 / p} .
\end{align*}
$$

The inequality follows because T is norm decreasing. From (10) we conclude that

$$
\left\|T\left(\sum_{1}^{n} a_{i} \gamma_{i}\right)\right\|_{1} \leq\| \|_{1}^{n} a_{i} \gamma_{i} \|_{1} .
$$

This shows that T can be extended as a norm decreasing isomorphism of $L_{1}\left(G_{1}\right)$ onto $L_{1}\left(G_{2}\right)$. The result now follows from Theorem 3 of [3].

References

[1] G.I. Gaudry, "Isomorphism of multiplier algebras", Canad. e. Math. 20 (1968), 1165-1172.
[2] Irving Glicksberg, "Homomorphisms of certain algebras of measures", Pacific J. Math. 10 (1960), 167-191.
[3] Henry Helson, "Isomorphisms of abelian group algebras", Ark. Mat. 2 (1954), 475-487.
[4] Edwin Hewitt and Kenneth A. Ross, Abstract harmonic conalysis, Volume II (Die Grundlehren der mathematischen Wissenschaften, Band 152. Springer-Verlag, Berlin, Heidelberg, New York, 1970).
[5] Ronald Larsen, An introduction to the theory of multipliers (Die Grundlehren der mathematischen Wissenschaften, Band 175. Springer-Verlag, Berlin, Heidelberg, New York, 1971).
[6] Walter Rudin, Fourier conalysis on groups (Interscience, New York, London, 1962).
[7] J.G. Wendel, "Left centralizers and isomorphisms of group algebras", Pacific J. Math. 2 (1952), 251-261.

Department of Mathematics, Indian Institute of Technology, Kanpur, Uttar Pradesh, India.

