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ABSTRACT. According to observational data solar magnetic fields have a pronounced filamentary
structure. Theoretical investigations of plasmas containing structured magnetic fields, including
the study of the properties of these structures and their interactions with associated gas flows, are
of great importance for our understanding of the basic processes in the solar atmosphere, whose
structure and dynamics are dominated by magnetic fields. In the present review theoretical models
of thin magnetic fluxtubes and their behaviour in the ambient plasma are discussed.

1. INTRODUCTION

A situation when the magnetic field is concentrated into randomly distributed bundles of
field lines is often met in laboratory and space plasmas. It is well known that all the solar
magnetic fields, from the convection zone to the heliosphere, have a pronounced filamentary
structure (cf. Stenflo, 1989 [1] and References therein). In the photosphere the magnetic field
is concentrated in almost vertical, thin (about 300 km) fluxtubes, usually widely separated
from each other, with field strengths of the order of 1-2 kG. In sunspots intense (3-4 kG)
fluxtubes are assumed to be tightly packed. The isolated fluxtubes are as a rule localized
at the supergranular cell boundaries, extending from the subsurface regions through the
photosphere and chromosphere, where they form a great variety of magnetic structures.
These structures generally have longitudinal dimensions much larger than the transverse
ones, and are exposed to the action of a constantly “booming” atmosphere, which results in
the generation of different kinds of waves and oscillations. For a better insight into the active
processes in the solar atmosphere, such as field concentration, the processes of energy transfer
from the lower to the upper layers of the atmosphere, the processes of energy storage and
release, preflare and flare processes, etc., the properties of both isolated tubes and ensembles
of them should be analysed. Besides its significance for astrophysical objects, such a study is
also of interest from the point of view of general physics, due to the wealth of wave processes
in such structures.
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In general, the studies of the problem show a rapid progress.
There should be mentioned the essential contributions by P.R.Wilson,
L.E.Cram, E.Parker, W.Unno, E.R.Priest, N.Weiss, J.Hollweg, H.Spruit,
B.Roberts, M.Schiissler and others (see [2] and References therein). But
main problems raised by observational evidence are not yet understood,
though numerous theories that address these problems have been proposed.
The physics of magnetic fluxtubes remains today of great interest. In
the present paper I will give a survey of some works which are devoted
to the studies of oscillations of magnetic fluxtubes. I will not try
to apply these results to explain any particular observational data but
there is a hope that the theoretical results which will be presented
can give at least some reasonable frame for the analysis of particular
situations at the Sun.

As it was mentioned above, the permanently booming atmosphere, in
particular, motions in convective zone excite several types of oscilla-
tions of fluxtubes. We shall consider long-wave oscillations whose
wavelength A = 1/k is much larger than the radius of magnetic fluxtube
R: kR << 1. Just these oscillations are most readily excited by large-
-scale plasma motions and have a relatively low damping rate. Among
these oscillations the most important modes are the two shown in Fig.l:
a) the bending (kink) oscillations which are actually the dipole mode
corresponding to the azimuthal wavenumber m = *1, and b) axisymmetric
sausage mode (m = 0).
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For both types of oscillations the frequency scales linearly with wave-
number.

The bending oscillations are some analogue of Alfvén waves. As the
external plasma participates in the motion in the vicinity of a tube
via the "added mass" effect its density enters their dispersion rela-
tion (Ryutov & Ryutova, 1976):
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Here subscript "i" refers to the tube interior, while "e" - to the
external plasma; p is the plasma density, a = B/V&ﬂpi is the Alfvén

velocity.

The sausage mode is specific quasi-longitudinal oscillation of
fluxtube in which a compression (expansion) of a plasma inside the
tube is compensated by the decrease (increase) in the longitudinal
magnetic field due to a corresponding change in the cross section of
fluxtube, so that the sum of gas-kinetic and magnetic pressures is al-
most not perturbed. Thus the plasma parameters outside the tube have
little influence on their dispersion relation (giving the corrections
of the order of (kR)?) (Defouw, 1976):

e = s ——— (2)
. :

Here s = vyP/p is a sound speed ( y 1is a specific heat ratio).
Some less important modes are shown in Fig. 2. There are high
frequency fast oscillations which are analogue of fast magnetosonic
waves. As their frequency is extremely high (of the order of a/R) they
can hardly be excited and experience fast radiative damping. The m = 0
torsional oscillations are just Alfvén wave, but their amplitude is
very small (of the order of Vconv..R/L’ where L is convective cell size

and VConv is characteristic velocity in convective zone) and also are

of less interest. The oscillations with the higher azimuthal mode num-
bers m = 2; 3,... are very weakly coupled with the large scale motions
of medium since the matrix elements which determine this coupling con-

tain a small parameter (kR) L

It should be noted that for theoretical investigation of the pro-
perties of fluxtubes and their ensembles (including the model of a
spot as a cluster of intense fluxtubes) the concept of a thin fluxtube
has proved to be very fruitful and justified. All mentioned above re-
lates to the thin fluxtube model. Even in this concept the physics of
plasma containing fluxtubes is very rich.

There exist specific damping mechanisms consisting in the radia-
tion of secondary acoustic waves into external plasma by oscillating
fluxtube (Ryutov and Ryutova, 1976), and in resonance excitation of
Alfven waves with continuous spectrum in the region where the phase
velocity of oscillations is close to local Alfvén velocity (Ryutova,
1977, Ionson, 1978). These effects contribute to the heating of upper
layers of atmosphere. The gravity leads to the changing of the charac-
ter of waves, which become dispersive. Another effect is that in the
simple case of isothermal atmosphere amplitude of oscillations increases
exponentially with height which leads to the development of strong
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nonlinear effects in tube environment (Spruit, 1981). In stratified at-
mosphere there appearsthe frequency cutoff which leads to the existence
of propagating (above cutoff frequency) and evanescent (below cutoff
frequency) waves (Defouw,1976; Roberts and Webb, 1978,1979). An evane-
scent wave can be regarded as the quasistatic response of a tube to
the slow changes in the region of wave excitation. If the wave is gene-
rated impulsively at the base of a tube it propagates with height in
the form of a wave front with velocity of corresponding wave mode. Be-
hind the wave front is trailed a wake oscillating at the cutoff fre-
quency (Rae and Roberts, 1982). For the compressive case the formation
of shocks both from the wave front and from the oscillating wake takes
place (Hollweg, 1982).

When fluxtube parameters have smooth radial dependence there ap-
pear very peculiar evolution of the radial mode structure of tube
waves: it becomes more and more spiky at higher altitudes and respec-
tively the dissipative processes become important, which results in a
faster damping of the wave. The longitudinal dependence of the energy
flux becomes nonexponential. Statistical analysis of the case when
tube experiences random oscillations caused by photospheric convective
motions shows that even '"white noise" of convective zone can result in
a temporal brightening of the tube region at definite height (Ryutova,
1989).

Very interesting physics is brought about by taking into account
the presence of shear flow along the fluxtubes. The plasma flows with
different velocities inside and outside fluxtube gives rise to the
qualitatively new effects: the appearance of negative energy waves, re-
versal of the sign of radiative damping, the development of explosive
instability at nonlinear stage, and the development of linear hydro-
dynamic instability similar to instability of tangential discontinuity
(Ryutova, 1988).

The picture of nonlinear effects in structured magnetic fields
even at the stage which we have today (with a great work yet to be done)
is very rich. Roberts and Mangeney (1982) have shown that when gravity
is ignored in a slab geometry the Benjamin-Ono type solitons can ap-
pear. After this paper, solitary waves in a slab and cylindrical tube
are extensively studied. Roberts (1985) showed that slow surface waves
are governed by nonlinear integrodifferential equation which possesses
the soliton solution. Edwin and Roberts studied Benjamin-Ono-Burgers
type equation and concluded that the estimation of the damping rate of
corresponding solitary wave enables these waves to propagate from lower
layers to upper chromosphere unharmed. Molotovshchikov and Ruderman
(1987) obtained the equations describing the long nonlinear sausage
waves (both slow and body) in fluxtube in magnetic environment. Note
that under the conditions when negative energy waves are excited in the
system the solitary waves with explosively growing amplitude can appear.

Another class of nonlinear effects is connected with the backward
effect of longwave oscillations on plasma which consists in the genera-
tion of secondary plasma flows and electric currents. These phenomena
lead to macroscopic effects which can play an essential role in the
dynamics of structured magnetic fields and which, in principle, can be
observed. The effect of secondary plasma flows (Ryutova, 1986) is si-
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milar to the effect of "acoustic" or '"quartz wind" in usual hydrodyna-
mics but its picture in MHD is more complicated. At the propagation of
longwave oscillations along the fluxtube there arise stationary vortex
flows in the plane perpendicular to the magnetic field and upward mass
flows along the field. The main effect of the '"magnetosonic wind" is
that the fluxtube is vanishing "diffusively" or is splitting into thin-
ner independent tubes. If the absorption of oscillation energy is de-
termined mostly by one of the plasma.components then besides the gene-
ration of "magnetosonic wind" it is accompanied by the excitation of
currents. The effects mentioned above are connected with the oscilla-
tions of fluxtubes. It is worth mentioning that there exists another
mechanism of current drive and, respectively, of a generation of mag-
netic fields which is not necessarilyconnected with fluxtube oscilla-
tions. Generally speaking the absorption of the momentum of usual
acoustic waves generated in solar atmosphere results in a transfer of
the momentum to plasma electrons and ions. It is shown that in a colli-
sional case of solar chromosphere where damping of acoustic waves is
caused by the nonlinear effects (formation of weak shocks) quite

strong currents and magnetic fields are generated (Ryutov & Ryutova,
1989).

The problem connected with the properties of ensemble of magnetic
fluxtubes is explored much less than the properties of separate flux-
tube. Ryutov and Ryutova (1976) studied the propagation of sound waves
in a plasma containing an ensemble of randomly distributed magnetic
fluxtubes and found that even in the absence of any dissipative effects
(viscosity, thermal conductivity, Ohmic losses) sound waves are ab-
sorbed due to the effect similar to Landau damping and consisting in
the resonance excitation of fluxtube oscillations. In a much longer
time than the time during which the energy of outer motions is trans-
ferred into the energy of fluxtube oscillations magnetic tubes release
their energy in the form of secondary sound waves into the upper layers
of atmosphere. The contribution of noncollinearity of fluxtubes into
the resonant absorption and resonant scattering of sound waves is found.
Quite recently Bogdan (1989) studied the resonance scattering of sound
waves by fluxtubes paying the most attention to the interaction of
solar p-mode with fluxtubes and indicating the importance of this ef-
fect as a diagnostic probe of the structure of solar magnetic flux con-
centrations (see also Bogdan & Zweibel, 1985, 1987; Bogdan & Cataneo,
1989). Ryutova & Persson (1984) studied dispersion properties of a
plasma containing small scale random inhomogeneities when density and
magnetic field change by the order of unity at a length small compared
to the wavelength (the model of a spot as a cluster of intense flux-
tubes). Unlike the case of homogeneous plasma the wave propagation in
such system is accompanied by vortex motion of plasma having the same
scale as that of the nonhomogeneities. The main effect which takes
place in such a clusters of fluxtubes is the enhanced dissipation of
MHD waves caused by large local gradients of temperature, velocity,etc.

Of course, the present review is far from complete and in addition
to References presented here I end the Introduction with some more of
them. Namely, the papers of N.O.Weiss (1981), Hasan & Schiussler (1985),
Ferriz-Mas (1988), Hollweg (1987), Hollweg et al. (1989), Seehafer
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(1988), Henoux & Somov (1987), and earlier reviews by Spruit (1981),
Thomas (1985) and Priest (1988).

2. LINEAR EFFECTS
2.1. Some basic properties of fluxtube oscillations

The study of fundamental modes of fluxtube oscillations is based on
the linearized MHD-equations compleémented by the equilibrium condition
of fluxtube in unperturbed state

BZ(r) _p _

Pi(r) t 8m e

3)

Here Pi and Pe are gas-kinetic pressures inside and outside the tube

and B is the magnetic field inside the tube. The condition (3) is
written for cylindrical fluxtube embedded in a field free medium. For
the perturbations proportional to exp(-iwt + ikz + ime)(we use the cy-
lindrical coordinates with z-axis coinciding with tube axis) in the
absence of gravity the phase velocities of two fundamental modes, kink
(m = 1) and sausage (m = 0), have a form (1) and (2), respectively.

When gravity is included there appears a buoyancy force which
changes the character of tube oscillation.

For isothermal case neglecting the compressibility of medium the
equation for kink oscillations can be written as (Spruit, 198la,b):

2 P, = P
= Cbz g g (———) _g_i. ; (4)
922 0. +p

9%g
ot?

£ 1is the transverse displacement of the tube (which is much larger
for these oscillations than the vertical displacement of the plasma
inside the tube). The solution of Eq. (4) gives for the amplitude

. . z
£n e—1wt + ikz + WH (5)

and for the frequency
2

2 2 _ b
wT = e k” = 7g (6)
b b
where H is a pressure scale height and W, g is the cutoff frequen-

cy.

The same holds for the sausage oscillations. The corresponding
equations written for the vertical component of velocity which for
these oscillations in contrast with the kink mode is much larger than
the transverse one, have a form (Defouw):
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These equations together with the equilibrium condition of a thin
fluxtube (3) give for the isothermal atmosphere the following disper-
sion relation:

2 _ . 2.2 T2
w® = cp ke + ( w, ) (8)

with the cutoff frequency

2 1

wT=E'E_(9_§+16(1-1) E

Y Y a? 7 -

As to solution for the velocity amplitude it has the same form as (5).
(Appropriate studies for the arbitrary temperature profile T(z) see
Roberts and Webb (1978); for the case of variable specific heat ratio
and the mean molecular weight see Spruit and Zweibel (1979).

Thus, the dispersive nature of both modes in isothermal atmos-
phere is analogous to that of an acoustic wave propagating vertically
upward. The waves with the frequencies w < w_ are evanescent. For pro-
pagating waves the frequency cutoff works as a filter which lets
through the thickness of atmosphere only those waves among the great
variety of waves excited in convective zone whose frequency is larger
than w.. Since for bending oscillations the cutoff is quite low these
waves are expected to reach chromosphere with growing amplitudes (in
accordance with Eq. (5))(Spruit, 198la). Rae and Roberts have shown
that if disturbances of fluxtube are impulsively generated at its base,
then the wave propagation occurs and the existence of cutoff manifests
itself in the formation of an oscillating wake. The wake is oscillating
with the tube frequency.

The above conclusions are valid for isothermal atmosphere. In a
non-isothermal atmosphere fluxtube oscillations may become unstable.
For a thin tube embedded in a convective zone the instability is driven
by the buoyancy force in much the same way as in ordinary convection
(Webb & Roberts, 1978; Spruit, 1979; Spruit & Zweibel, 1979). The sta-
bility criterion (actually Schwarzschild's criterion) is modified by
the presence of magnetic field. Namely, the magnetic field exerts the
stabilizing influence and constrains the unstable motion to a flow
along the tube. If the instability sets in as a downdraft it leads to a
new equilibrium state of higher field strength, but a lower total
energy. The magnetic energy is increased at the expense of the gravita-
tional energy of plasma within the tube.

One more example of changing the character of tube oscillations is
that when there is a sharp discontinuity in the vertical temperature
distribution - the situation typical for chromosphere and the transition
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zone. The pressure balance condition means that in this region a steep
drop of plasma density inside the tube occurs providing the condition
for the wave reflection and for the formation of resonance structure in
the open fluxtube. This means that in the region of the temperature
jump one can expect quite a large oscillation level. Since the lower
point of fluxtube experiences random oscillations caused by the convec-
tive motions, besides the study of boundary value problem one needs to
analyse the behaviour of the spectral density of tube oscillations. The
appropriate analysis shows that with a considerable probability the
amplitude of tube oscillations can be 3 or 4 times larger than its
average value which by itself, in the region of temperature jump becomes
much larger than the amplitude of motions in convective zone (Ryutova,
1989). In the observational data such events can manifest themselves

as a temporal brightening of tube region. The same holds for another
mechanism of the formation of 1-D resonator in open fluxtube which is
connected with the rapid radial broadening of the tube at some altitude
caused by the loss of radial equilibrium. As is well known, such pheno-
menon occurs when the plasma temperature outside the tube is less than
that inside. The rapid broadening gives rise to a growing tube inertia
which results in the "pinning" of the tube at the altitude of the loss
of equilibrium.

Up to now, we considered the fluxtubes homogeneous in their cross
section. In the next section we will see that the radial dependence of
tube parameters leads to a number of new effects. In the same section
we consider the influence of compressibility of medium.

2.1. Anomalous and radiative damping of fluxtube oscillations

The allowance for a smooth profile of plasma parameters over the tube
radius brings about the specific (and strong) damping of oscillations
which is caused by the resonance between the phase velocity of oscilla-
tions and the local Alfvén velocity. Mathematical form of corresponding
equation is of the type of Rayleigh equation in usual hydrodynamics
with the coefficient of the higher derivative approaching zero in
singular point. Beginning with the paper of Timofeev (1970) such type
of equation and corresponding effects, in particular Alfvén resonance,
in laboratory plasma is studied in detail. The effect of Alfvén reso-
nance appeared to be very important in physics of coronal loops and
heating processes (lonson,1978; Hollweg,1979; Heyvaerts and Priest,
1983; see also Sudan and Similon, 1988). Just for magnetic fluxtube os-
cillations this effect was studied by Ryutova (1977) who considered
longwave bending (kink) oscillations in an incompressible limit. In
this case the MHD-equations come to a single equation for current
function ¥ :

3

k?B% | 3y k?B2 .y _
s - )rgi-(p -=—)% =0

4mw? 4mw?

9)

(current function relates to the velocity components by v, = %-g%-and
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v@ = %%-). For the arbitrary radial profiles of density and magnetic

field the quantitative evaluation of the damping rate is not quite
simple. The eigenvalue problem can evidently be solved for the model

of a tube which is homogeneous everywhere except the narrow (but finite)
boundary layer of the width €R, where the Alfvén and sound speeds are
linear functions of radius (e is a small parameter. For this model the
damping rate is proportional to € (qualitatively, if € is of the order
of R, the damping rate becomes comparable with the frequency):

v = (10)

Note that the anomalous damping, by itself, does not transform the
energy of oscillations to the plasma heating. It just results in the
concentration of the initially smooth eigenfunction near the resonant
point, or, in other words, to a conversion of oscillation energy to the
Alfvén continuum, But then, of course, the usual dissipa-
tion mechanisms, like viscosity and others, turn on, and this strongly
oscillating distribution damps out.

Returning to the case of a really smooth radial dependence of
fluxtube's parameters note that the weakly damped wave which could be
described in terms of a smoothly varying radial eigenfunction does not
exist any more. As in a real situation the radial distributions in most
cases should be smooth, the question arises of whether under such con-
ditions the bending oscillations of fluxtube can still be an agent
responsible for the energy transfer from the underlying surface to up-
per chromosphere. To answer this question one should study a boundary
value problem for the tube excited in its footpoint. The appropriate
analysis in a most general case of a profile without any small parame-
ter shows (Ryutova, 1989) that at higher altitudes the radial structure
of the perturbation which was smooth near the excitation point, becomes
more and more spiky at higher altitudes. The characteristic radial
scale length Ar diminishes inversely proportional to z:

Ar ~ Ra/wz .

Respectively, due to the presence of these small scale structures the
dissipative processes (viscosity, thermal conductivity, etc.) become
more and more important at larger z. The longitudinal dependence of

the energy flux of the oscillations becomes nonexponential. The corres-
ponding estimates give

Qv WEZ
(Ar)?

b

where Q is a volume density of a power released by viscous dissipation
(v is a kinematic viscosity coefficient). As Ar diminishes with height,
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Q is growing with z. At some altitude z* reaches maximum, and then
rapidly decreases - just because the amplitude of oscillation decreases.
Thus, the heating power has a very characteristic shape with a pro-
nounced maximum at some altitude z*. For comparison the dotted line in
Fig. 4 shows Q for usual exponentially damping wave. The estimate of
the altitude z* is

1/3
zk n —

w AV
Thus, one can conclude that even in the case of a smooth radial profile
of plasma density and magnetic field the bending waves can transfer
energy from underlying surface to upper chromosphere.

Let us proceed now to another important feature of fluxtube os-
cillations connected with the compressibility of medium. Ryutov and
Ryutova (1976) have shown that in compressible medium oscillating
fluxtube can be a source of secondary acoustic waves. The frequency of
the radiated acoustic wave is obviously equal to that of the fluxtube
oscillations. The same holds for the longitudinal wavenumber k. The
radial wavenumber of acoustic wave is determined from the dispersion
relation and is equal to:

_ 1 2 2. 24
kr = . ( w- k Se )

Here s, is the sound speed in the external plasma.
The radiation occurs if k, is real, that is if the phase velocity
w/k of flux tube oscillations is larger that s,. In the opposite case
the acoustic waves are evanescent, and their presence does cause only
a small change of phase velocity of tube oscillations. So, for the
case when k, is real radiative damping rate of an arbitrary mode (ex-

cept the axisymmetrical one) is as follows (Ryutov and Ryutova,1976):

(m)
0trad _ Ll (Bk)zlmI[ 2 B
w |m|!(|m|-1)!(1+n) 2 Y (14n) .

|m]

Respectively for bending oscillations we have

(1)
rad _ il
w 1+ pi/pe

a

2
(%) Las 070 e

For sausage oscillations (Ryutova, 1981):

0) 3
rad _m Rk )2 °i
w 2 Y2 sez(a2 + siz)2 .
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The damping rate contains in all the cases a small parameter (kR)2 and
thus is relatively small. This smallness is a reflection of the fact
that the frequency of tube oscillations is small as compared to the
eigenfrequency of its radial acoustic oscillations. For short wave-
lengths the damping rate becomes large, of the order of frequency.
This is another reason why just the longwave oscillations are of the
most interest.

So, approaching the real conditions of solar atmosphere we have
taken into account the gravity effect, the radial inhomogeneity of
fluxtube and the compressibility of medium. The next step is taking in-
to account the presense of longitudinal mass flows along the magnetic
structures.

1.3. Effect of sheared flows

As it was mentioned in Introduction, the presence of longitudinal flow
of a plasma in the vicinity of fluxtube gives rise to qualitatively new
effects (Ryutova, 1988). First of all, when the velocity of shear flow
exceeds a certain threshold value there arise negative energy waves in
the system which can become unstable due to various energy absorption
processes including nondissipative mechanisms of damping. In the case
of fluxtubes just because of their specific feature described above
the instability can occur due to the radiation of secondary sound
waves and due to anomalous damping in Alfvén resonance region. When
the velocity exceeds the second threshold there arises the linear hy-
drodynamic instability similar to the instability of the tangential
discontinuity (TD) in MHD or Kelvin-Helmholz instability in hydrodyna-
mics. Note, that according to observational data the plasma flows
usually with different velocities inside and outside the magnetic
structures are observed in all the magnetized regions in solar atmos-
phere.

In the coordinate system where the substance inside the tube is
at rest, while the flow velocity outside it equals u and is directed
along the z-axis, the linearized MHD-equations together with the equi-
librium condition (3) lead to the following set of equations for small
oscillations of magnetic fluxtube in the presence of shear flow:

e o) @ (% a?)-k?s?a? 13 Yr  im o
i8'= p(r) n? - kZs? [ r 9T Q(r) e Q(r)]
AP _ 20r) - K2a2 T
Py ip(r)[ Q%(r) - k®a ]Q(r) (11)

. v
= 8= ip(n)[ 9% (x) - kzaz]ﬂ“(’r)

Here §®= &p + bZB/éﬂ is the total pressure perturbation (all perturbed
quantities are assumed to be proportional exp(-iwt +ikz+ imp)), and

Q(r) = w - ku(r).
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The set (11) describes all the types of linear oscillations of
magnetic fluxtube. (For u = 0 they were described above). To illustrate
the properties of negative energy waves we consider the bending oscilla-
tions. In this case the set (l1) is reduced to the following equation
for the displacement vector (cf. Eq. (4)):

82* _ a_- a_. 2 BZ 32;
Pi T3t2 pe( ot + 2z )T+ 4m gz° - (12)
The dispersion relation following from (12) has a form:

w? + ﬁ~(m - ku)? - k2a2 = 0 (13)

where n=pi/pe. From (13) we have

%= : 41_ - { ut/nla®(1 +n) - u?] }, (14)

Before describing the instability of negative energy waves let us
examine the region, where

u>avl+n . (15)

This is a region of TD-instability which can be referred as a '"coarse"
one since its growth rate is comparable with the frequency when w
exceeds the threshold by a factor of two. This instability must play

an essential role in different astrophysical objects where there are
high speed streams along the magnetic field. In particular, the exci-
tation of solar fluxtube oscillations is thought to be caused by
shaking of tube's footpoint in convective zone. The frequency of these
oscillations is very low, which presents the problem in an attempt to
explain the energy transfer from photosphere to upper layers. The
TD-instability leads to existence of another mechanism of excitation

of oscillations magnetically structured media which is independent of
the motions in the base of fluxtube and which can work far from convec-
tive zone and moreover, in any region with the strong mass flow. So, if
in some region a fluxtube is "blown out" by the upward flow the oscil-
lations excited here propagate further upwards. The frequency of these
oscillations can be much higher than the inverse time of re-arrangement
of granulation picture.

In the region u > a¥ 1 + n when system is still stable with res-
pect to TD-instability the instability of negative energy waves can
occur. For the lower branch (sign "minus") in dispersion relation (14)
the energy density has a form

X
W = TR?k?p £? (na’- u?) —— (16)

where x = /hla2(l + n) - u?].
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It is seen that the wave energy becomes negative at
u > a vn (17)
Therefore, within the interval

a/n < u < a/1 + 1 (18)

there can exist the instability of NEW caused by any of dissipative
processes. In other words, dissipative effects lead to loosing the
energy of NEW and, hence, to the growth of their amplitude. Note, that
the possibility of the existence of negative energy waves in nonequi-
librium plasma for the first time was pointed out by Kadomtsev et al.
(1964); on the negative energy waves in hydrodynamics see, for example,
Ostrovsky et al. (1986).

It is remarkable, that for magnetic fluxtubes this instability
can occur even in the absence of any usual dissipative processes due
to their specific features mentioned above. First, the instability
takes place due to the damping in the Alfvén resonance layer. Recently,
similar results have been obtained by Hollweg et al. (1989), who
studied the effects of velocity shear on the resonance absorption of
incompressible MHD surface waves and indicated the importance of this
effect for the development of turbulence in regions of strong velocity
shear. I would like to emphasize that the strong instability takes
place not only for axisymmetrical waves but also for bending waves (see
below). Second, in the case of compressible medium the instability
occurs due to the radiation of secondary sound waves. Note again, that
the development of NEW-instability leads to the reversal of the sign
of radiative damping and to the growth of the fluxtube oscillations
amplitude. This is possible in two cases: when fluxtube oscillation
has a negative energy, while a radiated sound wave has a positive one,
or when former has a positive energy, while a radiated wave has a po-
sitive one. For example, the conditions under which bending oscilla-
tions of positive energy radiate negative energy sound waves are as

follows:
/.2 _ 1 2
a > se/V , u>s +/a° - oS - (19)

As to sausage oscillations the outer flow has a weak influence on them;
in particular, their energy remains positive in the presence of flow.
So that the instability in this case can be caused by the radiation of
negative energy sound waves. The necessary condition has the form:

cp=u - s, V1 + k2/k > 0

T
which is possible when fulfilling the requirement

> + .
u CT Se

The most important feature of negative energy waves is that their pre-
sence leads to enlargement of classes of instabilities and one can
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expect a very vigorous nonlinear activity in a system. A few of them we
describe in the next section.

2. NONLINEAR EFFECTS
2.1. Explosive instability

In the system where the waves with opposite signs of energy are simul-
taneously present the nonlinear explosive instability can develop.

This instability was first considered by Dikasov et al. (1965) and il-
lustrated by the waves with random phases. Later on, it was analysed by
Coppi et al. (1969) for a triplet of coherent waves.

As is well known, the main feature of this instability is that the
amplitudes of interacting waves achieve infinitely large values for a
finite period of time. As an example let us consider an explosive in-
stability for a triplet of waves propagating along the fluxtube.

Let wave 1 be of a sausage type, thus having a positive energy,
(as was mentioned above, external flows have a weak influence on this
mode), wave 2 - of bending type with negative energy, that is propagat-
ing against the flow and having k; negative, and wave 3 - of bending
type with positive energy (k; > 0). The bending wave can be either
linearly polarized, that is be a mixture of waves withm =1 and m=-1,
or circularly polarized in opposite directions.

The matching conditions can be satisfied if shear flow velocity
exceeds some critical value equal to

L
> n(n®? +3n +3)
c "]

2 -
+ [a%n - e = : (20)

c 1 +n
It is easy to verify that the value (20) is below the limit of hydro-
dynamic instability and just gets into the interval corresponding to
the existence of negative energy waves determined by (18). So, under
the condition

a/ﬁ <uc< uixP

one can expect a very vigorous nonlinear activity in system. So, if
only one wave (say wave l)is excited in the system at the initial mo-
ment of time and the amplitudes of two other waves are determined by
thermal noise , then at the initial stage of development of the explo-
sive instability these amplitudes increase exponentially. The charac-
teristic growth rate by the order of magnitude is equal to k;v;., where
v,.is the velocity amplitude of tube's boundary in slow oscillations.
In a time of the order of several inverse growth rates when the ampli-
tudes of all three waves become the quantities of the same order, there

begins the power growth of the amplitudes of all interacting waves ac-
cording to the law

1
v o

~ t - to

and the amplitudes of all three waves achieve infinitely large values
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in a time ty, which in our case is also of the order of (k1v1~)_1. of
course the assertion made above is formal to some extent: higher-order
nonlinear processes can limit the growth of amplitudes at a finite le-
vel. So, the further development of explosive instability depends on
the character of these nonlinear processes as well as the dispersive
properties of system. There can be, for example, 'real explosion'", that
is fast (~ty) release of energy stored in a system; the stabilization
of instability with appearance of solitary wave; gas of solitons; soli-
tons with explosively growing amplitudes; shocks; turbulence, etc. The
detailed analysis of these processes is the future problem. What is well
known today is that nonlinear equations describing fluxtube oscillations
possess soliton-type solutions which will be shortly presented in the
next section.

2.2. Solitons in magnetic fluxtubes

Eq . (7) for sausage together with the equilibrium condition (3) form
hyperbolic equations which possess the shock solution. The allowance
of the compressibility of medium leads to dispersion of the wave. If
the nonlinearities responsible for the creation of shocks are counter-
-balanced by the dispersive effects the solitons can appear. Roberts
(1985) has shown that sausage waves in a thin cylindrical fluxtube sa-
tisfy the nonlinear integrodifferential equation which is analogous to
the equation which was got by Leibovich (1970) for the description of
water waves on a vortex and which has a solitary solution. Earlier such
an equation for a slab geometry was obtained by Roberts and Mangeney

(1982):
ov ov v 2 ®v_(s,t)
z z z 19 z _
ot + Cr 3z + vV, T3z + Q27 5;7;1 s - 2z ds =0 2D
2 27,42
where ) [(y + 1) a® + 35e la . 1 Pe Cr ,
ay = 2(s Z + a?2)? s Q2 = E‘Er‘( gf‘) X0Cp -
e i

Here 2 x 1is the width of the magnetic slab.

Eq. (21) is the Benjamin-Ono type and the corresponding solution
is
Vo

1+ (z - st)?/12

vz(z,t) =

where the amplitude vy, speed s and scale of soliton are related by

s =c., + 1 s 1 = 4ay/vea:
T u

This solution corresponds to a swelling in the slab which propagates
with a speed s. The cross section of a slab depends on v, as
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°r
A= Ag(1 +—aVz)_

Nonlinear analysis including dissipative effects lead to equation of
the Benjamin-Ono-Burgers type (Edwin and Roberts, 1986). The estimates
of the decay rate of corresponding solution show that solitons can
propagate through the nonadiabatic atmosphere and to emerge at higher
altitudes.

2.3. "Magnetosonic flows"

As was described above, in plasma containing structured magnetic fields
a great variety of wave processes take place. This leads to very in-
teresting nonlinear effects analogous to the effect of "acoustic flows"
or "quartz wind" in usual gasdynamics (see, for example, Nyborg, 1965
and References therein). But in magnetohydrodynamics the picture of
these effects is much more rich (Ryutova, 1986). Namely, at the propa-
gation of oscillations along the fluxtubes secondary plasma flows and
currents are excited inside the tube as well as outside it. There are
two main reasons leading to these effects: the action of ponderomotive
force on plasma (this mechanism is not connected with the absorption of
oscillations and with any dissipative processes) and absorption of mo-
mentum and angular momentum of oscillations propagating along the tubes
(nonzero angular momentum can be transferred by the circularly pola-
rized bending oscillations). The absorption of angular momentum causes
the rotational mass flow around the fluxtube and the absorption of
longitudinal momentum can lead to the upward mass flow. If the absorp-
tion is provided mostly with one of the plasma components (the specific
of situation depends on the damping mechanism), then it is accompanied
by the excitation of currents which can distort the initial magnetic
field.

The velocity field of generated secondary flows is described by
the following equation

ou 2 B? -

= 4 = - + =
P 5t pWeu vV (P a7 ) + f (22)
where v is kinematic viscosity and f is ponderomotive force acting on
the unit volume of plasma. f has a following form:

av
dt

~~

T-=-<3 >+%<[3§]>, (23)

Here tilde marks perturbed quantities defined by linearized MHD-equa-
tions corresponding to one of the modes (bending or sausage). One can
see from equation (12) that convective motions can arise only if

rot £ #0 .
Otherwise, the ponderomotive force leads only to an insignificant re=

distribution of plasma density and magnetic field. The magnitude of £
becomes especially large in Alfvén resonance layer where quite strong
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convective motions can arise.

These secondary (''magnetoacoustic'") flows can bring about diffe-
rent evolution regimes of magnetic fluxtubes which depends on the
correlation properties of the wave trains propagating in the tube and
on the parameters of fluxtube itself. If we consider a case of long
coherent train with the duration T much in excess of the time of es-
tablishing of viscous flow (T, ™ R%2/v), the density and magnetic field
become constant along the lines of generated motion, and the fluxtube
is "splitting" into four independent tubes, In the opposite
case of a sequence of mutually incoherent (including the plane of pola-
rization) short (T << Tv) wave trains, a kind of stochastic motion is
induced, which results in a diffusive broadening of a tube and ends up
in a complete "dissolving" of fluxtube in the ambient plasma,

As it was mentioned the effects described above exist even in the
absence of any mechanism of absorption. In the presence of absorption
z-component of ponderomotive force directed along the magnetic field
appear.

Other mechanism of generation of magnetosonic flows and in this

case also the current drives is connected just with the absorption of
the oscillation energy. Formally, the expression for f has the same
form as Eq. (23), but now the terms directly connected with the absorp-
tion are taken into account. Besides the absorption due to the usual
dissipative processes for fluxtubes nondissipative mechanisms of ab-
sorption described above are quite efficient. For example, in the case
of resonance damping with the damping rate (10) the energy of bending
oscillations is pumping into the resonant layer where the dissipation
occurs. Respectively, the whole momentum of oscillations is transferred
to plasma in the narrow layer, causing the strong upward mass flow
along the magnetic field. The corresponding force can be estimated as

follows
B2 |v|2
fz va 4m a“R

Now, if the absorption is provided mostly in electron (or ion)
component of plasma the generation of currents inside the tube as well
as outside occurs. As in the case of secondary flows, the absorption
of momentum leads to the current drives along the fluxtubes and the
absorption of angular momentum leads to the generation of azimuthal
currents.

3. THE ENSEMBLES OF FLUXTUBES

This part of paper deals with the effects accompanying the propagation
of long-wave MHD-oscillations in a plasma containing small-scale inho-
mogeneities, namely, the ensembles of magnetic fluxtubes. In the first
two sections we consider the ensemble of fluxtubes far removed from
each other, while in the third section we discuss briefly the tightly
settled fluxtubes.
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3.1. Resonance damping of sound waves in system of fluxtubes

The system of fluxtubes has an interesting feature: the longwave acous-
tic oscillations in the system are damped due to the effect similar to
Landau damping which consists in the resonance excitation of bending
waves propagating along the fluxtubes (Ryutov and Ryutova, 1976). The
bending oscillations propagate along the fluxtube separate with the
phase velocity defined by Eq. (1) and if the angle 6 between the direc-
tion of sound propagation and fluxtube direction satisfies the condi-
tion

s = ¢ cos v 27)

then the resonant transfer of sound wave energy to the energy of flux-
tube oscillations takes place.

Since in general the density and the magnetic field inside the
different fluxtubes are different, so the velocity changes from one
fluxtube to another, and hence, at each propagation angle there are
tubes for which the condition (27) is satisfied and which absorb the
energy of sound waves.

We define the distribution function of fluxtubes f(r,n) over their

o
radius R and parameter n= Bi- (we consider that R is much less than the
e
average distance between fluxtubes L which is much less than wavelength:
R << L << A):

(o)

o= fodedn f(R,n)

where 0 is the total fraction of volume occupied with fluxtubes (0 v

2
N %7-<« 1). The damping rate of sound oscillations has a form:

Ne > 0 _ 2 cos?®®

= .2 g(nO)a . -
Vg = Tks sin®@ { 0 ne < 03 Mo ”

b

-1 (28)

where we introduce the function

o

g(n) = {f(r,n) dR .

If we make the natural assumption that p; changes with respect to pg
not more than by several times from one tube to another, then g(ng) o,
and for damping rate we can write the following estimate:

vy v oks
which holds _only for those values of 6, where ng > 0, i.e. where
cosB > (y/2)%. For monatomic gas the corresponding region is quite nar-

row, 6 <49 so that it is essential to take into account the noncolli-
nearity of separate fluxtubes. Let h(n) be the distribution function of
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fluxtubes over the directions. N is the unit vector directed along the
tube's axis. We can normalize h(n) as follows:

o = fh(n) do .

do is the element of solid angle. Then for isotropic distribution of
fluxtubes the damping rate of sound oscillations has a form

Vs _ 1 oy [2-y(+n)]

ks 42 VETCEEED) :

So magnetic fluxtubes absorb the energy of outer motions at the pho-
tosphere level during the time of the order of vs'l. Then the process
of energy accumulation goes on,and in a time arad_] which is much great-
er (araé >> Vo "), fluxtubes release their energy due to radiation
of secondary acoustic waves at the higher layers of atmosphere.

3.2. Scattering of sound waves by fluxtubes

The detailed theory of scattering of sound waves by magnetic fluxtubes
(Ryutov and Ryutova, 1976) shows that there are resonances in scatter-
ing due to the existence of weakly damped natural oscillations of flux-
tube. The main contribution to damping is of dipole mode, i.e. the bend-
ing oscillations. The damping rate of acoustic wave with frequency w
has a form

f(R,n)

Vscatt f TR2 B(n,R,w) dndwdR (29)

where B is some function containing the resonance denominators

Q2 .= 2
B 4¥} (w — Q)z T aiad > Q k S/fY(l + n)

For the narrow region of = one can perform integration over n and
R resulting

= msk sin26+g(ng)

Vscatt

which formally coincides with (28). We imply that ng > 0; in the oppo-
site case the scattering becomes nonresonant and damping rate becomes

much smaller: v_ ... v oks (kR) 2.
Note that if the condition (kR)2 < ¢ is satisfied the scattering is
negligible.

In the case of comparatively short waves (R << A << L) the damp-
ing is completely determined by scattering. In this case the damping
rate Vg appears to be smaller than oL ad and this means that direct

scattering of primary acoustic wave into the secondary sound waves
without the preliminary accumulation of energy in natural oscillations
of fluxtubes takes place. In other words for short waves one has vg =

= , where Vg is defined by Eq. (29).

scatt catt
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Recently resonant scattering of sound waves by slender fluxtubes was studied by Bogdan
(1989), who emphasized the importance of this effect for the diagnostics of the structure of
magnetic flux concentrations across the solar surface. This may be possible because near the
resonance the elastic scattering cross section (per unit length of the fluxtube) is comparable
to the wavelength of the incident solar p mode, which for slender fluxtubes may exceed both
the geometrical and non-resonant scattering cross sections by several orders of magnitude.

3.3 Enhanced dissipation by tightly packed fluxtubes

Until now we have discussed the problems connected with isolated fluxtubes and ensembles
of fluxtubes widely separated from each other. In the solar atmosphere the situation when
fluxtubes are tightly packed seems quite realistic, so the question arises what the effects are
that accompany the propagation of long-wave MHD oscillations in a plasma with random
inhomogeneities, when the density, temperature, and magnetic field change by a large amount
over a distance small as compared with the wavelength. Intuitively it seems that the large-
scale perturbations will propagate in quite the same way as in a homogeneous plasma, with
the difference that the density, velocity, etc., will be replaced by some averaged quantities,
and that intuitive conclusions should turn out to be more or less correct. It is however far
from easy to find an explicit procedure for even the derivation of the averaged equations,
especially for a real 3-D problem.

There are a few cases in which one can write the averaged equations in explicit form
(Ryutova and Persson, 1984). It is interesting that such systems reveal some less obvious
properties. One is that unlike the case of a homogeneous plasma, the wave propagation
in a plasma with random (and strong) inhomogeneities is accompanied by a vortex motion
of the plasma. These motions have the same scale as the fluxtube cross sections. Besides,
because of the large gradients of velocity and temperature that are associated with tightly
packed fluxtubes, enhanced dissipation of MHD waves can take place. The dissipation rates
associated with both the viscosity and thermal conductivity are (A\/R)? (with A > R)
times larger as compared with the homogeneous case. Ohmic dissipation gives only a minor
contribution to this effect. Thus although dissipative effects are believed to be small in
the solar atmosphere, these effects may strongly influence the dynamics of inhomogeneous
regions.
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